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A proper understanding of joints biomechanics is essential to improve the prevention and treatment of their disorders and
injuries. Despite the many investigations developed in thisfield, the exact mechanical behavior of the different human joints
and the causes of many of their injuries are not completely known yet. Computational models provide therefore a powerful
tool for the study of joint function, prosthesis design, and the effects of joint reconstruction. Reliability of these models
strongly depends on a precise geometrical reconstruction and on an accurate mathematical description of the behavior of
the biological tissues involved, and their interactions with the surrounding environment.

The objective of the paper isto describe constitutive modelsfor addressing the computational modelling of ligaments under
non-physiological loads. Hyperd astic, viscoelastic, initial strainsand damage modelsare presented to describe the mechanical
behavior of ligaments in these situations. In order to show the performance of the framework presented herein, a complex
3D numerical application to ligament mechanics of the anterior cruciate ligament is presented. Results show that the model
is able to capture the typical stress-strain behavior observed in ligaments at non-physiological situations and seem to
confirm the soundness of the proposed framework.
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INTRODUCTION

Biomechanicsisdefined asthe development, extension and
application of mechanics for the purpose of the better
understanding physiology and pathophysiology, aswell as,
the diagnosis and treatment of disease and injury. That is,
the overall goal of biomechanicsis, and must remain, the
general improvement of the human condition [9].

Finite d ement (FE) method offer, the potential to predict
guantities that are difficult or impossible to measure
experimentally. In particular, FE method offers the ability
to predict spatial and temporal variationsin stress, strain,
contact area and forces. The FE method also provides a
standardized framework for parametric studies, such as
evaluation of multipleclinical treatments. A computational
analysismay predict possible stressdistributionsfor different
geometries and kinematics, provide a basis for evaluation
of surgical procedures, and aid in medical education and
virtual surgery. The need for such atool has many usesin
the areas of injury assessment and surgery planning [27].
However, the construction of accurate and useful models
requiresintegration of the mechanics concepts, experimental
results, and material models and the reliability of these
models strongly depends on an appropriate geometrical
reconstruction and on an accurate mathematical descriptions
of the behavior of the biological tissuesinvolved, and their
interactionswith the surrounding environment [16].

The construction of an accurate constitutive model is
difficult because ligaments are non-linear, anisotropic,
inhomogeneous, viscoelastic, and undergo large

deformations[27]. In addition, ligaments are usua ly exposed
to acomplex distribution of “in vivo” residual stressesasa
consequence of the continuous growth, remodd ling, damage
and viscodlastic strains that they suffer along their whole
life[15]. Ligaments, & so, exhibit s multaneously elagticand
viscous material behavior. Thisbehavior can arisefrom the
fluid flowinside thetissue, from theinherent viscoel asticity
of the solid phase, or from viscous interactions between the
tissue phases [10]. Furthermore, non-physiological |oads
drive soft tissueto damagethat may inducea strong reduction
of the stiffness. In order to obtain arealistic and complete
material model under non-physiological situations, eastic
behavior, initial strains, viscoel asticity and damage may be
coupled to account inelastic features.

With all the above in mind, the objective of the paper is
to describe constitutive models for addressing the
computational modelling of ligaments under non-
physiological situations using FE method, differentiating
between elagtic, viscoelagtic, initial strainsand damage of the
ligaments and applications. The paper isorganized asfollows.
Section 2 describes the basic structure of the ligaments. In
Section 3 the congtitutivemodd s for ligaments, hypereladticity,
initial strains, viscoel agticty and damage are presented. The
application to someexamplesispresented in section 4. Finally,
section 5includes some concluding remarks.

2. STRUCTUREAND PROPERTIESOF
LIGAMENTS

Tendons and ligaments are soft tissues composed of closely
packed, parallel collagen fiber bundles oriented to provide
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motion and stability to the muscul oskeletal system. Under
macroscopi ¢ examination, ground substanceis observed in
theinterfibrillar spaces. Although ligaments are considered
as composite material consisting of a ground substance
matrix reinforced by collagen and elastin, collagen is the
primary component that resiststhetenslestressin ligaments.
The tensile modulus of the ligament depends on the
collagen fibril density, fibril orientation and the amount of
collagen cross-linking. When thistissueistested in tension,
the collagen fibrils are aligned and stretched along the axis
of loading. For small deformations, when thetensile stress
in the specimenisrelatively small, anonlinear toe-region is
seen in the stress-strain curve, due to realignment of the
collagen fibres, rather than stretching of these fibers. For
larger deformations, and after realignment, the collagen
fibrils are stretched and therefore generate a larger tensile
stress due to the intrinsic stiffness of the collagen fibrils
themselves. Dueto this phenomenon, thetensile stiffness of
ligamentsishighly strain dependent (seeFig. 1).
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Figure 1: Schematic diagram of of a uniaxial tensile test where
fibersorient in the direction of the load asit increases.

3. CONSTITUTIVE MODELSFOR LIGAMENTS

3.1 Continuum Description of the Elastic Behavior

Congder a continuum body with reference configuration Q,
at theinitial referencetimet = 0. Then, an assumed motion
x mapsthis configuration to the current configuration Q at
each time t. Hence, a point X e Q_ transforms to a point
x € Q, where X and x define the respective positions of a
particlein thereferenceand current configurationsrel ative
to a fixed set of axes. The direction of a fiber at a point
X € Q,isdefined by aunit vector field m, (X), [m, [=1. It
isusually assumed that, under deformation, the fiber moves
with the material points of the continuum body. Therefore,
the stretch A of the fiber defined as the ratio between its
lengths at the deformed and reference configurations can be
expressed as

am(x,t) = F(X,t)my(X);A> =m,-FTF-m, =m,-Cm, (1)

where m is the unit vector of the fiber in the deformed

configuration, F =% and C = F'F are the standard

deformation gradient and the corresponding right Cauchy-
Green strain measure.

A multiplicative decomposition of _ 33 and

C = J3c into volume-changing (dilational) and volume-
preserving (distortional) partsis usually established asin
[5] and [23].

To characterize isothermal processes, we postul ate the
exigence of a unique decoupled representation of the strain-
energy density function ¥ [23]. Because of the directional
dependence on thedeformation, we requirethat thefunction
¥ explicitly depends on both theright Cauchy-Green tensor
C and thefibersdirection m; in the reference configuration.
Sincethe sign of m is not significant, ¥ must be an even

function of m and soit may beexpressed by ¥ = '¥(C,M)
where M = m, ® m, isthe structural tensor [25]. Based on

the kinematic description, thefree energy can bewritten in
decoupled form as

P(C.mg) =¥y (3) + F(C,M) = ¥, () + F (I (C).T5(C). T oC.mg), T(C.my))
)
where¥ ,(J) and ¥(C,M) are given scalar-valued
functions of J, C and m, respectively that describe the
volumetric and isochoric responses of the material [8], T,
and T, the first two modified strain invariants of the
symmetric modified Cauchy-Green tensor ¢ (Note that
I,=Jand [;=1). Finaly, the pseudo-invariants T ,,1 s
characterize the constitutive response of the fibers[25]:

|_4=C:|\/|,|_5=C2:|V| (©)

Whiletheinvariant |, hasadear physical sense, the square
of the stretch A in thefiber direction, theinfluenceof 1, is
difficult to eval uate due to the high correlation among the
invariants. For this reason and the lack of sufficient
experimental dataitisusual not toincludethisinvariantin
the definition of ¥ [25].

We now define the constitutive equation for
compressible hyperelastic materialsin the standard form

_,¥(CM)
acC

wherethe second Piola-Kirchhoff stress Sconsgtsof apurey
volumetric contribution S, and a purely isochoric one §
and p isthe hydrostatic pressure. The associated decoupled
elasticity tensor may bewritten as

S =Sy +S=JpC"+S (4)

(:::(;ml*_(;S)::2£2§59L+_2:?§i (ED
oC oC

Using the push-forward operator we aobtain the Cauchy
stresstensor o = J 'y, (S) and the easticity tensor in the

spatial description .=J"4(C). For a more detailed

derivation of the material and spatial elasticity tensors for
completely incompressible or compressible fibred
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hyperelastic materials and their explicit expressions, seei.e.

b prate® 2 [0%,,© | 2 [, ©) |,

(8] or [25]. R e T

3.2 Enforcing Initial Strainsof Ligaments

Initial strains are a consequence of the continuous growth,
remodelling, damage and viscoel astic strains that suffer
living materialsalong their wholelife. Initial strains can be
relieved by selective cutting of theliving tissueand removal
of itsinternal constraints. In ligamentsof diarthrodial joints,
initial stretches provide joint stability even in arelatively
unloaded joint configuration [7]. Typical residud strainsare
approximately 3-5%in these ligaments.

In order to describe the current deformation state of a
solid, including the effect of initial deformations, three
different configurations are usually defined: a) the stress-
free state (Q2), b) the reference state in which the material
isunloaded (Q,) and c) the current deformed state ().
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Figure 2: Multiplicative decomposition of the total deformation
gradient where Q_ denotes the stress free state, Q the
reference state and Q the current configuration [15].

It isassumed that the total deformation gradient tensor
corresponding to the current state (F,) admitsamultiplicative
decompoasition [15] such as:

F.=FF, (6)

Theinitial stressin the reference state, o, is defined
for hyperelastic materia sin the standard form, by the strain-

energy density function ‘¥, . Note that this function is

aways referred tothe stress-free state Q  while s aretrue
stressesin thereferenceload-free configuration. Then

¥, (C)

2 0¥, (C) |
oc @

[ 2
= — . - ::—F
Oy 3, X aC |c_c0. 0

FT7
j‘]o o (7)

with x, the push-forward associated to F,and C, = Fj F, .

In the sameway, it ispossibleto definethetotal stresses
corresponding to the current state o, in the standard form by

using the strain-energy density function ¥, throughF..

with] =JJand C =F'F..
Finally, the e asticity tensor in the material description

0"y, (O)
acacC

Asnoted, F, is difficult to determine from experiments. In
the case of ligaments and tendons, Gardiner et al. [6]
proposed arelatively easy form to measure length variations
along the fiber direction at different points, that is, F,
corresponds to an axial stretch A along the fiber direction
a, in the reference state Q. Using the incompressibility
condition, F can bewritten in a coordinate system (*) where
thefiber direction a isaligned with the X, axisas

le-c, ©)

b 0 0
1
Fl=|0 ——= o0
\/To (10)
1
0 0 —
Vo |

To introduce initial strains into the finite element
formulation, it is necessary to specify F, pointwise within
thefinite d ement mesh. An equilibrium stepisfirstly applied
with zero forces with the constitutive behaviour defined by

W, in order to obtain a balanced, although not fully

compatible configuration. A second load step will result in
the deformation gradient F that balances the externally
applied forces.

3.3 Continuum Description of the Viscoel astic Behavior
of Ligaments

In order to describe viscoelastic effects we consider the
finite-strain ani sotropic viscoe astic congtitutive behavi our
proposed by [14]. They apply the concept of internal
variables[22] and postul ate the existence of an uncoupled
free energy function ¥ (C,Q) of theform

PEM.Q) =¥ D)+ T3> ¥ €C:QI+EE ¥ Q) (11)

whereQ, may beinterpreted as non-equilibrium stresses, in
the sense of non-equilibrium thermodynamics, and remain
unaltered under superposed spatial rigid body motions. Q,
are the isotropic contribution due to the matrix material
associated to |, and |, invariants and Qif is the anisotropic
contribution dueto the fibres associated to |, |, invariants
[14].

Standard arguments based on the Clausius-Duhem

inequality D,, =¥ +1S:C> 0, lead totherepresentation
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a¥(CM.Q,)
oC

2 =9 N 2
s-2 - opct+ 9 v EM) (Eg M) 3 Qu1=S, +&°- 373 DEVIQ,]
i=1 i=1

(12)
where DEV is the deviator operator in the material
description [24].

Based on previous studies[19, 21, 26], theligament is
assumed to have a Kelvin-Voigt-type viscod astic congitutive
behaviour. The nonequilibrium second Piola Kirchhof
stressesin (12), Q,,, are assumed to be governed by a set of
linear rate equations

o=
Qut=0Q, =L DEV[2 TSN

Tik Tik

(13)

limQ, =0

t——o
wherey, €[0,1] are free energy factors associated with

relaxation times z, > 0.
The evolution equations (13) arelinear and, therefore,
explicitly lead to the following convol uti on representation

. t—s
R e e XA L E
Tik Tik

Algoritmically, the constitutivemodd is appealing Snce
equation (13) can beevaluated viaasimplerecursion relation
which was originally developed for finite strainsby [22]. In
particular, if thematerial stateisknown at atimet and the

deformation isknown at atime t,_,.
we may write

, =t +At with At>0,

2 N —
Sn+1 = ‘]n+1 pn+lC;11 + ‘]r:fl Z [(1_ Z )/ik)S(k)nH]) +

k=m, f, i=1

+3,5 2 [7d DEVIHEN (15)

where H'* areinternal algorithmic history variables defined
by
H 22 = exp[ n]H 0o+ eXp[ ]{S(k)ml S?k)n} (16)

le ij

wherethe subscriptsn and n+ 1 denote quantities evaluated
attimest andt . [22,14].

The iterative Newton procedure to solve a nonlinear
finite element problem requires the determination of the
consistent tangent material operator. This can be derived
analytically for the given material equation (5). The
symmetric algorithmic material tensor which is expressed
as[22]

Coan= (CSOI(ml) + sz [(A=7 +v )@?k)n+l+

N

2 4 i ~ (i
3 Jnflz 7 DEV[H, ¢ k)] ®Cn+l+Cn+l® DEV[H. ¢ k)]

-(A80: O, - ST TonA)) (17)

3

with

~(Ik)_exp[ n]H(Ik) exp[z n]Sn(J)

T T

(18)

(ik) _ ~ (ik) 0(j)
Hnl+l HnI +exp[ - n]SnJr!L
ij

(19)

3.4 On Modeling of Damage Process of Ligaments

In order to reproduce the damage process in ligaments, we
consider the directional damage model proposed by Calvo
et al. [3]. Thedamage phenomenon isassumed to affect only
theisochoric e astic part of the deformation, as proposed by
Simo [22]. The free energy density can be written in a
decoupled form, such as

¥(C,M,D,,,D,) =¥, (J)+@-D,)FJC)+(1-D,)F4C,M,N)
(20)

whereM isthestructural tensor, ¥, (J) isastrictly convex
function (with the minimum at J = 1) which describes the
volumetric elastic response, g denotes the isochoric
effective strain energy density of the undamaged material,
which describes the el astic response of the matrix, and g {
denotestheisochoric effective strain energy of the undamage
material, which describes the isochoric e astic response of
the fibers. The factors (1-D_ ) and (1-D,) are known as the
reduction factors [22], where the internal variables
D, €[0,1] and D; €[0,1] are normalized scalars referred
to as the damage variables for the matrix and fibers
respectively.

Asaparticularization of the Clausius-Planck inequality
we obtain

s “m»

S=S, +(1-D,)S; +(1-D;)S (21)

The evolution of the damage parameters D_ and D, is
characterized by an irreversible equation of evolution as

follows. We define 20", 2! by the expression [22]

20 =4295(C(s)) and  E =23,(C(9))

where C(s) isthe modified right Cauchy-Green tensor at

(22)

times. Now, let 2", =/ bethe maximum valuesof =", =/

Sig g

over the past history up to current timet that is[22]

2= max J2¥5(C(s)  and E = max 29,(C(s))

We definea damage criterion for the ground substance
or matrix in the strain space by the condition that, at any
timet of the loading process, the following expression is
fulfilled [22]

#n(C(1),ET) =/ 2F5(C(1))
The symmetric algorithmic material tensor which is
expressed as

(23)

_=r<0 (24)
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Cn+l = Ceol(ml) + z [(1_ D(k)n+1)6?k)n+l_ §(k)n+]]

k=m, f;

(25)

where

< — g(’k)ml _(l)<)n+1 ®§((l)<)n+1 If d) = O and Nm C > O
) otherwise

4. NUMERICAL EXAMPLES

In order to show the performance of the framework presented
herein, some examples are included. The most used
isotropically transverse mode for ligaments is the early
proposed by [29]. However with this model, we can not
expressthe strain energy function in an analytical form. So,

the particular form of the deviatoric functions ' and \f;é
used herein arethe proposed by [11]

‘?21 = Cl(l_l_ 3

—o_ G Ca(T4D) T

Y+ —'Eisz(exp _’CA(I4'_])'_J)
Finally, the volumetric part of the strain energy function is

dwaysstated as\P , =1 1n J? [g].

(27)

4.1 Anterior CruciateLigament under Different
Srain Rates

Viscoelagticity of ligaments has been clearly demonstrated
in creep and stressrelaxationstests[17, 18, 19, 28]. There
are, however, somevariabilitiesin the findings of different
studies performed to eval uate the changein ligament material
propertieswith increasing loading rate [4, 17]. The strain-
rateduring injury isvery important regarding the magnitude
of the lesion. Therefore, the stress-strain behavior of the
ligament isan essential factor.

To illustrate the performance of the visco-hyperel astic
behaviour of ligamentsand the importance of the strain-rates
during their movement, a modd of the human anterior
cruciate ligament (ACL) was constructed to simulate its
behavior under an anterior tibial displacement, seeFig. 4.a.
The surface geometries of femur and tibiawere reconstructed
from a set of Computer Tomography (CT) images, whilefor
theACL, MRI (Magnetic Resonance | mages) were used [13].
Two different strain rates were applied: low (0.012 %S?)
and high (50%S™) that correspond to physiological and non-
physiological strain-rates.

The elastic and viscoel astic parameters for the human
ACL werefitted from published experimental data[17] and
areshown in Table 1 and Figure 3. Ligaments were attached
to bone. The motion of each bone was controlled by the six
degrees of freedom of its reference node. In the analyses,
tibiaremained fixed. The position at full extension served
as the initial reference configuration. An anterior load of
134 N was applied to thefemur. In thisexamplewe did not
consider initial strains[15].
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= ® experimental 25%/s-1 o
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4 A experimental 50%/s-1
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- FPEM 25%/s-1
FEM 50%/s-1

w
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o
I
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|
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Figure 3: Experimental results obtained by [17] and theoretical
stress-strain curves at different rates of elongation for

the human ACL

1.10

Table 1
ACL elastic, viscoelastic and damage material parameters (M Pa)
C, C, C, C, D
1 0.0 0.4 8.1019 8.8e-3
Vm T Ve Ty
0.31 0.15 0.69 5

f f f

l//nn“:n l//rr:ax ﬂm Y min Y max ﬂ

0.2946 0.4399 0.120 0.9427 1.4086 0.1538

Maximal principal stress distributions in ACL at
0.012%S™ and 50%S™ of strain ratesare presented in Figure
4. Themaximal principal stressislocated in the central part
of theligament. The maximal principal stress of 7.27 MPa
obtained in thecentral region for the higher load rateisdue
to the stiffening effect induced by high load rates. Under
physologica grain-ratesthemaximal principal stress of 4.36
MPaisfar from the ultimate stress.

4.2 Damage of Human Anterior Cruciate Ligament

The anterior cruciate (ACL) ligament is the most frequent
totally disrupted of all the knee ligaments. Sports (sky,
basketball, soccer) and traffic accidents are the most
important causes of ligament injury. Studies of ligament
cutting and measurements of tissue load have shown that
ACL provides aprimary restraint to anterior-posterior and
flexion movement and a secondary restraint to external-
internal rotation. The purpose of this simulation is to
demonstrate the applicability of the model to simulate the
structural behavior of soft biological tissues. We reproduce
in a human ACL, the experiment developed by [12] in a
monkey ACL. That study was performed to determine the
viscoel astic behavior of ligamentsat different loading rates,
such asthose associated with sports-related trauma.

The previous human model of the ACL was used to test
slow and fast conditions at displacement rates of 0.08467
mm/sand 8.467 mm/s. The e astic, viscoe astic and damage
parameters for the human ACL were fitted from published
experimenta data[1,17] and areshown in Table 1. Thefitted
curveisshown in Figure 5.
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Figure 4: Finite element model of the human ACL and maximal principal stress at low and high strain rates (M Pa).
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Figure 5. Sress-strain response of the human ACL at different displacement rates.

Damage distributions in matrix and fibres at 0.08467
mm/sand 8.467 mm/s of displacement rates are presented
in Figures 6 and 7. Due to limitations of the model, we
consider failure of the ACL when damage reached avalue
of 0.55in both matrix or fibres. We can observe the effect
of the strain rateinto the damage behavior. At 8.467 mm/s
of displacement rate, damage in fibres was much lower
(0.34) than at 0.08467 mm/s (0.56). Onthe contrary, damage
in matrix at 8.467 mm/s (0.26) was much higher than at
0.08467 mm/s(0.20). [12] observed that during thefailure
process, the ligament grossly appears intact while theload
is approximately 80 %. The peak values appeared in the
ligament substance as has been also reported in previous
experimental studies [12]. Thisis in agreement with the

computational results obtained herein due to the damage
processesin thematrix substanceis|ower than in thefibers.
In Table 2 the results are separated according to the
dtrain rate. The overall difference in strength properties at
two deformation ratesis shown, the load needed until failure
at high strain rate is higher than at low strain rate as has
been also reported in previous experimental studies[12].

Table 2
Srain Rate Results by Srain Rate

Srain rate Maximun load (N) Srainto failure
Fast 94.88 0.41
Slow 45.1 0.4
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Figure 6: Damage in a human ACL at 0.08467 mm/s
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Figure 7. Damage in a human ACL at 8.467 mm/s



114

International Journal of Computational Vision and Biomechanics

5. DISCUSSION

In thiswork, we have presented constitutivemodd sthat have
been used to represent ligaments under non physiological
situations. Theultimategoal of these modelling effortsisto
improve the clinical diagnosis and treatment of different
injuries and disorders of diarthrodial joints. This paper
presents visco-hyperel astic and damage modelsto study the
strain softening time-dependent behavior of ligaments. The
research question addressed in the paper isto assesswhether,
in the framework of phenomenological models, a time-
dependent congtitutive damage model with viscoelastic
properties different for matrix and reinforcing fibres can
predict different experimental evidences in this type of
materials [2,20]. From numerical point of view, a general
procedure for the simulation of finite strain problems
involving dissipative fibred material shas been described in
detail. Emphas shas been placed on the numerical treatment
of the proposed formulation in the context of the finite
element method and particular attention has been paid to
the derivation of the corresponding tangent tensor, essential
for the solution of theimplicit finite element equations.

In order to show the performance of the framework
presented herein, a complex 3D numerical application to
ACL ligament mechanicsis presented. Results show that the
model is able to capture the typical stress-strain behavior
observed in ligaments at non-physiological situations and
predict thedamage ligament regionsthat has been reported
in previous experimental studies[12].
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