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In this work we present a method for automatic 3D segmentation of prostate on MR images and volume reconstruction by
fuzzy sets fusion algorithm. The segmentation is model based method and the reconstruction takes into account the dice
thickness to reduce the partial volume effect. The tool is applied for prostate segmentation in radiotherapy planning.
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[. INTRODUCTION

3D segmentation and reconstruction is a difficult process
because they must take into account the different
deformations which characterize the object to be segmented.
In the medical field, manual body delineation is a time
consuming task and often requires prior knowledge to cope
absence of contours due to the lack of contrast of images as
well as the great variability of body shapes and positions.
For these reasons, researches in this field were directed
towards methods which combine image information and a
priori knowledge about the structure of the studied object.
These methods are an extension of active contours ([1], [2])
and can be classified in two classes:

Methodswith a priori knowiedge on the geometry: The
first work was that of [3] and its 3D extension in [4], [5]
and [6] and m-reps multiscale description introduced by [7].

Methods with a priori knowledge on appearance: In
this category, in addition of information about the geometry
of the object, information on its appearance, in particular
gray levels and textures are included [8] and [9] where
knowledge about the probabilities densities of the pixels
inside the form is added.

In many medical fields, the needs for segmentation are
very important. In this paper, we propose a general
framework for 3D reconstruction of human organs from
MRI. This framework is described here through the process
of prostate segmentation and reconstruction for prostate
cancer diagnosis and image-guided therapy planning.
Because automatic prostate segmentation remains
complicated-in particular at apex either from transrectal
ultrasound images (used for brachytherapy) or from MRI or
CT (used for radiotherapy)-it seems to be an appropriate
field of application of our approach.

This article is presented as follow: first, we shortly
present the context of prostate segmentation for radiotherapy

planning, then we detail the model-based approach and the
fuzzy set principles method used for reconstruction.

[I. CONTEXT

For image guided therapy, some solutions appeared and
especially to be applied in clinical practice. In [10], the
authors proposed a method to segment the bladder, the
rectum and the femoral heads on CT images. The method is
based on a 3D model and user interaction to correct
erroneous contour. Deformable image registration is a
technique used in prostate segmentation in ([11], [12], [13],
[14], [9D.

Considering the emerging role of MR imaging in
radiotherapy treatment planning and the non-existence of a
complete solution to assist the physician in target delineation
i.e. prostate, we have designed an automatic segmentation
tools based on a two steps framework. First, the prostate is
automatically delineated using a deformable model
algorithm. An implementation of the delineation algorithm
was evaluated by comparing the results to manual
segmentations made by a senor radiologist on images of 24
patients. Then, after the prostate is delineated, in order to
perform a more realistic reconstruction and quantification
of the prostate, we use a fuzzy set based algorithm [15].
This second step takes into account the partial volume effect
and the MRI signal properties in a slice in order to obtain a
volume closer to the physical one.

[11.METHODS

3.1 Prostate Delineation with a Defor mable M odel

In a precedent report we have described a model based
automatic prostate segmentation from ultrasound images
combining an adaptive morphological filtering and a
heuristic optimisation algorithm ([16]). We propose here an
adaptation of this algorithm for 3D model-based
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segmentation of prostate on MR images. Prostate model was
trained based on manual segmentations from N = 15 patients
MRI images that did not include the targets. According to
the slice thickness and to its size and its shape, the prostate
often appears on 8 to 12 slices in standard pelvic MR exam.
In order to get a 3D model, the prostate was contoured, on
each slice, by placing 20 points represented by their 3D
coordinates p, = (X, ¥, z). Thus, the prostate surface was
modellised by a vector X = X Yor 2, X0 Vs Z, -y X Yo Z5s
where P is the total number of surface points. For this study,
whatever the number of slices used the total number of
prostate points P was brought to 200.

Twenty points were used to describe each 2D contour
as a compromise between the time spending and a detailed
description of the contour variation. It should be underlined
that this number of points is higher than the number of points
usually laid out by the experts for delineating the prostate
for radiotherapy purposes.

As the training set contained intra-patients data and the
modelisation process was based on the variation of the
positions of points over the set, it was important to align the
points in the same way according to a set of axes. This
alignment (rotation, translation and scaling) was achieved
using the Iterative Closest Point (ICP) algorithm [17]. The
ICP is based on an iterative alignment of the points through
the minimization of a cost function which is the quadratic
distance between the points. The method alternates pairing
and calculation of the transformation between the paired
points. Pairing is done by associating each point to its nearest
neighbour.

(a) Extraction of statistical information

Principal Component Analysis (PCA) enabled us to extract
the model shape and the most important modes [3] of
deformation. Model shape of the N-contours was computed
as the mean X of the vectors components:
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Main variations around mean shape correspond to eigen
values of the covariance matrix S:
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Each eigenvector is responsible for a variance equal to
its eigen value. Its contribution to total shape variation can
be expressed as:
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wherein A, and o, represent eigen values and eigenvectors
contribution to shape variance respectively. The method of
determining the main modes of deformation consists in
decomposing the displacement vector on an orthonormal
base:

©)

wherein {0,}i= 1.. 3P are the base vectors and b, represented
the coordinates of vector dX in this base.

This decomposition was carried out using the
Karhunen—Loeve transform [18], which consists in
decomposing a random vector according to the eigenvectors
of its covariance matrix:

S¢i = }\'i(bi (6)
wherein A, represents the normalized eigen values of the
covariance matrix Sand ¢, its eigenvectors. These eigen
values represent the variances of parameters b. An
approximation of displacement vector dX was obtained
through linear combination of m eigenvectors of covariance
matrix S These eigenvectors corresponded to the m most
representative eigen values A, such as:
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Thus a displacement vector can be expressed as:

dX = ihcbi (8)

b- Model

Let ¢ = (¢,, ¢y,..., ¢,) the matrix composed by m most
important eigenvectors of § a vector X can be expressed as:

X =X +¢b 9)

wherein b= {b} is a R"vector.
Assuming that the distribution of the ¢, components is

gaussian, all vector b component is included in £ a,/A,

interval. Interval limits were used for restraining model
deformation. Then, organ segmentation consists in finding
the m deformation parameters b, and the interval parameter
a, that characterize its contour.

Figure 1 shows the 3D rendering of the prostate model.

¢- Contour searching

Contour searching was realised by optimising an energy
function.

Contour energy

An energy defined by Terzopoulos et al. [2] is associated
with each contour C:

E(C)=E

external (10)
The internal energy E__ represents length and

elasticity of the contour. The external energy E is

‘internal

external
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Figure 1: Prostate Model Rendering

associated with the image data. Its minimization tends the
contour to recover the lines of steepest gradient. It’s
expressed as:

Encara = ||V I((s) [ I (11)

whereiny] represents the image gradient calculated using
the Deriche operator [19].

Contour optimization

Segmentation began with interactive initialisation to position
the model over the target in the image using axial and sagittal
sequences. The second stage consisted in iteratively

searching for the final contour. This search was performed
by a simulated annealing algorithm known for its ability to
explore a large range of parameters [20]. At each step, a
new parameters b, vector was randomly generated and
introduced in Eq. (9) to form a new contour and compute its
energy. If the visually assessed delineation accuracy was
insufficient, the procedure was repeated until a visual match
between the deformable prostate model and the organ was
reached. These interactive corrections were only used in the
areas of large mismatch, where the model was attracted to
close structures.

Figure 2 shows an example of prostate automatic
delineation.

3.2 Evaluation of Automatic Delineation

The delineation method was evaluated by comparing the
results to manual segmentations performed by a senor
physician involved in the management of prostate cancer.
He operated on an images base of 24 patients with prostate
cancer. Images were acquired on a 1.5 T Philips Intera®
scanner with a phased array coil, with the following sequence
parameters: a sagittal T2-w Turbo Spin Echo (TSE) (Field
of view (FOV) = 24 cm x 24 c¢m, matrix 512 x 512, Time
Repetition (TR)/Time Echo (TE) = 1630/110 ms, Echo Train
Length (ETL) = 16, Slice Thickness (ST) = 4 mm) and a
T1-w 3D Fast Field Echo (FFE) (FOV =40 cm x 40 cm,
matrix 512 x 512, TR/TE =25/4.5ms, ST=5mm)oraTIl-
w TSE SENSE (FOV =40 cm x 40 cm, matrix 512 x 512,
TR/TE =499/12 ms, ETL =5, ST = 5 mm).

The comparison between manual and automatic
delineation was made on ARTIView™ software

Figure 2: Example of Automatic Prostate Delineation on M R | mages
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(AQUILAB®SAS). This program identified the pixels
located inside or outside a contour and assigned them a 0 or
1 value, respectively. The method was iterated for each slice
of a given set of MR images. The following parameters were
measured:

\olumes Ratio (Automatic/Manual)

Volume Overlap (ratio of the volume of intersection to the
volume of union, optimal value = 1)

_VmVa

- VvmUVa (12)

VO = volume overlap, Vm = manual volume, Va = automatic
volume

It’s important to stress that this index is very sensitive
to small variations in overlap because it is normalized to
the union of the volumes. As an example, if two equal
volumes overlap by 85% of each, the volume overlap would
be only 0.74.

Correctly delineated volume (percent ratio of the volume
of intersection to the manual defined volume, optimal value
=100);

_VmVa
vm

VC (13)

VC = correctly delineated volume.

3.3 Prostate 3D reconstruction

Once the volume was delineated, we performed a 3D
reconstruction which takes into account the slice profile and
the 3-D neighboring [15]. This algorithm, using fuzzy set
tools, enabled to perform a more realistic reconstruction.
This algorithm was previously validated for radiotherapy
planning [15] and for cerebral vessels segmentation on MR
images [21].

The aim was to define, for each slice, a minimum region
within which was surely inside the structure (i.e. prostate in
this application), and a maximum region which was surely
outside this structure. A degree of membership equal to one
(1) was, thus, assigned to the pixels inside the minimum
volume, and a degree of membership equal to zero (0)
was assigned to the pixels outside the maximum volume
(figure 3). The degree of membership of the pixels in the
intermediate area was obtained with the theory of possibility
[22] using distribution functions taking into account:

(1) the gray levels and the orientation of their local

gradient in the image

(2) the local CNR in the vicinity of the intermediate

area

The degree of membership of a given pixel within the
fuzzy area was determined in considering the distribution
of the gray levels between the external and the internal border
(figure 4). Thus, for a given pixel among the distribution,
the gray level is converted to a degree of membership
according to a distribution (triangular, trapezoidal,

exponential, etc.) As proposed in [15], we used a sigmoid
distribution given by:

1 if Gl > Max
2
(-G =Max e
u = 2-_a )
w if c>Gl >Min (14
2-a
0 if Gl <Min
where: C=M and |o/=|c—Min|=|c—Max]|,

2
Gl is the gray level of a given pixel, Max and Min are the
minimum and the maximum gray level among the
distribution as shown figure. 6
Eq. 14 assigned to each pixel of each slice a degree of
membership. In the case of a heterogeneous contrast around
the structure, the pixel degree of membership of this structure
should be greater in the higher-contrast area than in the
lower-contrast area. Therefore, the membership distribution
function has to be weighted as a function of contrast
(Eq. 15). To do so, the CNR was calculated locally for each
of the pixels belonging to the fuzziness region. This was
achieved by calculating the local contrast along the structure
boundary, taking a measurement of the noise in a local area,
in the neighbourhood of the volume. The weighting function
was then given by Eq. 15.

W,= 1 —exp(—a X CNR)
=W

(15)

where Ws is the weighting factor according to the CNR in
the area (o is fixed at Log(100)/CNRMax so that WS =0.99
for the higher CNRMax value observed in the whole set of
MRA images) and 1’ is the weighted degree of membership.

To take into account the slice thickness and the volume
partial effect, all the pixels from all the slices were considered

(a)

(b)

(d)

(©

(R
/.

Figure 3: Definition of Fuzzy area Derived from the Initial
Contour. (a) Initial Contour, (b) External Border of
the Vascular Sructure Obtained in Dilating (a) and
Outside of which the M embership being Equal to 0.
(c) Internal Border Obtained in Eroding (a) and I nside
of which the degree of M ember ship being equal to 1.
(d) Fuzzy Area.
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Figure 4: Computation of the Degree of M ember ship of the Pixels within the Fuzzy Area. For a given point of the External Border,
the Gray Level Distribution is Measured (A) and is used to Convert the Pixels Gray Level into Degree of M ember ship (C).
The Conversion from Gray Level to Degree of M embership is Achieved using a Sigmoid Function (B) (see Eqg. 14). Note
that in this Example, the Sigmoid Function is given for Dark Background and Bright Sructure.

as voxels having a degree of membership to the structure.
The first step in this 3-D process was the over-sampling of
the volume according to the slice thickness (figure 5) and to
take into account the slice profile of signal sensitivity
(figure 6). This MR slice sensitivity profile was previously
obtained by measurements taken on a phantom of known
geometry [16].

Once this over-sampling performed, the degree of
membership of each voxel p’,obtained from Eq. 15, was
attributed to all the sub-voxels, weighted by signal sensitivity
distribution into the slice as well as by the simultaneous
contribution of the neighbouring slices (figure 6). For the
sub-voxel n belonging to the slice i, we finally obtained the
degree of membership p >

Original voxel

Sub-voxel

Sub-slice ¥~ Original slice

Figure 5. Over-sampling the Volume to Obtain Sub-voxels.
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Figure 6: Signal distribution in the slices and contribution of contiguous slices to the calculation of member ship for the sub-voxel in
position n. Take, for example, 5 contiguous slices (i—2, i-1,1,i + 1, i + 2) 4 mm thick, each of them being divided into 3 sub-
slices. Let us also assume that, for the thickness of the slicesin question, the distribution function of the signal isa gaussian
function with a standard deviation of 6 = 1,8 mm. Numeric calculation on the basis of this gaussian function shows that the
relative contribution of slice i to sub-voxel n is 0.76, and that of slicei-1 is 0.33. The weighting factors are then & = 0.76/

(0.76+0.33) » 0.7 and & _, = 0.33/(0.76+0.33) =~ 0.3.

i-1,n

W= G WS G ) (16)
where : p’, w_’, b, are the degree of membership of the
original voxels in the vicinity of the sub-voxel n and
belonging to the slices i, i-1, 1 +1;§ ,, € ., &, are the
weighting coefficients obtained from the signal slice profile
of slices i, i + 1, i—1 in the sub-voxel n (figure 6).

Finally, using the marching cube algorithm [24], an iso-
surface was determined for visualization and quantification.
This surface, which delineates the vascular structure from
the background, was determined using a degree of
membership threshold of 0.5. The choice of this value was
justified by a previous study which has shown the robustness
and the low variability of the segmentation resulsts when
using threshold value from 0.2 to 0.8 [15].

IV. RESULTS

Volume ratio (VR) was 1.130 + 0.09; automatic volume
is slightly larger than manual volumes (Wilcoxon test,
p < 10*). Volume Overlap (VO) and correctly delineated
volume (VC) were 0.784 + 0.05 (min.: 0.71, max.: 0.86)
and 94.7 £ 3.3 (min: 0.89, max 0.99) respectively.

Figure 7 shows a comparison between manual and
automatic segmentation for a patient. Figure 8 shows a
volume rendered after delineation and reconstruction.

V. DISCUSSION

Different automated organ delineation methods have been
studied in radiotherapy treatment planning. Automated 2D
contouring aimed at robust detection of organ boundaries in
2D slices. Bueno et al. [25] have presented a 2D morphologic
approach based on watershed transformation for automatic
rectum, bladder and seminal vesicles segmentation. A good
segmentation accuracy has been reported for the tested slices
(1.2 to 1.7 mm average distance to ground truth for bladder
and rectum respectively), but no validation of complete 3D
data sets has been done. Mazonakis et al. [26] have proposed
a region growing technique for the segmentation of prostate,
bladder and rectum on CT images but a slider was used to
define three independent threshold ranges and consequently
this method cannot be considered as automatic. Lee et al.
[27] have recently presented a semi-automatic segmentation
of nasopharyngeal carcinoma in MR images. Concerning
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Figure 7. Comparison between automatic prostate delineation and manual delineation by an expert

Figure 8: Final volume of the prostate
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prostate automatic delineation most of the authors consider
organ model based segmentation as a promising method but
no detailed evaluation has been published to date. Pekar et
al. [10] have proposed an automated model based organ at
risk (rectum, bladder and femoral heads) delineation on TDM
images. Reproducible and accurate results for automatic
brainstem and kidney delineation have also been found with
this model based method in Rao et al. [28] and Bondiau et
al. [29]. Broadhurst et al. [30] in their method based on m-
reps [7] and statistical modelling of non-parametric
histograms built a prostate and rectum models from 17
images of a single patient. Although the approach is
interesting, it remains far from the practice since it is
evaluated on the same data having been used to build the
models. In Lu et al. and Foskey et al. [11, 12] the key idea
is the use of the result of a deformable image registration to
match two CT exams and automatically replace manual
segmentation initially laid out on the reference image. The
method provides good results for intra-patient exams but
suffers of weakness for inter-patients exams because of the
assumption of conservation of voxels values. Freedman et
al. [9] combined a shape-appearance model and a probability
distribution of photometric variables inside the object to
segment the prostate and the rectum. The authors reported
major user interactions to correct the results.

Our study is one of the first to propose a truly 3D
evaluation of an automated model based prostate delineation
and consequently, our results are difficult to compare to
others previous reports using a wide range of mainly 2D
evaluation methods. Some authors have used the distances
between the automatic and the manual contours (Haussdorf
and radial distances). Also Pekar et al. [10] have compared
automatic and manual rectum, bladder and femoral head
contours; manual delineation was performed by a single
observator. A good overall delineation accuracy (mean error
1.7 mm for bladder) was achieved but no 3D evaluation has
been done. A 3D evaluation is also missed in Mazonakis
et al. [26] where prostate, bladder and rectum volumes have
been compared but on a slice-by-slice basis only. We have
also to point out that a comparison based on volume index
is more sensitive to small overlap differences than a
comparison based on Haussdorf or radial distances. For
example, two voxel cubes of 10 x 10 x 10 shifted by one
voxel along the space diagonal direction results in only a 57
% volume overlap (729/1271) although the mean distance
of surfaces is around one voxel. In the same way we
compared radial distances and overlap volume in one patient
after shifting the prostate volume by 5 voxels along the space
diagonal direction in the axial plane, resulting in a maximal
distance of 4 mm between automatic and manual volume:
VO and VC were respectively 0.77 and 87%.

Manual segmentation is considered as the reference but
cannot be considered as a perfect ground truth due to inter-
observer variability. Cazzaniga et al. [31] have assessed the
variability between 6 physicians in defining the prostate on
CT for three prostate tumour cases, the percentage

differences between the measured volumes and the mean
values (100 x (volume — mean volume)/mean volume) were
ranged from 53.6 % to 60.5 %. Fiorino et al. [32] and Seddon
et al. [33] have evaluated inter-observer difference in
delineating prostate on CT between 5 and 15 physicians
respectively. The variation in volume was estimated at
10% (+18) and 10 % (£15) respectively.

This variability has led Mal et al. [15] to propose a
solution for reducing this variability while improving the
volume quantification from manual delineation. This method
has been applied on the automatic delineated structure
because the contours obtained were closed to the expert ones.
Indeed, even if the variability of the automatic delineation
approach is lower than the manual way and more precise
according to the image segmentation, the contours obtained
did not necessary provide a good volume estimation due the
inherent image partial volume effect what is corrected thanks
to the reconstruction step of our framework.

Note that we do not discuss about the evaluation of this
fuzzy approach because it has been already validated earlier
[15,21].

V. CONCLUSION

We have developed and evaluated a new MR images anatomy
automatic delineation tool based on a deformable model and
a fuzzy set approach for volume quantification. We have
found good accuracy but also robustness of our algorithms
on a 24 prostate cancer cases evaluation study. However
automatic delineation could be compared to contours made
by a panel of experts to definitely confirm its robustness
and reproducibility. To our knowledge, our study is one of
the first 3D evaluation of an automated model based prostate
delineation. Software developments are ongoing to further
reduce the process time calculation allowing a daily routine
use. It is probably of importance to evaluate the influence
of this new automated delineation on inter-observer
delineation variability and dosimetry.

Whatever segmentation technique used (manual,
automatic or semi-automatic), the ultimate gold standard is,
and will remain, the clinical expert’s eye. The goal of the
automated procedures is to relieve as much as possible the
physician of time consuming tasks while assuring accuracy
and reproducibility at least as high as manual method.
However there is also some other parameters to take into
account as the national or international regulation as well as
the software conformance to the professional
recommendations. Collaboration with expert committees and
industrial partners that respect the standards in use could
contribute to the validation and a larger spreading of these
techniques.
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