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In this paper, we present a framework for computer-aided diagnosis of pulmonary embolism (PE) in contrast-enhanced
computed tomography (CT) images. It consists of a combination of a method for segmenting the pulmonary arteries (PA),
emboli detection methods as well as a scheme for the evaluation of the performance. The segmentation of the PA serves one
of the clot detection methods, and is carried out through a region growing method that makes use of a priori knowledge of
vessels topology. Two different approaches for clot detection are introduced: the first one performs clot detection by analysing
the concavities in the segmentation of the pulmonary arterial tree. It works in a semi-automatic way and enables the detection
of thrombi in the larger sections of the PA. The second method does not make use of the segmentation and is thus fully
automatic, enabling detection of the clots farther in the vessels. The combination of these methods provides a robust detection
of clots that can be used as a safeguard by radiologists, or even as preliminary computer-aided detection (CAD) toolset.
The evaluation of the method is also discussed, and a scheme for measuring its performance in terms of sensitivity and
specificity is proposed, including a practical approach to making reference detection data, or ground truths, by radiologists.
Results are presented and discussed.

1. INTRODUCTION

Pulmonary embolism (PE) is an extremely common and
highly lethal condition that is a leading cause of death in all
age groups. Its symptoms are often vague and its diagnosis
is a major medical challenge. However, when properly
identified, an efficient treatment exists that dramatically
reduces the mortality rate of the disease. Multislice computed
tomography (CT) has gained acceptance as a minimally
invasive method for evaluating patients with suspicion of
PE [1]. Nowadays, the diagnosis of PE is manually
performed by radiologists on CT scans, and it is a time-
consuming and error-prone process, in particular because
of the huge amount of data and more specifically in the case
of sub-segmental and peripheral clots, which are more
difficult to locate. In that context, a computer aid can be
provided to act at least as a safeguard for radiologists or
even better, if sufficiently conservative, as a preliminary
detection means.

In this paper, we propose a framework for the problem
of detection of PE in contrast-enhanced CT images. This
framework permits the use of various clot detection methods
that are eventually combined to provide final detection
results. For the sake of completeness, we note at this point
that a classification method could be implemented as well,

whose role would be to decrease the false alarm rate, but
this was not investigated in this study. Two clot detection
methods are presented. The first one uses a segmentation of
the PA as a semi-automatic process, while the second one
works directly on image data and is a fully automatic process.
The segmentation of the PA is a challenging task by itself,
and, considering our specific application where images are
contrast-enhanced (Fig. 1), meaning that a contrast product
is used to opacify1 the arteries, we developed a model-based
active contour method. The algorithm used for region
growing is based on the fast marching algorithm first
developed by Sethian et al. [2]. Later on, our early
segmentation results showed that touching vessels, that is,
neighboring thorax vessels with no visible frontier between
them in the image, were an important issue for region
growing-based methods. We used an a priori model to handle
the case these joint vessels, that would otherwise lead to the
segmentation of other thorax vessels. This model is made of
a set of parametric 3D curves that represent the centerlines
of the vessels, and is used in the active contour step by
modifying the expression of the speed of propagation.

The first clot detection method looks for holes or
concavities in the segmentation of the PA that correspond to
clots. It does so by applying a set of operators of
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thresholding, 3D mathematical morphology [3] and logical
operations. The second detection method makes assumptions
about the density and the shape of the clots to identify them.
Because simple criteria are used, this method leads to many
false positives, and a lot of which are outside of the lung
volume. Lung volume segmentation is used to tackle that
situation. Both clots detection methods are combined and
provide a 3D, voxel-wise mask of emboli presence.

Eventually, a scheme for assessing the performance of a
PE detection method is introduced. It focuses on the creation
of ground truth data by radiologists that permits a comparison
with the results of the detection methods, in terms of false
negative (non-detections) and false positive (false detection)
rates, which lead to method sensitivity and specificity. That
scheme is used with our method and the results are discussed.

This paper is organized as follows: related work is
covered in the next section. After that, the algorithm for
segmenting the pulmonary arteries is presented, as well as
both emboli detection methods. Eventually, evaluation and
results are discussed and a conclusion is drawn.

2. RELATED WORK AND MOTIVATIONS

Vessels analysis in both 2D and 3D image datasets has
attracted many research efforts in the recent years. One
approach to the problem of emboli detection is to first extract
the pulmonary arteries. Depending on modality and the kind
of studied vessels, whose sizes and shapes may vary, different
vessels segmentation methods have been used. Kirbas et al.
did a classification of vessels extraction methods in [4], and

Felkel [5] did a review that is more specific to the case of
contrast enhanced images (CTA - computed tomography
angiography). What comes out is that region growing method
provide a superior ability to segment this type of variable
scale structure. The first application of region growing
methods to vessels in 3D dataset is attributed to Zahlten et
al. [6]. Their method handles the bifurcation of vessels and
simultaneously reconstructs the hierarchical structure of the
vessels tree. More recently, active contours methods have
been used for segmenting vessels. Snakes permit the
segmentation of organs in 2D (3D extensions also exist) but
level sets and fast marching algorithms introduced by Sethian
and Malladi are better suited to elongated structures than
snakes [2, 7], because of their easy extension to 3D and their
topology adaptation capability. Deschamps et al. presented
a method based on the fast marching algorithm for 3D
vessels segmentation [8, 9], adding the concept of freezing
contour evolution once the vessel boundaries are reached.
Using a similar concept, we presented our slice marching
method in [10], and later extended it with the use of a model
in [11] to handle the case of touching vessels.

Back to the detection problem, Masutani et al. presented
a method for emboli detection based on the segmentation of
the PA [12], whose main limitation is that its results are
tightly linked to the quality of the underlying PA
segmentation. Another approach to emboli detection is not
to use any prior segmentation of the PA. Such an approach,
based on tobogganing , was recently presented in [13]. That
method gives very good sensitivity and its main drawback

Figure 1: Illustration of a typical slice of a CT volume, with opacified vessels. Main thorax vessels are identified, and emboli are
marked by an arrow.
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seems to be the high number of false positives. This is not
much discussed, and the way to compute that false alarm
rate is not expressed. As we found out, segmentation of lung
volume can dramatically reduce false positives rate for that
kind of methods. Segmentation of the lung volume was
studied by van Ginneken et al. for radiographs [14], and we
note that the problem is easier in CT scans, because of the
access to unprojected raw data. Interest in emboli detection
based on machine learning methods and classification was
recently expressed [15], but this was not studied as part of
this work, although it might be a way to further refine the
detection results. Eventually, we also note that up to this
time, little efforts have been made to provide a standard
means for assessing PE detection methods.

Our research efforts first focused on the development
of a PA segmentation method that handles the case of
touching vessels, and later on the PE detection problem. Our
solution to the segmentation problem begins with an
approach similar to Deschamps et al. [8], adding support
for touching vessels by using a model of thorax vessels. For
the detection problem, we combine a method based on PA
segmentation with another one that is not, in the hope of
coping with their individual weaknesses. Eventually, we
propose a standard scheme for assessing automatic PE
detection algorithms and discuss the results when that scheme
is applied to our detection method.

3. METHODS

3.1 Preprocessing

By studying how radiologists perform the analysis of the
image-volume in the context of emboli detection, we noticed
that not all 12-bit gamut of voxels are generally used. Instead
Hounsfield Units (HU) in the range of [0,350] (out of [-
1000, +3000]) suffice. HUs are typically mapped in the 8-
bit scale of console displays, that range containing most of
the interesting information regarding this application. This
first processing step performs exactly that.

3.2 Segmentation of the PA

3.2.1 Front Propagation

Starting from a seed point at the beginning of the PA, we let
a 3D contour, or surface, grow. To accomplish this, we want
to solve the Eikonal equation (1) using the fast marching
algorithm, as expressed by Sethian [2]. Given an initial
contour where the crossing time, T, is known to be zero,
(curve in 2D, surface in 3D) and given its speed of
propagation along its normal at every point in the image,
F( ̄X), we compute the solution ( )T X  to the Eikonal equation
(1) at every voxel X :

| ( ) | ( ) 1,T X F X� �  with ( ) 0T X �  on the seed (1)

If we suspend the computation of the solution when the

crossing time ( )T X  becomes higher than a given threshold
T

slice
,

if ( ( ) )sliceT X T�  � suspend (2)

and if we define our speed function ( )F X  so that it is near

to one inside the vessel, and by noticing that time and
distance are equivalent when speed is unity, we can tell that
T

slice
 is the depth of the slice. An estimate of the section of

the vessel can be made by dividing the slice volume by its
depth.

Next, by choosing a speed function ( )F X  that is small

enough outside the vessel, we can freeze the active front
(denoted as the trial set in the fast marching algorithm [2])
by not considering voxels whose arrival time is higher than
a second threshold, T

bound
:

if ( ( ) )t boundT X T�  ��remove tX  from trial set (3)

Then, we iterate using a time threshold T
slice

 of the form:

T
slice

 = T
k
 = k�T

slice
(4)

�T
slice

 being the depth of the slice, each time getting a new

slice. We define a slice 
k
 as:

k
 , 1{ | ( ) }k kX T T X T �� � �� (5)

where a temporal criterion actually defines spatial zones2.
The speed function should be near one inside the vessel,

and near zero outside. Moreover, in the fast marching
method, the propagation speed is required to be strictly

positive. Considering an input voxel density ( )I X  between

0 and 1, we provide the corresponding speed by

F = �               if ( ) thI X I� (6)

= ( )I X             otherwise (7)

where � is a positive, near zero value and I
th
 a threshold on

luminance (we used a value of 90%, using the hypothesis
that vessels are correctly opacified). A hard threshold
(0 or 1) was not used to enable the method to tackle the case
of opacification noise (small and local decrease), where
vessels are not generally totally white.

3.2.2 Detection of Bifurcations

As the front advances inside the vessels for recovering the
entire arterial tree, a hierarchical structure of the vessels is
built. Voxels of slices of the same generation (same k) are
checked for their mutual connectivity (connected component
analysis). Unconnected groups of voxels define as many
slices.

3.2.3 Adding Anatomical Knowledge Model

Considering the presence of contacts between vessels, or
touching vessels, in terms of image intensity (they are not
linked anatomically), we understand that methods only based
on the voxel-wise information in the image cannot handle
it. Segmentation fails by oversegmenting when limited
resolution, noise, and artifacts tend to merge adjacent but
physically separate vessels. What we observe in that case is
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that the active contour moves from the PA to the nearby
vessels, e.g. the vena cava and then the aorta.

It seems difficult to handle that problem with no prior
information, as the “touching” area can actually be bigger
than the section of one of the vessels involved. A medical
solution is not practical to solve this problem. Indeed,
varying the timing and the rate of the injection of contrast
medium to opacify the PA alone is not practically
reproducible. Moreover, we have found this situation to be
recurring. This leads to the development of a specific
solution. To achieve this, we use an a priori anatomical
knowledge, as practicians do.

Basically, we want to represent the topology and shape
of vessels using a mathematical, parametric model. Next,
that model can be used to influence the way the active front
propagates inside the vessel, and, in particular, to recreate
missing vessel boundaries. We also want to share that model
across patients (as creating it can be a tedious process), and
for this reason, it has to be registered with the CT image of
the patient.

Each thorax vessel is modeled as their centerline and
mean radius. The centerline is defined as a parametric, 3D,
fourth order Bézier curve. Another class of curves, such as
B-Spline, NURBs, etc. could have been used but Bézier
splines have the advantage of passing through their control
points, which is what we are looking for (radiologist clicks
where the curve should go)3.

A vessel section (part between two bifurcations) is
modeled as a number of Bézier segments. A Bézier segment
of order 4 is defined as a set of 4 control points with the
property that the curve interpolates the first and the last
control points. Continuity is maintained between segments
by constraints on the control points of nearby segments. A
hierarchical tree of vessel sections is built when creating
the model.

Such a model is represented in Fig. 3. There, we can
see that the aorta has an associated model, so has the PA,
including bifurcations.

We define a vessel potential function, ( )P X , as

( ) / ( )i i iP X R D X� (8)

i refers to the vessel section4 being considered, R
i
 is the mean

radius for the vessel section, ( )iD X  is the Euclidian distance

between X  and the nearest point on the centerline of vessel
i. R

i
 is manually estimated on a chosen patient with visual

tools for each vessel section, the important information being
the relative sizes of the vessels.

From the potential function, we derive the vessel interior

indicator, ( )V X  as

max

( ) 1 max( ( )) max( ( ))i j
i j i

V X if P X P X
�

� � � � (9)

� otherwise (10)

with i
max

 = arg(max
i ( ( ))).iP X  � is a parameter (� > 0) that

can be used to adjust the reconstructed boundaries width,
and � a positive value near zero.

The vessel potential is used to modify the speed of
propagation of the active front:

( ) ( ) ( )F X F X V X� � � (11)

We built the function ( )V X  in order that it is near zero

when neighboring vessels potentials are the same (potential
collision). This has the effect of recreating the possibly

missing vessel boundaries ( ( )V X  imposes the boundary).

On the contrary, when the vessel is alone (not surrounded
by other vessels too closely), then, the image imposes the
boundary (as it did before using model). This is illustrated

on Fig. 2. ( ( )V X is computed on a sub-sampled 3D grid

(by a factor 8) using a distance map algorithm as the ones
proposed by Cuisenaire [16], and piecewise linearly
interpolated for in-between voxels.

As expressed before, we intend to provide a single
model that can be reused across patients. To achieve this

Figure 2: The model is used to create missing vessel boundaries.
The dotted line shows the boundary that is created
from the vessel center lines (that boundary is a surface
in 3D).

goal, we decided to set a limited number of fiducial points
in the model space that can be easily located in the image
of a new patient. Once the association has been made
between the two, the model is then deformed using the thin-
plate algorithm [17], which provides a non-linear,
continuous space transformation that applies a set of points
to another. This is illustrated in Fig. 3.

Practically, the parametric model is created on the
image volume of a chosen patient, where principal vessels
centerline are modeled as 3D Bézier curves. The set of
fiducial points is also defined on that image, each point being
given a detailed description of its location in anatomical
terms so that it can be found on any patient. That set of
points should be spread around the model in a way that the
induced transformation correctly applies it to another
patient. Based on the hypothesis that the circulatory system
in the thorax is very similar across patients (at least to a
certain number of bifurcations), we used a limited number
of 7 fiducial points that provide sufficient accuracy in
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modeling the scale adaptation and simple non linear
transformation, with limited expense in localization time.
Although the reconstructed boundary may be different from
the actual one, this weak co-registration nonetheless permits
to stop the front from moving to adjacent vessels.

When a new image is obtained, the first step is to locate
the chosen set of fiducial points on it. Making the
correspondence with the reference set of points enables us
to evaluate the thin plate transform that applies the model to
the new image.

Figure 3: Model influence on PA segmentation. (A) shows a model corresponding to a particular image, and (B) a chosen set of
fiducial points for that image. The fiducial points are localized on another patient image, (C), and that correspondence is
used to adapt the model to the new patient (D). (E) and (F) respectively shows segmentation without using the model, and
with. In (E), the vena cava and aorta are incorrectly segmented, and correctly avoided in (F).
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3.2.4 Switching off the Model

The model can be used where vessels topology or shapes is
not dependent on the patient. This is verified for most thorax
vessels, as the aorta, vena cava and the main trunk of the
pulmonary arteries and veins. These last two vessels present
a higher variability in shapes as ones goes farther from the
heart. For this reason, we have to stop modeling these past a
given number of bifurcations. Switching off model usage is
accomplished, and rules are added to keep control of contour
evolution past this point. In particular, we want to prevent
the contour from going back to the heart through the veins
from a contact point with a segmented artery. This is made
by measuring the mean section of the vessels while
segmenting them and by banning a section increase.

3.3 Emboli Detection based on PA Segmentation

This method is referred to as M1 later on. The idea behind
this method is to find darker concavities, going from the
segmentation mask of the PA. This is accomplished by using
a set of morphological and thresholding operators. The block
diagram is depicted on Fig. 4

3.3.1 Processing

By nature, this segmentation technique leaves the clots out
of the resulting segmentation mask, because of their lower
contrast. Depending on the clot position in the vessel, 2 cases
show up:

• there is a contact between the clot and the boundary
of the vessel,

• or there is no contact.
In the former case, the segmentation mask will generally

present a concavity. In the latter case, a hole is present in the
mask. This only makes sense when considering the

neighborhood of a chosen region in the vessel, because in
general, an embolus may have a very elongated shape,
comparable to a vessel inside a vessel whose boundary may
touch locally. What has to be considered as well is that not all
concavities in the segmentation mask do represent a clot,
although this method will classify them as such (false alarms).

The first step in this approach is to decrease acquisition
noise, yet preserving edges. Basically, we want to get mostly
homogeneous regions in terms of voxel intensity for the
different relevant classes (white, grey, black), thus avoiding
salt and pepper kinds of noises. This is done through bilateral
filtering [18] for each 2D image in the volume. Median
filtering could have been used as well.

The second step is to perform the closing, in the sense
of mathematical morphology, of the segmentation mask to
retrieve its concavities and holes. Although it makes sense
to have a variable size for the structuring element (SE) [19],
depending on the size of the nearby vessels, we did not
experience it. The shape of the SE is a 3D box and its size is
12×12×12 voxels (which corresponds to a 12mm cube). The
chosen size must be bigger than the largest embolus we want
to be able to detect. A 3-D rectangular shape was chosen for
the SE for performance reasons, although a spherical one
could provide less synthetic (axis aligned) detection shapes.

In the last step, we combine the difference between the
original segmentation mask and the closed one, with the mask
identifying the interesting grey regions using a voxel-wise
and operator. The 2 thresholds (low, high) are easily chosen
because a contrast product is used, but may depend on
scanner brand.

The detection result of method M1 can be superimposed
to the original image, showing the voxel-wise detection. This
is illustrated on Fig. 5.

Figure 4: Method M1 diagram. PA segmentation is computed from the CT data, then fed into a morphology closing.  The difference
between the closing and the original segmentation gives the clots candidate mask, whose intersection with the grey mask is
computed.

CT Threshold
Grey

Morphology
Closing

PA
Segmentation XOR AND

Figure 5: Detection result of method M1. Left: original image, center: PA segmentation mask, right: emboli detection mask.
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3.3.2 Limitations

This method has several limitations. Firstly, as it is based
on PA segmentation, it cannot detect clots where the
segmentation fails. Segmentation can fail for various reasons,
in particular if one artery is completely obstructed by a clot.
Secondly, another problematic case is when going farther in
the arteries tree (smaller vessels), clots may no longer show
up as concavities in the segmentation mask. We overcome
these in method M2.

3.4 Standalone Detection

This method is referred to as M2 later in this paper. The
idea behind this method is to go through the entire image
volume and find clots based on shape and density properties.
The segmentation of the lung volume is performed to limit
the rate of false positives. Method diagram is on Fig. 6.

3.4.1 Emboli Detection

If we go back to the definition of a clot in image terms, we
could model its shape and color as a grey cylinder in 3D
space, at least locally. This definition remains correct even
if the embolus completely obstructs the vessel. Of course,
this means that there is an additional constraint in the medical
protocol, that is that not only the arteries must opacified,
but also the veins and the other vessels of the thorax,
otherwise they will be interpreted as clots.

Such a cylinder has at least one intersection with one of
the three reference planes (XY , YZ, or ZX) whose section is

an ellipse having an axis ratio in [1/ 3,1] , the value of one

corresponding to a circle. This lead us to search for grey
shapes, in all the planes slicing the volume that are parallel

to the reference planes, that meet this shape criterion. In
practice, the clots are not perfect ellipses and their section
has an upper bound (the size of the biggest artery).

We implemented this by first segmenting interesting
grey regions (as expressed in 3.3.1) and performing
connected component analysis. For each obtained
component, we measure its perimeter and area and accept it
if both its area is smaller than the largest accepted clot
section, and its compactness (4�.area/permiter2) is big
enough (for an ellipse, the compactness value is about 0.896).
Three traversals of the image volume are made, one for each
reference plane, and the results are or’ed to provide the
detection mask. An additional step of 3-D mathematical
morphology opening is performed to assert a minimal space
coherence in the detection, as clots generally show a
minimum depth.

This detection method obviously considers many shapes
as emboli candidates, because the associated hypothesis is
easily met. What we could observe is that many of the false
positives were lying outside of the interior volume of the
lung. For this reason, the segmentation of the lung volume
was performed to further constrain the detection.

3.4.2 Lung Segmentation

Many techniques can be considered to perform the lung
segmentation task. Looking at the images, we see that lung
air voxels have low densities (black voxels), and a method
based on thresholding and connected components analysis
is able to handle that. The block diagram of the method that
we used is presented on Fig. 7. It is applied successively to
each 2D slice,  to retr ieve the entire lung volume
segmentation (illustrated on Fig. 8).

Figure 6: Method M2 diagram. Grey thresholding is performed on the CT data. The volume is then swept through from the 3
reference planes, performing connected component analysis. The three results are added, and morphology opening is
performed (clean erroneous isolated detections).

CT Threshold
Grey

Plane XY
Selection

Plane YZ
Selection

Plane ZX
Selection

OR
Morphology
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Figure 7: Lung segmentation. Bilateral filtering is used to smooth the image, black regions are segmented and searched for connected
components. Connected components having a contact with image borders as well as the one not meeting a size criterion
are discarded. Closing is then applied to retrieve thorax vessels and organs.

Bilateral
Filtering

Threshold
black

Connected
Components

Selection
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3.5 Fusion

Both envisaged methods do not detect the same features.
Combining both detection mask is made by a logical or
operator to preserve all information, at the expense of
keeping the false positives of the methods as well. A
comparison of the detection results of both methods is
depicted on Fig. 9.

4. VALIDATION

Assessing the quality of a detection method requires the
intervention of experts, in this case, radiologists. Different

Figure 8: Results of method M2. The first row shows the lung segmentation (axial, coronal, sagital slices), the second row the
original image, and the last row the superimposed emboli detection mask.

levels of assessment can be considered, that range from
looking at the exam as a whole and reporting that a patient
is affected by pulmonary embolism or not, to looking at every
clot and report successful detection, to a voxel-wise
classification (embolus or not). Our method by essence
provides that latter information, but this may be different
for other methods. Although it could be interesting to obtain
ground truth data from radiologists as a voxel-wise
classification, this is not practical due to the huge amount
of work it would take. We came up with a scheme that would
provide a compromise between accuracy and practical
realization.

Figure 9: Both detection methods are compared. Method M1 correctly identifies a clot that partially obstructs the artery in the
bottom part of this image, that M2 does not detect. To the contrary, the bigger clot above is only partially detected by M1,
while M2 detects it accurately.
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4.1 Ground Truth Definition

Previous work focused on reporting the success of detection
for manually located thrombi [12] by considering them as a
whole. Although this makes sense for clots of small sizes, in
our datasets, part of the clots had an elongated shapes (up
to about 10 centimeters). An evaluation scheme that reports
how well the detection is performed for the entire clot is
proposed.

In this scheme, proposed in [20], the ground truth is
defined as a partition of voxel boxes of a chosen size, which
are individually marked as containing a clot or not. The size
of these boxes is an important parameter, lower sizes giving
more precise information at the cost of a longer time needed
to realize the ground truth. The chosen size also affects the
results. We arbitrarily chose to use 16 × 16 × 16 boxes.
Practically, the radiologist navigates through the volume on
which a 3D grid is painted, highlighting boxes that contain
clots (either entirely or not). This is illustrated on Fig. 10.

The same information is constructed from the output of
the detection method, and at the same resolution as the one
chosen before. Both results (ground truth and detection
algorithm) can then be compared.

Inter-and intra-radiologist variability has to be
considered. Although it was not studied as part of this work,
we can assume that this variability has different causes:

• Interpretation of image. Different radiologists
interpret images differently.

• Border consideration. The delineation of clots along
boxes borders can be ambiguous.

The first point is inherent to the detection process
performed by experts. The second one is linked to the use
of the tools, and addressing it can be done by providing a
score or confidence instead of a boolean value stating the
presence of clots. But this was not investigated at this time.

4.2 Measuring Sensitivity and Specificity

In traditional binary classification, false positives (FP) are
defined as the cases where the detection method detect a
clot while the expert does not. A false negative (FN) is the
dual situation where experts detects a clot and the method
does not. True positives (TP) and true negatives (TN) are
for the cases when both agree, respectively detecting a clot
(positive) and not detecting a clot (negative). Sensitivity (Sn)
and specificity (Sp) are defined by the following fomulas:

, TNTP

TP FN TN FP

NN
Sn Sp

N N N N
� �

� �

where N
TP

, N
TN

, N
FP

, and N
FN

 respectively are the number of
occurrences of true positive, true negative, false positive,
and false negative.

We note that both concepts do not have the same
importance depending on the context in which they are used.
In the medical diagnosis context, non-detections should
generally be avoided as much as possible, as this can directly
impact health-related consequences and a bad specificity

may impact the value of a computer-aided detection, or CAD,
toolset.

5. RESULTS / DISCUSSION

We have tested this emboli detection method on 18 datasets
obtained from multi-slice computed tomography, or MSCT,
in patients addressed for suspicion of pulmonary embolism
(PE) (clot within a pulmonary artery). CT examinations were
performed using the following parameters: 16 X 0.75 mm
slice thickness, 0.6 mm interval of reconstruction, 120 Kv,
150 mAs, pitch of 0.95, matrix size: 512 x 512, 12 bits per
voxel. 100 mL of non ionic contrast medium was injected
through an antecubital vein at a rate of 4 mL/sec with variable
delay in order to opacify the PA. Different scanner machines
were used at both sites (Siemens at CHR in Orléans, Philips
at St-Luc Hospital in Brussels).

Ground truths were built for these images by a
radiologist, where individual voxel boxes of 16 × 16 × 16
are marked for the presence of emboli for the entire volume.
All 18 patients were affected by pulmonary embolism, albeit
to different degrees. The detection method was then
confronted to the reference, Fig. 11 compares ground truths
and the method for images of different patients. The
comparison results are expressed visually, where true
positives are shown in green, false positives in blue, and
false negatives in red for each voxel box in the volume
(volume slices are displayed).

5.1 Performance

In terms of sensitivity and specificity, the method performs
as follows: sensitivity of 88.4% is achieved, as well as a
specificity of 98.9%, with respective standard deviation of
10.4% and 0.39%. The sensitivity is high, and while it can
still be increased, it already makes the method well suited
for its original goal. The specificity is a little misleading, as
it suggests that there are not many false alarms. This is due
to the fact that the number of true negative boxes is big
(working in 3D). Another way of considering the results is
to look at how much data the radiologist would have to look
at if he only considered the boxes marked as positive by the
method. This is the ratio between positive-detected boxes
to the total number of boxes, and in our datasets, its value
was in [0.85%, 2.34%]. The higher the number of false
alarms, the more often the radiologist will have to manually
discard erroneous detections.

When looking more closely at each detection result
taken individually, the worst sensitivity (57.9%) shows up
for a case of massive embolism, where the most part of the
PA is obstructed. In that case, hypothesis made by M1 and
M2 are not met for the bigger clots. In one of the cases, the
segmentation of the PA failed (the heart and other vessels
were segmented as well, due to massively missing vessel
boundaries), and false alarms for M1 consequently increased,
yet overall sensitivity was not affected.

We can see that M1 detects properly the obvious clots
within the main section of the PA, without many false
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Figure 10:Creation of ground truth. A grid is super-imposed to the image date, the radiologist uses the mouse to highlight boxes of
voxels whenever a clot (at least partially) belongs to it. Color is used in actual the application.

Figure 11: Analysis of detection results. Results are compared with ground truth data, false positives and negatives, and true positives
are color mapped for easier interpretation. Non-detections (or false negatives) are painted in red, while false alarms are in
blue.

True positive False positive False negative
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positives, but misses more and more clots as ones goes
farther in the PA. This is because the clot takes a bigger part
of the section of the vessel when the size of the vessel
decreases, and it does not create a concavity anymore.
Moreover, the segmentation may stop early in vessels that
are obstructed by clots, leaving M1 useless for the remaining
of the vessel. In contrast, method M2 detects clots
everywhere as long as their shape are compatible with its
hypothesis. M2 gives a lot of false positives and few non-
detections. Yet, M1 can detect clots that form concavities,
that M2 cannot when its shape criterion is not met, and this
increases the overall sensitivity. Detection rates for each
methods considered separately actually depend on where the
clots reside in the PA, and their ranges are given for
illustrative purpose: [0%, 51%] for M1, [57%, 100%] for
M2.

Table 1
CPU Time for each Algorithm

Method Time

PA Segmentation 35 seconds

M1 Detection 7 minutes

Lung Semgentation 12 seconds

M2 Detection 6 minutes and 45 seconds

Yet, M2 accounts for most of interesting detections for
the radiologist. This is because clots in the main parts of the
PA are generally obvious to the radiologist, while peripheral
clots generally require higher attention to detect, and are
generally out of reach for M1.

This overal method is of interest to the radiologist if it
can find most clots above a certain detection threshold and
at the same time if it does not provide too many false
positives. This first figure can be improved by using other
features than the ones used in M1 or M2, that would provide
a rough initial detection step, step that would be followed
by a more advanced classification approach to decrease the
false alarm rate.

5.2 Computational Expense

In terms of processing time, which depends on the size of
the data, results are given in Table 1. The processor used
for these tests is a PowerPC 970 running at 1.8 GHz, with 2
GB of RAM, and the algorithms were implemented in the C
language.

The computational complexity of the method is
proportional to the size of the data.

6. CONCLUSION

We have presented a framework for semi-automatic detection
of pulmonary embolism. Two detection methods were
implemented, the first one being based on an original model-
based segmentation of the pulmonary arteries, the second
using simple shape hypothesis. These methods were then
combined to provide the final detection decision. An

evaluation scheme was proposed for the PE detection
problem, which consists of a way to making ground truths,
by a radiologist, on a lower resolution 3D grid and
performance was assessed in terms of sensitivity and
specificity.

This method provides valuable help to the radiologist,
by highlighting clots candidates that he might have missed,
enabling more accurate diagnosis of PE.

A possible extension to this work could be to make the
method more conservative by relaxing the search criteria,
then provide its output to the input of a classifier for emboli
presence.
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NOTES

1. make them appear white in the image

2. This slice concept is not to be confused with slices of CT
images.

3. this can be done with other curves as well by augmenting point
multiplicity, but this is less intuitive

4. vessel part between two bifurcations
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