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Computational Modelling of Ligaments at
Non-physiological Situations
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A proper understanding of joints biomechanics is essential to improve the prevention and treatment of their disorders and
injuries. Despite the many investigations developed in this field, the exact mechanical behavior of the different human joints
and the causes of many of their injuries are not completely known yet. Computational models provide therefore a powerful
tool for the study of joint function, prosthesis design, and the effects of joint reconstruction. Reliability of these models
strongly depends on a precise geometrical reconstruction and on an accurate mathematical description of the behavior of
the biological tissues involved, and their interactions with the surrounding environment.
The objective of the paper is to describe constitutive models for addressing the computational modelling of ligaments under
non-physiological loads. Hyperelastic, viscoelastic, initial strains and damage models are presented to describe the mechanical
behavior of ligaments in these situations. In order to show the performance of the framework presented herein, a complex
3D numerical application to ligament mechanics of the anterior cruciate ligament is presented. Results show that the model
is able to capture the typical stress-strain behavior observed in ligaments at non-physiological situations and seem to
confirm the soundness of the proposed framework.
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1. INTRODUCTION

Biomechanics is defined as the development, extension and
application of mechanics for the purpose of the better
understanding physiology and pathophysiology, as well as,
the diagnosis and treatment of disease and injury. That is,
the overall goal of biomechanics is, and must remain, the
general improvement of the human condition [9].

Finite element (FE) method offer, the potential to predict
quantities that are difficult or impossible to measure
experimentally. In particular, FE method offers the ability
to predict spatial and temporal variations in stress, strain,
contact area and forces. The FE method also provides a
standardized framework for parametric studies, such as
evaluation of multiple clinical treatments. A computational
analysis may predict possible stress distributions for different
geometries and kinematics, provide a basis for evaluation
of surgical procedures, and aid in medical education and
virtual surgery. The need for such a tool has many uses in
the areas of injury assessment and surgery planning [27].
However, the construction of accurate and useful models
requires integration of the mechanics concepts, experimental
results, and material models and the reliability of these
models strongly depends on an appropriate geometrical
reconstruction and on an accurate mathematical descriptions
of the behavior of the biological tissues involved, and their
interactions with the surrounding environment [16].

The construction of an accurate constitutive model is
difficult because ligaments are non-linear, anisotropic,
inhomogeneous, viscoelastic,  and undergo large

deformations [27]. In addition, ligaments are usually exposed
to a complex distribution of “in vivo” residual stresses as a
consequence of the continuous growth, remodelling, damage
and viscoelastic strains that they suffer along their whole
life [15]. Ligaments, also, exhibit simultaneously elastic and
viscous material behavior. This behavior can arise from the
fluid flow inside the tissue, from the inherent viscoelasticity
of the solid phase, or from viscous interactions between the
tissue phases [10]. Furthermore, non-physiological loads
drive soft tissue to damage that may induce a strong reduction
of the stiffness. In order to obtain a realistic and complete
material model under non-physiological situations, elastic
behavior, initial strains, viscoelasticity and damage may be
coupled to account inelastic features.

With all the above in mind, the objective of the paper is
to describe constitutive models for  addressing the
computational modelling of ligaments under non-
physiological situations using FE method, differentiating
between elastic, viscoelastic, initial strains and damage of the
ligaments and applications. The paper is organized as follows.
Section 2 describes the basic structure of the ligaments. In
Section 3 the constitutive models for ligaments, hyperelasticity,
initial strains, viscoelasticty and damage are presented. The
application to some examples is presented in section 4. Finally,
section 5 includes some concluding remarks.

2. STRUCTURE AND PROPERTIES OF
LIGAMENTS

Tendons and ligaments are soft tissues composed of closely
packed, parallel collagen fiber bundles oriented to provide
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motion and stability to the musculoskeletal system. Under
macroscopic examination, ground substance is observed in
the interfibrillar spaces. Although ligaments are considered
as composite material consisting of a ground substance
matrix reinforced by collagen and elastin, collagen is the
primary component that resists the tensile stress in ligaments.

The tensile modulus of the ligament depends on the
collagen fibril density, fibril orientation and the amount of
collagen cross-linking. When this tissue is tested in tension,
the collagen fibrils are aligned and stretched along the axis
of loading. For small deformations, when the tensile stress
in the specimen is relatively small, a nonlinear toe-region is
seen in the stress-strain curve, due to realignment of the
collagen fibres, rather than stretching of these fibers. For
larger deformations, and after realignment, the collagen
fibrils are stretched and therefore generate a larger tensile
stress due to the intrinsic stiffness of the collagen fibrils
themselves. Due to this phenomenon, the tensile stiffness of
ligaments is highly strain dependent (see Fig. 1).

configuration, � dx
dXF  and C = FTF are the standard

deformation gradient and the corresponding right Cauchy-
Green strain measure.

A multiplicative decomposition of 1
3� JF F  and

2
3� JC C  into volume-changing (dilational) and volume-

preserving (distortional) parts is usually established as in
[5] and [23].

To characterize isothermal processes, we postulate the
existence of a unique decoupled representation of the strain-
energy density function [23]. Because of the directional
dependence on the deformation, we require that the function

 explicitly depends on both the right Cauchy-Green tensor
C and the fibers direction m

0
 in the reference configuration.

Since the sign of m
0
 is not significant,  must be an even

function of m
0
 and so it may be expressed by ( )� � � �C M

where 0 0� �M m m  is the structural tensor [25]. Based on

the kinematic description, the free energy can be written in
decoupled form as

1 2 4 50 0 0( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( ))� � � � �� � � � �� � � � � �vol volJ J I I I IC m C M C C C m C m

(2)

where ( )� vol J  and ( )� �C M  are given scalar-valued
functions of J, C  and m

0
 respectively that describe the

volumetric and isochoric responses of the material [8], 1I
and 2I  the first two modified strain invariants of the
symmetric modified Cauchy-Green tensor C  (Note that
I

3 
= J and 3 1�I ). Finally, the pseudo-invariants 4 5�I I

characterize the constitutive response of the fibers [25]:

2
4 5� � � � �I IC M C M (3)

While the invariant 4I  has a clear physical sense, the square
of the stretch � in the fiber direction, the influence of 5I  is
difficult to evaluate due to the high correlation among the
invariants. For this reason and the lack of sufficient
experimental data it is usual not to include this invariant in
the definition of  [25].

We now define the constitutive equation for
compressible hyperelastic materials in the standard form

1( )
2 ��� �

� � � � �
� vol Jp
C M

S S S C S
C

(4)

where the second Piola-Kirchhoff stress S consists of a purely
volumetric contribution S

vol
 and a purely isochoric one S

and p is the hydrostatic pressure. The associated decoupled
elasticity tensor may be written as

2 2vol
vol isoC C C

� �
� � � �

� �
S S
C C

(5)

Using the push-forward operator we obtain the Cauchy

stress tensor 1 ( )�
�� J� � S  and the elasticity tensor in the

spatial description 1 ( )J C�
��� � . For a more detailed

derivation of the material and spatial elasticity tensors for
completely incompressible or  compressible fibred

Figure 1: Schematic diagram of of a uniaxial tensile test where
fibers orient in the direction of the load as it increases.

3. CONSTITUTIVE MODELS FOR LIGAMENTS

3.1 Continuum Description of the Elastic Behavior

Consider a continuum body with reference configuration 
0

at the initial reference time t = 0. Then, an assumed motion
 maps this configuration to the current configuration  at

each time t. Hence, a point X  
0
 transforms to a point

x , where X and x define the respective positions of a
particle in the reference and current configurations relative
to a fixed set of axes. The direction of a fiber at a point
X 

0
 is defined by a unit vector field m

0
 (X), 0 1� ��m . It

is usually assumed that, under deformation, the fiber moves
with the material points of the continuum body. Therefore,
the stretch � of the fiber defined as the ratio between its
lengths at the deformed and reference configurations can be
expressed as

2
0 0 0 0 0( ) ( ) ( ); Tt t� � � � � � � � � �m x F X m X m F F m m Cm (1)

where m is the unit vector of the fiber in the deformed
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hyperelastic materials and their explicit expressions, see i.e.
[8] or  [25].

3.2 Enforcing Initial Strains of Ligaments

Initial strains are a consequence of the continuous growth,
remodelling, damage and viscoelastic strains that suffer
living materials along their whole life. Initial strains can be
relieved by selective cutting of the living tissue and removal
of its internal constraints. In ligaments of diarthrodial joints,
initial stretches provide joint stability even in a relatively
unloaded joint configuration [7]. Typical residual strains are
approximately 3-5% in these ligaments.

In order to describe the current deformation state of a
solid, including the effect of initial deformations, three
different configurations are usually defined: a) the stress-
free state (

sf
), b) the reference state in which the material

is unloaded (
0
) and c) the current deformed state ( ).

( ) ( )2 2
� � � �
� � � �
� � � �
� � � �
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� � � �
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� �
� � �

�� ��
� � � �

� �
sf sf

r r

T
r r r r

r rJ J
� � C C C C

C C
F F

C C (8)

with J
r
 = J

0
J and � T

r r rC F F .

Finally, the elasticity tensor in the material description

2 ( )
4 sf

r

�
�

� �
� �

� � C C

C

C C
� (9)

As noted, F
0
 is difficult to determine from experiments. In

the case of ligaments and tendons, Gardiner et al. [6]
proposed a relatively easy form to measure length variations
along the fiber direction at different points, that is, F

0

corresponds to an axial stretch �
0
 along the fiber direction

a
0
 in the reference state �

0
. Using the incompressibility

condition, F
0
 can be written in a coordinate system (*) where

the fiber direction a
0
 is aligned with the X

1
 axis as:

0

0

0

0
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(10)

To introduce initial strains into the finite element
formulation, it is necessary to specify F

0
 pointwise within

the finite element mesh. An equilibrium step is firstly applied
with zero forces with the constitutive behaviour defined by

��
sf

in order to obtain a balanced, although not fully

compatible configuration. A second load step will result in
the deformation gradient F that balances the externally
applied forces.

3.3 Continuum Description of the Viscoelastic Behavior
of Ligaments

In order to describe viscoelastic effects we consider the
finite-strain anisotropic viscoelastic constitutive behaviour
proposed by [14]. They apply the concept of internal
variables [22] and postulate the existence of an uncoupled
free energy function ( )� �C Q  of the form

1 1

0
0

1 1

1
( ) ( ) ( ) ( )

2

N N

ij vol ik ik
i k m f i k m f

J
� � � � � �

� � � � � � � � ��� � � � �C M Q C Q Q (11)

where 
ik
 may be interpreted as non-equilibrium stresses, in

the sense of non-equilibrium thermodynamics, and remain
unaltered under superposed spatial rigid body motions. 

im

are the isotropic contribution due to the matrix material
associated to I

1
 and I

2
 invariants and Qif is the anisotropic

contribution due to the fibres associated to I
4
, I

5
 invariants

[14].
Standard arguments based on the Clausius-Duhem

inequality 1
2 0� �� � � ���

intD S C , lead to the representation

Figure 2: Multiplicative decomposition of the total deformation
gradient where 

sf
 denotes the stress free state, 0 the

reference state and  the current configuration [15].

It is assumed that the total deformation gradient tensor
corresponding to the current state (F

r
) admits a multiplicative

decomposition [15] such as:

F
r
 = FF

0
(6)

The initial stress in the reference state, �
0
, is defined

for hyperelastic materials in the standard form, by the strain-

energy density function ��
sf

. Note that this function is

always referred to the stress-free state 
sf
 while 

0
 are true

stresses in the reference load-free configuration. Then

0 00 0 0
0 0

( ) ( )2 2
� � � �
� � � �
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� � � �
� � � �
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J J
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with �
*
 the push-forward associated to F

0
 and 0 0 0� TC F F .

In the same way, it is possible to define the total stresses
corresponding to the current state �

r
 in the standard form by

using the strain-energy density function ��
sf

 through F
r
.
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(12)
where DEV is the deviator operator in the material
description [24].

Based on previous studies [19, 21, 26], the ligament is
assumed to have a Kelvin-Voigt-type viscoelastic constitutive
behaviour. The nonequilibrium second Piola Kirchhof
stresses in (12), Q

ik
, are assumed to be governed by a set of

linear rate equations

01 ( )
[2 ]

� ��� �
�

� kik
ikik

ik ik

DEV
�

� �
C M

QQ
C (13)

                                          lim 0
���

�ik
t

Q

where [0 1]� �ik�  are free energy factors associated with

relaxation times 0�ik� .
The evolution equations (13) are linear and, therefore,

explicitly lead to the following convolution representation

0( )
( ) exp[ ] [2 ]

��

� � ���
��

t
kik

ik
ik ik

t s
t DEV ds

�
� �

Q
C (14)

Algoritmically, the constitutive model is appealing since
equation (13) can be evaluated via a simple recursion relation
which was originally developed for finite strains by [22]. In
particular, if the material state is known at a time t

n
 and the

deformation is known at a time 1� � � �n nt t t  with 0� �t ,

we may write

2
3

1

01
( ) 11 1 1 1 1

1

[(1 ) ])
N
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i
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where ( )
1�

ik
nH  are internal algorithmic history variables defined

by

� �0 0( ) ( )
( ) 1 ( )1 exp[ ] exp[ ]

2 ��
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ik ij

t t
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where the subscripts n and n + 1 denote quantities evaluated
at times t

n
 and t

n+1
 [22,14].

The iterative Newton procedure to solve a nonlinear
finite element problem requires the determination of the
consistent tangent material operator. This can be derived
analytically for the given material equation (5). The
symmetric algorithmic material tensor which is expressed
as [22]
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3.4 On Modeling of Damage Process of Ligaments

In order to reproduce the damage process in ligaments, we
consider the directional damage model proposed by Calvo
et al. [3]. The damage phenomenon is assumed to affect only
the isochoric elastic part of the deformation, as proposed by
Simo [22]. The free energy density can be written in a
decoupled form, such as

0 0( ) ( ) (1 ) ( ) (1 ) ( )� � � � � � � � � � � �� �
m f

m f vol m fD D J D DC M C C M N

(20)

where M is the structural tensor, ( )� vol J  is a strictly convex
function (with the minimum at J = 1) which describes the
volumetric elastic response, 0�

m  denotes the isochoric
effective strain energy density of the undamaged material,
which describes the elastic response of the matrix, and 0� f

denotes the isochoric effective strain energy of the undamage
material, which describes the isochoric elastic response of
the fibers. The factors (1–D

m
) and (1–D

f
) are known as the

reduction factors [22], where the internal variables
[0 1]� �mD  and [0 1]� �fD  are normalized scalars referred

to as the damage variables for the matrix and fibers
respectively.

As a particularization of the Clausius-Planck inequality
we obtain

0 0(1 ) (1 )� � � � �m f
vol m fD DS S S S (21)

The evolution of the damage parameters D
m
 and D

f
 is

characterized by an irreversible equation of evolution as

follows. We define � ��m f
s s  by the expression [22]

0 02 ( ( )) 2 ( ( ))m fm f
s ss and s� � � �� �C C (22)

where ( )sC  is the modified right Cauchy-Green tensor at

time s. Now, let � ��m f
t t  be the maximum values of � ��m f

s s

over the past history up to current time t  that is [22]

0 0
( ) ( )

max 2 ( ( )) max 2 ( ( ))m fm f
t t

s t s t
s and s

� ��� � ���
� � � �� �C C (23)

We define a damage criterion for the ground substance
or matrix in the strain space by the condition that, at any
time t of the loading process, the following expression is
fulfilled [22]

0( ( ) ) 2 ( ( )) 0�� � �� ��
m mm

m t tt t� C C (24)

The symmetric algorithmic material tensor which is
expressed as
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4. NUMERICAL EXAMPLES

In order to show the performance of the framework presented
herein, some examples are included. The most used
isotropically transverse model for ligaments is the early
proposed by [29]. However with this model, we can not
express the strain energy function in an analytical form. So,

the particular form of the deviatoric functions 0�
m  and 0�

f

used herein are the proposed by [11]
0

11( 3)� ��m C I

4 4( 1)0 3
4 4

4

(exp ( 1) 1)
2

C I
f

C
C I

C
�� � � ��  (27)

Finally, the volumetric part of the strain energy function is

always stated as 21 ln� �vol D J  [8].

4.1 Anterior Cruciate Ligament under Different
Strain Rates

Viscoelasticity of ligaments has been clearly demonstrated
in creep and stress relaxations tests [17, 18, 19, 28]. There
are, however, some variabilities in the findings of different
studies performed to evaluate the change in ligament material
properties with increasing loading rate [4, 17]. The strain-
rate during injury is very important regarding the magnitude
of the lesion. Therefore, the stress-strain behavior of the
ligament is an essential factor.

To illustrate the performance of the visco-hyperelastic
behaviour of ligaments and the importance of the strain-rates
during their movement, a model of the human anterior
cruciate ligament (ACL) was constructed to simulate its
behavior under an anterior tibial displacement, see Fig. 4.a.
The surface geometries of femur and tibia were reconstructed
from a set of Computer Tomography (CT) images, while for
the ACL, MRI (Magnetic Resonance Images) were used [13].
Two different strain rates were applied: low (0.012 %S–1)
and high (50%S–1) that correspond to physiological and non-
physiological strain-rates.

The elastic and viscoelastic parameters for the human
ACL were fitted from published experimental data [17] and
are shown in Table 1 and Figure 3. Ligaments were attached
to bone. The motion of each bone was controlled by the six
degrees of freedom of its reference node. In the analyses,
tibia remained fixed. The position at full extension served
as the initial reference configuration. An anterior load of
134 N was applied to the femur. In this example we did not
consider initial strains [15].

Table 1
ACL elastic, viscoelastic and damage material parameters (MPa)

C
1

C
2

C
3

C
4

D
1 0.0 0.4 8.1019 8.8e-3

m� m� 1f� 1f�
0.31 0.15 0.69 5

m
min� m

max� m� f
min� f

max� f�
0.2946 0.4399 0.120 0.9427 1.4086 0.1538

Maximal principal stress distributions in ACL at
0.012%S–1 and 50%S–1 of strain rates are presented in Figure
4. The maximal principal stress is located in the central part
of the ligament. The maximal principal stress of 7.27 MPa
obtained in the central region for the higher load rate is due
to the stiffening effect induced by high load rates. Under
physiological strain-rates the maximal principal stress of 4.36
MPa is far from the ultimate stress.

4.2 Damage of Human Anterior Cruciate Ligament

The anterior cruciate (ACL) ligament is the most frequent
totally disrupted of all the knee ligaments. Sports (sky,
basketball, soccer) and traffic accidents are the most
important causes of ligament injury. Studies of ligament
cutting and measurements of tissue load have shown that
ACL provides a primary restraint to anterior-posterior and
flexion movement and a secondary restraint to external-
internal rotation. The purpose of this simulation is to
demonstrate the applicability of the model to simulate the
structural behavior of soft biological tissues. We reproduce
in a human ACL, the experiment developed by [12] in a
monkey ACL. That study was performed to determine the
viscoelastic behavior of ligaments at different loading rates,
such as those associated with sports-related trauma.

The previous human model of the ACL was used to test
slow and fast conditions at displacement rates of 0.08467
mm/s and 8.467 mm/s. The elastic, viscoelastic and damage
parameters for the human ACL were fitted from published
experimental data [1,17] and are shown in Table 1. The fitted
curve is shown in Figure 5.

Figure 3: Experimental results obtained by [17] and theoretical
stress-strain curves at different rates of elongation for
the human ACL
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(a) [Finite element model] (b) [0.012 1�%s ] (c) [50 1�%s ]

Figure 4: Finite element model of the human ACL and maximal principal stress at low and high strain rates (MPa).

Figure 5: Stress-strain response of the human ACL at different displacement rates.

Damage distributions in matrix and fibres at 0.08467
mm/s and 8.467 mm/s of displacement rates are presented
in Figures 6 and 7. Due to limitations of the model, we
consider failure of the ACL when damage reached a value
of 0.55 in both matrix or fibres. We can observe the effect
of the strain rate into the damage behavior. At 8.467 mm/s
of displacement rate, damage in fibres was much lower
(0.34) than at 0.08467 mm/s (0.56). On the contrary, damage
in matrix at 8.467 mm/s (0.26) was much higher than at
0.08467 mm/s (0.20). [12] observed that during the failure
process, the ligament grossly appears intact while the load
is approximately 80 %. The peak values appeared in the
ligament substance as has been also reported in previous
experimental studies [12]. This is in agreement with the

computational results obtained herein due to the damage
processes in the matrix substance is lower than in the fibers.

In Table 2 the results are separated according to the
strain rate. The overall difference in strength properties at
two deformation rates is shown, the load needed until failure
at high strain rate is higher than at low strain rate as has
been also reported in previous experimental studies [12].

Table 2
Strain Rate Results by Strain Rate

Strain rate Maximun load (N) Strain to failure

Fast 94.88 0.41

Slow 45.1 0.4
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(a) [Matrix damage] (b) [Fibre damage]

Figure 6: Damage in a human ACL at 0.08467 mm/s

(a) [Matrix damage] (b) [Fibre damage]

Figure 7: Damage in a human ACL at 8.467 mm/s



114 International Journal of Computational Vision and Biomechanics

5. DISCUSSION

In this work, we have presented constitutive models that have
been used to represent ligaments under non physiological
situations. The ultimate goal of these modelling efforts is to
improve the clinical diagnosis and treatment of different
injuries and disorders of diarthrodial joints. This paper
presents visco-hyperelastic and damage models to study the
strain softening time-dependent behavior of ligaments. The
research question addressed in the paper is to assess whether,
in the framework of phenomenological models, a time-
dependent constitutive damage model with viscoelastic
properties different for matrix and reinforcing fibres can
predict different experimental evidences in this type of
materials [2,20]. From numerical point of view, a general
procedure for the simulation of finite strain problems
involving dissipative fibred materials has been described in
detail. Emphasis has been placed on the numerical treatment
of the proposed formulation in the context of the finite
element method and particular attention has been paid to
the derivation of the corresponding tangent tensor, essential
for the solution of the implicit finite element equations.

In order to show the performance of the framework
presented herein, a complex 3D numerical application to
ACL ligament mechanics is presented. Results show that the
model is able to capture the typical stress-strain behavior
observed in ligaments at non-physiological situations and
predict the damage ligament regions that has been reported
in previous experimental studies [12].
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