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In this paper, we present a framework for computer-aided diagnosis of pulmonary embolism (PE) in contrast-enhanced
computed tomography (CT) images. It consists of a combination of a method for segmenting the pulmonary arteries (PA),
emboli detection methods as well as a scheme for the evaluation of the performance. The segmentation of the PA serves one
of the clot detection methods, and is carried out through a region growing method that makes use of a priori knowledge of
vessels topology. Two different approachesfor clot detection are introduced: thefirst one performs clot detection by analysing
the concavities in the segmentation of the pulmonary arterial tree. It worksin a semi-automatic way and enablesthe detection
of thrombi in the larger sections of the PA. The second method does not make use of the segmentation and is thus fully
automatic, enabling detection of the clots farther in the vessels. The combination of these methods provides a robust detection
of clots that can be used as a safeguard by radiologists, or even as preliminary computer-aided detection (CAD) toolset.
The evaluation of the method is also discussed, and a scheme for measuring its performance in terms of sensitivity and
specificity isproposed, including a practical approach to making reference detection data, or ground truths, by radiologists.

Results are presented and discussed.

1. INTRODUCTION

Pulmonary embolism (PE) is an extremely common and
highly lethal condition that isaleading cause of deathin all
age groups. Its symptoms are often vague and its diagnosis
is a major medical challenge. However, when properly
identified, an efficient treatment exists that dramatically
reducesthemortality rate of the disease. Multidlice computed
tomography (CT) has gained acceptance as a minimally
invasive method for evaluating patients with suspicion of
PE [1]. Nowadays, the diagnosis of PE is manually
performed by radiologists on CT scans, and it is a time-
consuming and error-prone process, in particular because
of the huge amount of data and more specifically in the case
of sub-segmental and periphera clots, which are more
difficult to locate. In that context, a computer aid can be
provided to act at least as a safeguard for radiologists or
even better, if sufficiently conservative, as a preliminary
detection means.

In this paper, we propose a framework for the problem
of detection of PE in contrast-enhanced CT images. This
framework permitsthe use of variousclot detection methods
that are eventually combined to provide final detection
results. For the sake of completeness, we note at this point
that a classification method could beimplemented aswell,

whose role would be to decrease the false alarm rate, but
this was not investigated in this study. Two clot detection
methods are presented. Thefirst one usesa segmentation of
the PA as a semi-automatic process, while the second one
worksdirectly on image dataand isafully automatic process.
The segmentation of the PA is a challenging task by itself,
and, considering our specific application whereimages are
contrast-enhanced (Fig. 1), meaning that a contrast product
isused to opacify* thearteries, we developed a model -based
active contour method. The algorithm used for region
growing is based on the fast marching algorithm first
developed by Sethian et al. [2]. Later on, our early
segmentation results showed that touching vessels, that is,
neighboring thorax vessel swith no visiblefrontier between
them in the image, were an important issue for region
growing-based methods. We used an apriori modd to handle
the case thesejoint vessdls, that would otherwiselead to the
segmentation of other thorax vessels. Thismodel is made of
aset of parametric 3D curvesthat represent the centerlines
of the vessels, and is used in the active contour step by
modifying the expression of the speed of propagation.

The first clot detection method looks for holes or
concavitiesin the sesgmentation of the PA that correspond to
clots. It does so by applying a set of operators of
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Figure 1: lllustration of a typical slice of a CT volume, with opacified vessels. Main thorax vessels are identified, and emboli are

marked by an arrow.

thresholding, 3D mathematical morphology [3] andlogical
operations. The second detection method makes assumptions
about the density and the shape of the clotstoidentify them.
Because simple criteriaare used, this method leads to many
false positives, and a lot of which are outside of the lung
volume. Lung volume segmentation is used to tackle that
situation. Both clots detection methods are combined and
provide a 3D, voxd-wise mask of emboli presence.

Eventually, aschemefor assessing the performance of a
PE detection method isintroduced. It focuseson the creation
of ground truth data by radiologiststhat permitsa comparison
with the results of the detection methods, in terms of false
negative (non-detections) and fal se positive (fal se detection)
rates, which lead to method sensitivity and specificity. That
schemeisused with our method and theresults are discussed.

This paper is organized as follows: related work is
covered in the next section. After that, the algorithm for
segmenting the pulmonary arteriesis presented, as well as
both emboli detection methods. Eventually, evaluation and
results are discussed and a conclusion isdrawn.

2. RELATEDWORK AND MOTIVATIONS

Vessels analysis in both 2D and 3D image datasets has
attracted many research efforts in the recent years. One
approach to the problem of emboli detection istofirst extract
the pulmonary arteries. Depending on modality and the kind
of sudied vessds, whose sizes and shapesmay vary, different
vessal s segmentation methods have been used. Kirbaset al.
did a classification of vessels extraction methodsin [4], and

Felkel [5] did areview that is more specific to the case of
contrast enhanced images (CTA - computed tomography
angiography). What comes out i sthat region growing method
provide a superior ability to segment this type of variable
scale structure. The first application of region growing
methods to vesselsin 3D dataset is attributed to Zahlten et
al. [6]. Their method handles the bifurcation of vessels and
simultaneously reconstructsthe hierarchical structure of the
vessels tree. More recently, active contours methods have
been used for segmenting vessels. Snakes permit the
segmentation of organsin 2D (3D extensionsal so exist) but
level setsand fast marching algorithmsintroduced by Sethian
and Malladi are better suited to elongated structures than
snakes|[2, 7], because of their easy extension to 3D and their
topology adaptation capability. Deschampset al. presented
a method based on the fast marching algorithm for 3D
vessels segmentation [8, 9], adding the concept of freezing
contour evolution once the vessel boundaries are reached.
Using a similar concept, we presented our slice marching
method in [10], and later extended it with the use of amodel
in [11] to handlethe case of touching vessels.

Back to the detection problem, Masutani et al. presented
amethod for emboli detection based on the segmentation of
the PA [12], whose main limitation is that its results are
tightly linked to the quality of the underlying PA
segmentation. Another approach to emboli detection is not
to use any prior segmentation of the PA. Such an approach,
based on tobogganing , was recently presented in [13]. That
method gives very good sensitivity and its main drawback
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seems to be the high number of false positives. Thisis not
much discussed, and the way to compute that false alarm
rateisnot expressed. Aswe found out, segmentation of lung
volume can dramatically reducefal se positivesrate for that
kind of methods. Segmentation of the lung volume was
studied by van Ginneken et al. for radiographs[14], and we
note that the problem iseasier in CT scans, because of the
accessto unprojected raw data. Interest in emboli detection
based on machine learning methods and classification was
recently expressed [15], but thiswas not studied as part of
thiswork, although it might be a way to further refine the
detection results. Eventually, we also note that up to this
time, little efforts have been made to provide a standard
means for assessing PE detection methods.

Our research efforts first focused on the devel opment
of a PA segmentation method that handles the case of
touching vessds, and later on the PE detection problem. Our
solution to the segmentation problem begins with an
approach similar to Deschamps et al. [8], adding support
for touching vessel s by using amodel of thorax vessels. For
the detection problem, we combine a method based on PA
segmentation with another one that is not, in the hope of
coping with their individual weaknesses. Eventually, we
propose a standard scheme for assessing automatic PE
detection agorithmsand discussthe resultswhen that scheme
isapplied to our detection method.

3. METHODS

3.1 Preprocessing

By studying how radiologists perform the analysis of the
image-volumein the context of emboli detection, wenoticed
that not al 12-bit gamut of voxd sare generally used. Instead
Hounsfield Units (HU) in the range of [0,350] (out of [-
1000, +3000]) suffice. HUs are typically mapped in the 8-
bit scale of console displays, that range contai ning most of
theinteresting information regarding thisapplication. This
first processing step performs exactly that.

3.2 Segmentation of the PA

3.2.1 Front Propagation

Starting from aseed point at the beginning of the PA, welet
a 3D contour, or surface, grow. To accomplish this, we want
to solve the Eikonal equation (1) using the fast marching
algorithm, as expressed by Sethian [2]. Given an initial
contour where the crossing time, T, is known to be zero,
(curve in 2D, surface in 3D) and given its speed of
propagation along its normal at every point in the image,
F(X), we compute thesolution T(X) tothe Eikonal equation
(1) at every voxel X :

[VT(X)|F(X) =1 with T(X)=0 ontheseed (1)
If we suspend the computati on of the solution when the

crossing time T(X) becomes higher than a given threshold
T

dice’

if (T(X)>T,,) = suspend 2

lice

and if we define our speed function F(X) sothatitisnear

to one inside the vessel, and by noticing that time and
distance are equival ent when speed is unity, wecan tell that
T, isthe depth of the slice. An estimate of the section of

the vessel can be made by dividing the dice volume by its
depth.

Next, by choosing a speed function F(X) thatissmall
enough outside the vessel, we can freeze the active front
(denoted asthetrial set in thefast marching algorithm [2])

by not considering voxel swhose arrival timeishigher than
asecond threshold, T,

bound:

if (T(X,)>T,omg) = remove X, fromtrial set (3
Then, weiterate using atimethreshold T, _ of theform:
T, = T.=KAT, (4)

dice dice
AT, . being the depth of the dlice, each time getting a new

dice. We defineadlice &, as.

r-sA‘;k' é{)? |Tk <:T(X)<Tk+1} ®)

whereatemporal criterion actually defines spatial zones.
The speed function should benear oneinsdethevess,

and near zero outside. Moreover, in the fast marching

method, the propagation speed is required to be strictly

positive. Considering an input voxel density | (X) between
0 and 1, we provide the corresponding speed by

F=e if 1(X)<l,, (6)

= [(X) otherwise (7)

where e isapositive, near zerovalueand | athreshold on
luminance (we used a value of 90%, using the hypothesis
that vessels are correctly opacified). A hard threshold
(O or 1) was not used to enablethe method to tacklethe case
of opacification noise (small and local decrease), where
vesselsarenot generally totally white.

3.2.2 Detection of Bifurcations

Asthefront advances inside the vessels for recovering the
entirearterial tree, ahierarchical structure of thevessdlsis
built. Voxels of slices of the same generation (same k) are
checked for their mutual connectivity (connected component
analysis). Unconnected groups of voxels define as many
slices.

3.2.3 Adding Anatomical Knowiedge Model

Considering the presence of contacts between vessels, or
touching vessals, in terms of image intensity (they are not
linked anatomi cally), we understand that methods only based
on the voxel -wise information in the image cannot handle
it. Segmentation fails by oversegmenting when limited
resolution, noise, and artifacts tend to merge adjacent but
physically separate vessels. What we observein that caseis
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that the active contour moves from the PA to the nearby
vessdls, e.g. the vena cava and then the aorta.

It seems difficult to handle that problem with no prior
information, asthe “touching” area can actually be bigger
than the section of one of the vesselsinvolved. A medical
solution is not practical to solve this problem. Indeed,
varying the timing and the rate of theinjection of contrast
medium to opacify the PA alone is not practically
reproducible. Moreover, we have found this situation to be
recurring. This leads to the development of a specific
solution. To achieve this, we use an a priori anatomical
knowledge, as practiciansdo.

Basically, wewant to represent thetopol ogy and shape
of vessels using a mathematical, parametric model. Next,
that model can be used to i nfluence the way the active front
propagates inside thevessdl, and, in particular, to recreate
missing vessel boundaries. We also want to share that model
across patients (as creating it can be a tedious process), and
for thisreason, it hasto be registered with the CT image of
the patient.

Each thorax vessel is modeled as their centerline and
mean radius. Thecenterlineis defined asa parametric, 3D,
fourth order Bézier curve. Another class of curves, such as
B-Spline, NURBSs, etc. could have been used but Bézier
splines havethe advantage of passing through their contral
points, which iswhat we arelooking for (radiologist clicks
wherethe curve should go)®.

A vessel section (part between two bifurcations) is
model ed asanumber of Bézier segments. A Bézier segment
of order 4 is defined as a set of 4 control points with the
property that the curve interpolates the first and the last
control points. Continuity is maintained between segments
by constraints on the control points of nearby segments. A
hierarchical tree of vessel sections is built when creating
themodd.

Such a modd isrepresented in Fig. 3. There, we can
see that the aorta has an associated model, so has the PA,
including bifurcations.

We defineavessel potential function, P(X), as

R(X)=R/D;(X) (8)
i referstothe vessd section® being considered, R isthemean
radiusfor thevessd section, D, (X) isthe Euclidian distance

between ¥ and thenearest point on the centerline of vessel
i. R ismanually estimated on a chosen patient with visual
toolsfor each vessd section, theimportant information being
the relative sizes of the vessels.
From the potential function, wederivethevessd interior
indicator, V(X) as
V(X)=1 if mx(R(X))-max(R(X)>1  (9)
i 1% max
e otherwise (20)

withi _ =arg(max, (P (X))). A isaparameter (A > 0) that

ax

can be used to adjust the reconstructed boundaries width,
and ¢ a positive value near zero.

The vessdl potential is used to modify the speed of
propagation of the active front:

F'(X)=F(X)xV(X) (12)

We built thefunction V (X) inorder that it isnear zero

when neighboring vessels potential s are the same (potential
collision). This has the effect of recreating the possibly

missing vessel boundaries (V(X) imposes the boundary).
On the contrary, when the vessel is alone (not surrounded

by other vessels too closely), then, the image imposes the
boundary (asit did before using model). Thisisillustrated

on Fig. 2. (V(X) is computed on a sub-sampled 3D grid

(by afactor 8) using a distance map algorithm as the ones
proposed by Cuisenaire [16], and piecewise linearly
interpol ated for i n-between voxels.

As expressed before, we intend to provide a single
model that can be reused across patients. To achieve this

Center line of Vessel 1

Center line of Vessel 2

Figure 2: Themodel isused to create missing vessel boundaries.
The dotted line shows the boundary that is created
from the vessel center lines (that boundary is a surface
in 3D).

goal, we decided to set alimited number of fiducial points
in the model spacethat can be easily located in the image
of a new patient. Once the association has been made
between thetwo, themodd isthen deformed using the thin-
plate algorithm [17], which provides a non-linear,
continuous spacetransformation that appliesa set of points
toanother. Thisisillustrated in Fig. 3.

Practically, the parametric model is created on the
image volume of achosen patient, where principal vessels
centerline are modeled as 3D Bézier curves. The set of
fiducial pointsisalsodefined on that image, each point being
given a detailed description of its location in anatomical
terms so that it can be found on any patient. That set of
points should be spread around the model in away that the
induced transformation correctly applies it to another
patient. Based on the hypothesisthat the circul atory system
in the thorax is very similar across patients (at least to a
certain number of bifurcations), we used alimited number
of 7 fiducial points that provide sufficient accuracy in
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Figure 3: Model influence on PA segmentation. (A) shows a model corresponding to a particular image, and (B) a chosen set of
fiducial points for that image. The fiducial points are localized on another patient image, (C), and that correspondence is
used to adapt the model to the new patient (D). (E) and (F) respectively shows segmentation without using the model, and
with. In (E), the vena cava and aorta are incorrectly segmented, and correctly avoided in (F).

modeling the scale adaptation and simple non linear
transformation, with limited expense in localization time.
Although the reconstructed boundary may be different from
the actual one, thisweak co-registration nonetheless permits
to stop the front from moving to adjacent vessels.

When anew imageis obtained, thefirst stepisto locate
the chosen set of fiducial points on it. Making the
correspondence with the reference set of points enables us
to evaluatethe thin platetransform that appliesthe mode to
the new image.
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3.2.4 Switching off the Model

The model can be used where vessd stopology or shapesis
not dependent on the patient. Thisisverified for maost thorax
vessels, as the aorta, vena cava and the main trunk of the
pulmonary arteriesand veins. Theselast two vessal s present
ahigher variahility in shapesas ones goes farther from the
heart. For thisreason, we haveto stop modding thesepast a
given number of bifurcations. Switching off moddl usageis
accomplished, and rulesare added to keep contral of contour
evolution past this point. In particular, we want to prevent
the contour from going back to the heart through the veins
from a contact point with a segmented artery. Thisis made
by measuring the mean section of the vessels while
segmenting them and by banning a section increase.

3.3 Emboali Detection based on PA Segmentation

This method isreferred to asM1 later on. The idea behind
this method is to find darker concavities, going from the
segmentation mask of the PA. Thisisaccomplished by using
aset of morphological and thresholding operators. The block
diagram isdepicted on Fig. 4

3.3.1 Processing

By nature, this segmentation techniqueleaves the clots out
of the resulting segmentation mask, because of their lower
contrast. Depending on the clot position in thevessel, 2 cases
show up:

» thereisacontact between the clot and the boundary

of the vessd,

* orthereisno contact.

In theformer case, the segmentation mask will generally
present aconcavity. Inthelatter case, aholeispresent in the
mask. This only makes sense when considering the

neighborhood of a chasen region in the vessdl, because in
general, an embolus may have a very elongated shape,
comparable to a vessd indde a vessal whose boundary may
touch locally. What hasto be considered aswell isthat not all
concavities in the segmentation mask do represent a clot,
although thismethod will d assfy them assuch (falsead arms).

Thefirst step in thisapproach isto decrease acquisition
Noise, yet preserving edges. Basically, we want to get mostly
homogeneous regions in terms of voxe intensity for the
different relevant classes (white, grey, black), thusavoiding
salt and pepper kinds of noises. Thisisdonethrough bilateral
filtering [18] for each 2D image in the volume. Median
filtering could have been used aswell.

The second step is to perform the closing, in the sense
of mathematical morphology, of the segmentation mask to
retrieve its concavities and holes. Although it makes sense
to haveavariablesizefor the structuring element (SE) [19],
depending on the size of the nearby vessels, we did not
experienceit. Theshape of the SEisa3D box and itssizeis
12x12x12 voxels (which correspondsto a12mm cube). The
chosen size must be bigger than the largest embolus we want
to beableto detect. A 3-D rectangul ar shapewas chosen for
the SE for performance reasons, although a spherical one
could provideless synthetic (axis aligned) detection shapes.

In thelast step, we combine the difference between the
original segmentation mask and the closed one, with themask
identifying the interesting grey regionsusing a voxel-wise
and operator. The 2 thresholds (low, high) are easily chosen
because a contrast product is used, but may depend on
scanner brand.

The detection result of method M1 can be superimposed
totheorigina image, showing thevoxel-wisedetection. This
isillustrated on Fig. 5.

5| Threshold
cT Grey
R PA Morphology
Segmentation Closing

©©-

Figure 4: Method M1 diagram. PA segmentation is computed from the CT data, then fed into a morphology closing. The difference
between the closing and the original segmentation gives the clots candidate mask, whose inter section with the grey mask is

computed.

o

Figure 5: Detection result of method M 1. Left: original image, center: PA segmentation mask, right: emboli detection mask.
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3.3.2 Limitations

This method has several limitations. Firstly, asit is based
on PA segmentation, it cannot detect clots where the
segmentation fails. Segmentation can fail for variousreasons,
in particular if oneartery iscompletely obstructed by aclot.
Secondly, another problematic caseiswhen going farther in
thearteriestree (smaller vessels), clotsmay nolonger show
up as concavities in the segmentation mask. We overcome
thesein method M2.

3.4 Sandalone Detection

This method is referred to as M2 later in this paper. The
idea behind this method is to go through the entire image
volumeand find clots based on shape and density properties.
The segmentation of thelung volumeis performed to limit
therate of false positives. Method diagram ison Fig. 6.

3.4.1 Emboli Detection

If we go back to the definition of a clot in imageterms, we
could modd its shape and color as a grey cylinder in 3D
space, at least locally. Thisdefinition remains correct even
if the embolus completely obstructs the vessel. Of course,
thismeansthat thereisan additional constraintin themedical
protocol, that is that not only the arteries must opacified,
but also the veins and the other vessels of the thorax,
otherwisethey will beinterpreted as clots.

Such acylinder hasat |east oneintersection with one of
thethreereference planes (XY, YZ, or ZX) whose section is

an dlipsehaving an axisratio in [1/+/3,1] , thevaueof one

corresponding to a circle. This lead us to search for grey
shapes, in al the planes dicing thevolumethat are paralle

to the reference planes, that meet this shape criterion. In
practice, the clots are not perfect ellipses and their section
has an upper bound (the size of the biggest artery).

We implemented this by first segmenting interesting
grey regions (as expressed in 3.3.1) and performing
connected component analysis. For each obtained
component, we measureits perimeter and areaand accept it
if both its area is smaller than the largest accepted clot
section, and its compactness (4r.area/permiter?) is big
enough (for an dlipse, thecompactness val ueis about 0.896).
Threetraversals of theimage volume are made, onefor each
reference plane, and the results are or’ed to provide the
detection mask. An additional step of 3-D mathematical
morphology opening isperformed to assert aminimal space
coherence in the detection, as clots generally show a
minimum depth.

Thisdetection method obviously cond ders many shapes
as emboli candidates, because the associated hypothesis is
easily met. What we could observeisthat many of thefalse
positives were lying outside of the interior volume of the
lung. For thisreason, the segmentation of the lung volume
was performed to further constrain the detection.

3.4.2 Lung Segmentation

Many techniques can be considered to perform the lung
segmentation task. Looking at theimages, we seethat lung
air voxels have low densities (black voxels), and amethod
based on thresholding and connected components analysis
isabletohandlethat. Theblock diagram of the method that
we used is presented on Fig. 7. Itisapplied successively to
each 2D slice, to retrieve the entire lung volume
segmentation (illustrated on Fig. 8).

Plane XY
Selection

CT Threshold
Grey

A 4

Plane YZ
Selection

Morphology
Opening

\ 4

Plane ZX
Selection

Figure 6: Method M2 diagram. Grey thresholding is performed on the CT data. The volume is then swept through from the 3
reference planes, performing connected component analysis. The three results are added, and mor phology opening is

performed (clean erroneous isolated detections).

Bilateral Threshold

A 4

Filtering black

Figure 7:

A

Connected Morphology
Components d Closing
Selection

Lung segmentation. Bilateral filtering is used to smooth the image, black regions are segmented and sear ched for connected

components. Connected components having a contact with image borders as well as the one not meeting a size criterion
are discarded. Closing isthen applied to retrieve thorax vessels and or gans.
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Figure 8: Results of method M 2. The first row shows the lung segmentation (axial, coronal, sagital slices), the second row the
original image, and the last row the superimposed emboli detection mask.

3.5 Fusion

Both envisaged methods do not detect the same features.
Combining both detection mask is made by a logical or
operator to preserve al information, at the expense of
keeping the false positives of the methods as well. A
comparison of the detection results of both methods is
depicted on Fig. 9.

4. VALIDATION

Assessing the quality of a detection method requires the
intervention of experts, in this case, radiologists. Different

levels of assessment can be considered, that range from
looking at the exam as awhole and reporting that a patient
isaffected by pulmonary embolism or nat, tolooking at every
clot and report successful detection, to a voxel-wise
classification (embolus or not). Our method by essence
provides that latter information, but this may be different
for ather methods. Although it could beinteresting to obtain
ground truth data from radiologists as a voxel-wise
classification, thisis not practical due to the huge amount
of work it would take. We came up with a schemethat would
provide a compromise between accuracy and practical
realization.

Figure 9: Both detection methods are compared. Method M1 correctly identifies a clot that partially obstructs the artery in the
bottom part of thisimage, that M 2 does not detect. To the contrary, the bigger clot above is only partially detected by M 1,

while M 2 detects it accurately.
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4.1 Ground Truth Definition

Previouswork focused on reporting the success of detection
for manually located thrombi [12] by considering them asa
whole. Although thismakes sensefor clotsof small sizes, in
our datasets, part of the clots had an elongated shapes (up
to about 10 centimeters). An evaluation schemethat reports
how well the detection is performed for the entire clot is
proposed.

In this scheme, proposed in [20], the ground truth is
defined asa partition of voxel boxes of achosen size, which
areindividualy marked as containing aclot or not. Thesize
of these boxesis an important parameter, lower sizesgiving
more preciseinformation at the cost of alonger timeneeded
torealizethe ground truth. The chosen size also affectsthe
results. We arbitrarily chose to use 16 x 16 x 16 boxes.
Practically, the radiol ogist navigates through the volume on
which a3D gridis painted, highlighting boxesthat contain
clots (either entirely or not). Thisisillustrated on Fig. 10.

The sameinformation is constructed from the output of
the detection method, and at the same resol ution asthe one
chosen before. Both results (ground truth and detection
algorithm) can then be compared.

Inter-and intra-radiologist variability has to be
considered. Although it was not studied as part of thiswork,
we can assumethat this variability has different causes:

* Interpretation of image. Different radiologists

interpret images differently.

»  Border consideration. Thedelineation of clotsalong

boxes borders can be ambiguous.

The first point is inherent to the detection process
performed by experts. The second one is linked to the use
of the tools, and addressing it can be done by providing a
score or confidence instead of a boolean value stating the
presence of clots. But thiswas not investigated at thistime.

4.2 Measuring Sensitivity and Specificity

In traditional binary classification, fal se positives (FP) are
defined as the cases where the detection method detect a
clot while the expert does not. A fal se negative (FN) isthe
dual situation where experts detects a clot and the method
does not. True positives (TP) and true negatives (TN) are
for the caseswhen both agree, respectively detecting a clot
(positive) and not detecting a clot (negative). Sensitivity ()
and specificity (Sp) are defined by the following fomul as:
D= NTP ’ 33: NTN
Nrp + Ney Ny + Nep

whereN_, N, N, and N_ respectively arethe number of
occurrences of true positive, true negative, false positive,
and false negative.

We note that both concepts do not have the same
importance depending on the context in which they areused.
In the medical diagnosis context, non-detections should
generally be avoided as much as possible, asthiscan directly
impact health-related consequences and a bad specificity

may impact the val ue of acomputer-aided detection, or CAD,
tool set.

5. RESULTS/DISCUSSION

We have tested this emboli detection method on 18 datasets
obtained from multi-slice computed tomography, or MSCT,
in patients addressed for suspicion of pulmonary embolism
(PE) (clot within a pulmonary artery). CT examinationswere
performed using the following parameters: 16 X 0.75 mm
slice thickness, 0.6 mm interval of reconstruction, 120 Kv,
150 mAs, pitch of 0.95, matrix size: 512 x 512, 12 hits per
voxel. 100 mL of non ionic contrast medium was injected
through an antecubital vein at arate of 4 mL/sec with variable
delay in order to opacify the PA. Different scanner machines
were used at both sites(Siemensat CHR in Orléans, Philips
at S-Luc Hospital in Brussels).

Ground truths were built for these images by a
radiologist, where individual voxel boxes of 16 x 16 x 16
are marked for the presence of emboli for the entirevolume.
All 18 patients were affected by pulmonary embolism, albeit
to different degrees. The detection method was then
confronted to thereference, Fig. 11 comparesground truths
and the method for images of different patients. The
comparison results are expressed visually, where true
positives are shown in green, false positives in blue, and
false negatives in red for each voxel box in the volume
(volume dices are displayed).

5.1 Performance

In terms of senditivity and specificity, the method performs
as follows: sensitivity of 88.4% is achieved, aswell as a
specificity of 98.9%, with respective standard deviation of
10.4% and 0.39%. The sengitivity is high, and whileit can
gtill be increased, it already makes the method well suited
for itsoriginal goal. The specificity isalittle misleading, as
it suggeststhat there arenot many falsealarms. Thisisdue
to the fact that the number of true negative boxes is big
(working in 3D). Another way of considering theresultsis
tolook at how much datathe radiologist would have tolook
at if heonly considered the boxes marked as positive by the
method. This is the ratio between positive-detected boxes
to the total number of boxes, and in our datasets, its value
was in [0.85%, 2.34%)]. The higher the number of false
alarms, the more often theradiol ogist will have to manually
discard erroneous detections.

When looking more closely at each detection result
taken individually, the worst sensitivity (57.9%) shows up
for a case of massive embolism, where the most part of the
PA is abstructed. In that case, hypothesis made by M1 and
M2 arenot met for the bigger clots. In one of the cases, the
segmentation of the PA failed (the heart and other vessels
were segmented as well, due to massively missing vessel
boundaries), and falsealarmsfor M1 consequently increased,
yet overall sensitivity was not affected.

We can see that M1 detects properly the obvious clots
within the main section of the PA, without many false
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Figure 10: Creation of ground truth. A grid is super-imposed to the image date, the radiologist uses the mouse to highlight boxes of
voxels whenever a clot (at least partially) belongsto it. Color is used in actual the application.

True positive W False positive B False negative

Figure 11: Analysis of detection results. Results are compared with ground truth data, false positives and negatives, and tr ue positives
are color mapped for easier interpretation. Non-detections (or false negatives) are painted in red, while false alarmsare in
blue.
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positives, but misses more and more clots as ones goes
farther inthe PA. Thisisbecausethe clot takesabigger part
of the section of the vessel when the size of the vesse
decreases, and it does not create a concavity anymore.
Moreover, the segmentation may stop early in vessels that
areobstructed by clots, leaving M1 usel essfor the remaining
of the vessel. In contrast, method M2 detects clots
everywhere as long as their shape are compatible with its
hypothesis. M2 gives a lot of false positives and few non-
detections. Yet, M1 can detect clots that form concavities,
that M2 cannot when its shape criterion isnot met, and this
increases the overall sensitivity. Detection rates for each
methods cons dered separately actually depend on wherethe
clots reside in the PA, and their ranges are given for
illustrative purpose: [0%, 51%] for M1, [57%, 100%)] for
M2.

Table 1
CPU Time for each Algorithm
Method Time
PA Segmentation 35 seconds
M1 Detection 7 minutes
Lung Semgentation 12 seconds
M2 Detection 6 minutes and 45 seconds

Yet, M2 accountsfor most of interesting detections for
theradiologist. Thisisbecause clotsin the main partsof the
PA aregenerally obviousto theradiol ogist, while peripheral
clots generally require higher attention to detect, and are
generally out of reach for M1.

Thisoveral method is of interest to the radiologist if it
can find most clots above a certain detection threshold and
at the same time if it does not provide too many false
positives. This first figure can be improved by using other
featuresthan theonesused in M1 or M2, that would provide
arough initial detection step, step that would be followed
by a more advanced classifi cation approach to decrease the
falsealarmrate.

5.2 Computational Expense

In terms of processing time, which depends on the size of
the data, results are given in Table 1. The processor used
for thesetestsis a PowerPC 970 running at 1.8 GHz, with 2
GB of RAM, and the algorithmswereimplemented inthe C
language.

The computational complexity of the method is
proportional to thesize of thedata.

6. CONCLUSION

We have presented aframework for semi-automatic detection
of pulmonary embolism. Two detection methods were
implemented, thefirst one being based on an original modd -
based segmentation of the pulmonary arteries, the second
using simple shape hypothesis. These methods were then
combined to provide the final detection decision. An

evaluation scheme was proposed for the PE detection
problem, which consists of away to making ground truths,
by a radiologist, on a lower resolution 3D grid and
performance was assessed in terms of sensitivity and
specificity.

This method provides valuable help to the radiologi<t,
by highlighting clots candidatesthat he might have missed,
enabling more accurate diagnosis of PE.

A possible extension to thiswork could beto make the
method more conservative by relaxing the search criteria,
then provideits output to theinput of aclassifier for emboli
presence.
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NOTES

make them appear white in the image
This slice concept is not to be confused with slices of CT

images.

3. this can be done with other curves as well by augmenting point
multiplicity, but this is less intuitive

4. vessel part between two bifurcations
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