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This paper introduces a new Pseudo 2-D Hidden Markov Models (P2DHMMs) structure dedicated to the time series
recognition (T-CombP2DHMMSs). The T-CombP2DHMMs allows it to do temporal analysis, and to be used in large set of
hand gestures movement and faces recognition systems in unconstrained environments. Additionally, Face detector is based
upon a tree structure of boosted cascaded of weak classifiers. Furthermore, robust and flexible hand gesture tracking using
an algorithmthat combinestwo powerful stochastic modeling techniques: thefirst oneis P2DHMMsand the second technique
is the well-known Kalman filter. Our work also present a feature extraction method based on the joint statistics of a subset
of discret cosine transformation (DCT) coefficients and their position on the hand. Using feature extraction method along
with the T-CombP2DHMMSs structure was used to develop a complete vocabulary of 36 gestures including the America Sign
Language (ASL) letter spelling alphabet and digits include the person present gesture correspondence. The results of the
approach are up to 99.5%.
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1. INTRODUCTION two powerful stochastic modelling techniques for hand

The efficient and robust tracking and recognition ¢facking: the first one is P2DHMMs and the second

objects in complex environments is important for a variet@/Ch;'gue is the wedll—kno_\t/)vndK_aIman_fllter approaglh with
of applications including human-computer interactiof@nd detectors as described in Section 2. Secondly, a tree
[2, 3], video surveillance [5], autonomous driving [4]__structure of boosted cascaded of weak classifiers has been

The main challenge in object detection, tracking arlmproved for face detection in Section 3. Finally, we use

recognition is a mount of variation in visual appearanc8€ ﬁombined usz of time “spatialization” ar(;d IP fZDHhMMj
To cope with appearance variations of the target objé'%tt € propose T—Com_P_ZDHMMs model for han
during tracking, existing tracking approaches (e.g. [6, ggsture and fface recognition concurrently |n_Sect|on 4,
8]) are enhanced by adaptivness to be able ige next section presents the result of experiments. The

incrementally adjust to the changes in the Speciﬁgm_marize contribution of this work in the conclusion
tracking environment (e.g. [9, 10, 11, 12, 13, 14, 15]). ﬁ’FCt'On'

_other \{vords, invariance against the different _varlat|05§ HAND TRACK ING

is obtained by adaptive methods or representations. Visual

appearance also depends on the surrounding environm@g.develop a real time hand tracking method based on
Light sources will vary in their intensity, color, andhe P2ZDHMM and Kalman filter, which is robust and
location with respect to the object. The appearanceféﬁame on hand tracking in unconstrained environments
the object also depends on its pose; that is, its positﬂ-mj then the hand region extraction fast and accurately.
and orientation with respect to the camera. For examp
a side view of a human face will look different than
frontal view (Fig. 1 and Fig. 2). The sign language iEhis work propose a novel tracking method for problem
undoubtedly the most grammatically structured amning two powerful stochastic modeling techniques,
complex set of human gestures. In American Sigamely P2DHMMs and Kalman filter. The input of the
Language (ASL), the use of hand gestures is vefplman filter relies on the information provided by a
important to differentiate between many gestur@smplex shape model of the persons hand of which the
(Fig. 3). Thus, a fast and reliable method to extract thucture has been automatically learned and acquired by
hand postures changes from the video sequence is tbgy P2DHMMs. The dynamic information need for
important in ASL recognition systems. The hand isacking is solely generated by the Kalman filter. While
complex object. The basic idea lies in the real-tintbe Kalman filter obtains its input information from the
generation of gesture model for hand gesture recognitADHMMSs, the Kalman filter itself feeds its output

in the content analysis of video sequence from Cdbformation back to the P2DHMMs and improves in this
camera. To cope with all this variation, firstly, we combingay the shape detection procedure of the P2DHMMs.

e, _ . .
.1. Basic Hand Tracking Algorithm
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Figure 1. Examples of training images for each face orientation
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Figure 2: Examples of training image for each face expression Figure 4. Stochastic model of a two-dimensional object use a
P2DHMMs

Such a P2DHMM can be considered as a 2-D

stochastic model of an object in an image. The center of
gravity of the hands are computed from the segmentation
result obtained from Viterbi algorithm by simply

calculating the appropriate moment from the blocks inside
the black marked area indicating the hand (as show in
Fig. 4). The coordinates of this center of gravity, denoted
as x and y, and the size of the bounding box of the
segmentation, denoted as w (width) and h (height) serve

D
—E
E

N

LN

0y

6

Figure 3. TheASL gesture set to be recognized [18] In order to describe the moving hands and to represent
_ _ the result of the tracking procedure, we use Kalman filter

This optimal feedback between these two modulestéspredict hand location in one image frame basedson it

another reason for the powerful performance of th&cation detected in the previous frame. First, we measure

approach. By letting only Kalman filter be responsiblgand location and velocity in each image frame in which,

for the dynamic information of the tracking process, aRgk define the state vector as x

relying in the measurement process completely on shape .

and color information, the tracking procedure becomes %= (X(0), YO, v(0), Vy(t)’ w(D), h(H) (1)

entirely independent of other disturbing motions in the X(t): x-coordinate of COG of hand -

y(t) : y-coordinate of COG of hand

background.
2.2. M easurement VVector Generation with P2DHMM s x=|v(t) : Horizontal velocity of COG of hand

P2DHMMs generates a measurement vector that is uses v, : Vgrtlcal velocny. of COG of hand
as input to the Kalman filter. The components of this w(t) - Width of bounding box

vector are the center of gravity of the hand person detecte [h(t) :  Height of bounding box

in the image and the width and height of the bounding Wherex(t), y(t), v.(t), v.(t) shows the location of hand
box. The following steps are carried out for that purpogg(t), y(t)), the velocity of handv((t) v,(t)) and the width
firstly, the image is processed with a DCT-based featutrd height of hane(t), h(t) in the P image frame. We
extraction method. An overlap between adjacent samplifgfine the observation vectortg present the location of
windows improves the ability of the HMM to model thehe center of the hand detected in thidrame. The
neighborhood relations between the windows. The reswiéasurement vector-, consists of the location of the
of the feature extraction is two-dimensional array efnter of the hand region .The state veotoand
vectors. This array is presented to P2DHMM as showbservation vectoy, are related as the following basic
in Figure 4. system equation:
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as the measurement input the Kalman filter.
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2.3. Combination of P2DHMM Output with Kalman
Filter
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X =0x_, +Gw, (2)  y(t+1)) of X_, . If we need a predicted location after more
Y, =HX +v, (3) than one image frame, we can calculate the predicted
Whered is the state transition matrix, G is the drivingpcation as follows:

matrix, ® is the observation matrixy, is system noise - am(o _
added to the velocity of the state vectpandy, is the X =@ {X +K (% ~HX)] (8)
observation noise that is error between real and detected o _ o oom ooimd .,
location. Here we assume approximately uniform straightR.m = ©" (R — KIHPI)( ) +G—"2VZ(D Q(q> ) (9)
motion for hand between two successive image frames v ke
becagse the frame interval is short. Theip, G, andH Where X, is the estimated value ofk,, from
are given as follows:

Yo Yy Pume €QualS,, /o2, 5, represents the

1 0AT 0O OO

01 0 AT 0 0 000010 1000 07 Covariance matrix of estimate errg,, .
(D_OOIOOOG_OOOOO H_01000(

g 8 g (1) 2 g g g g 8 g g g g 8 ; “ 24.Interaction Between Kalman Filter and

00 06 0 01 P2DHMMs

An important points the fact that - while vector x is

with the measurement matrix H and the measuremeghsirycted from the vector y in the Kalman equations.
noise y which is resulting from the measurement errorgy,o update of the vectoris used in return as input to

The Kalman-filter computes the reconstruction of thee poDHMM in order to improve estimation of the
state vectok from the mesurement. The measurementqciory, thus resulting into a cooperative feedback

vector y is in this case: between the Kalman filter and the P2DHMM. The
y = [X(8), y(t), w, ]’ (4) completel inte_ra_ction procc_adur_e bgtween P?DHMI\_/I and
Kalman filter is illustrated in Fig. 5: on left site up site, a
From the input information of the P2ZDHMMs,moving hand has been segmented, and the coordinates
contained in the vectoy, the system estimates the staigf the center of gravity serve as measurement signal for
vector x and predicts in that way the information abotfe Kalman filter which predicts a new state vector from
bounding box, contained in the last two dimensiom.of this measurement input and the motion equation. On the
The third and fourth dimension of x deliver the Ve|OCitMght upper side, this leads to a new bounding box, which
of the hand and mainly serve as variables supporting & be derived from the updated state vector (inner black
mathematical model of the hand’s motion and the Stabilif%’ctangb). This area is enlarged and thus yields an image
of the system. fraction shown on the right lower side (black-white bold
The , y) coordinates of the state vectorcoincide rectangle), which serves as search area for the P2DHMM.
with those of the observation vectyr defined with From there, the loop is closed by yielding a new
respect to the image coordinate system. Also, we ass@@gmentation which generates the new measurement
that both the system noiseand the observation noise signal in the upper left part of Fig. 5.
are constant Gaussian noise with zero mean. Thus *-~

covariance matrix fow, andv, becomes’1, , ando’l

w' 4x4 V' 4x4
respect, wherg,_, represent a 4x4 identity matrix. Finally.
we formulate a Kalman filter as

Kalman Filter

X=(X(0), Y0, Vx(D), vy(£)"
y=(vx(D), vy(0), w(D), h())"
X = (D{;CtA +K, (¥ _mtAl)}

K,=PH"(HRHT +1,,)™" (5)
X = q){)_(t—l + Kt—l(yt—l_ H)_(t—l)} (6)
2
F_i _ CD(|51_1 _ Kt—lHF?—l)CDT +%Q—l ) Figure 5: fS‘i,(I:theerme of inter action between P2DHM M and Kalman

Where X equal %, _,, the estimated value of from 3 EACE DETECTION

Yoorr Yo P €quals Ey ,/c},%, represents the oyr detector is based upon a tree structure of boosted
covariance matrix of estimate errorxf ,, K is Kalman cascaded of weak classifiers. The head of the tree forms
gain, andQ equalsGG'. Then the predicted location ofthe general face detector and its sole purpose is to find
the hand in the + 1th image frame is given ag(tt+1), all possible face hypotheses in the image. Successful
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hypotheses are the passed onto the branches of the4redeRECOGNITION HAND GESTURE AND FACE
where specific cascades designed only to detect faces of VIA T-COMBP2DHMM S MODEL

a specifig pose are used to fjetermine the (_e_xact pos¢\af have developed the pseudo 2D Hidden Markov
the face in the image. To build shape specific detect@ysjo|s (P2DHMMSs) model to deal with real-time gesture
the data set must be broken up or clustered into Similgg o ition system [17]. The advantages of the improved
shapes that are specific, yet contain sufficient variatigh n i\ s structure is simplification, and efficient 2-D
n posef to allow the”.classmelr to gen?rallz_e_. To do thigoqel that retains all of the useful HMMs features and
we perform an intelligent selection of training IMag&gqligent selection of training images of training stage,
on the training data [3]. In order to detect faces in 0y cing the number of local minimum in P2DHMMs
image, we first perform an exhaustive detection acrqggining one that the input space is pre-classified. A big
all possible position and scales. We use a heuristic coarggiem is divided in several small ones. This philosophy
to-fine strategy to speed up this process. While this Mgy, s 5 problem with a large number of classes to be
sound very computationally taxing, we note that &, e easily, reducing the training time and/or permitting
majority of the positions and scales would not contajp very good solution to be found, increasing the
faces. The structure of the detector cascades means W@%gnition rate. Taking these advantages and
parameterizations will be rejected in the first few Iaye[?ansporting it to a time varying space, we propose the T-

of the top strong classifier, which required only a very, \wP2DHMMSs for hand gesture and and face
small a mount of computation. We exploit this to build ?ecognition shown by the Fig. 7

rough cumulative image that highlights areas that have ) ) , )
many detections. An input vector X in a space S is fed in the Stem and

o ] one or more output are chosen according to some
The cumulative image is then threshold t0 remoy&yiiarity criterion. The branches associated with the

weak error detections in the background. Finally, &em output receive the same input vector X and do a
connected components analysis is performed on th@neq nrocessing. The final output is selected based on
threshold image to detect the size and positions of 18 srores obtained by the input vector in the Stem (SM)
faces. We also note that the false detections in they pranch (SB). The main advanced of
background were rejected by this method. In order & mppopHMMS structure is the simplification of the
detect face pose, the sub-images in the areas where,lig,i o stage. It reduces the number of location
face was detected are given to the set of hand PQSfinums in the branch P2DHMMs training. Since the
detectors on the second layer. We choose the PQs& space is previously classified, a big problem is
corresponding to the detector that has the highest outpilfijeq in several small ones. This principle allows a

The results of the pose detection can be seen in gy 1om with a large number of classes to be solved easily,

experiments section. reducing the training time and/or permitting a very good

solution to be found, increasing the recognition rate.
I Taking these advantages and transporting it to a time
nput face '

varying space, we propose the T-CombP2DHMMSs shown
by the Figure 7. T-CombP2DHMMs is composed of a
Stem and branch P2DHMMs to allow the model to carry
out efficiently temporal analysis. The major structure is
.,. ) the inclusion of a Time Normalization preprocessing step
[ ' . i ! ! ' ' ' ' =—¢No and the use of P2DHMMs in the branch layers. However,
5 the main advance is the use of different input spaces in
Stem and Branch P2DHMMs, which allows the
P2DHMMs to specialize in analyzing a determined
subspace.

E[’ u [ ' - ' ] eoe | & . ! 4.1. Sem Network

Image

General Face Detector Layer

Yes

Specifig

The Stem network receives an input vector and selects a

b l _____ R !— subspace from the input space according to a similarity
g;‘itgl‘sape ' criterion. In a new T-CombP2DHMMs structure the input
Detected Detected Detected space of the Stem network (Sis defined as a modified
Face 1 Faie 7 Face N subspace of original input space S, and the P2DHMM
(Yes/No) (Yes/No) (Yes/No) input space Sis the complementary subspace. This

strategy permits a more efficient use of the spatial aizaly
Figure 6: The framework of a tree of face detectors capability of the layers. Given X a time sequence of N
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1 m 1 N; I
JS:Eizﬂlp(w);lp(wj)wzzfi(éik,én) (13)

i'Vj k=11=1

:'s‘t'éﬁ{ Network ~~ —~—~— T 1 criterion that is evaluated for all of possible combinations

i Input Vector XU, Space:S 1 of the input features. An Interclass Distance Measure
; (Video Sequence) : criterion based on the distance between DCT vectors as
i i follows:

1 . 1

i (Buffer Je=sy  Time X,(t), Space: S, ; .

H Normalization 1 !

i i

i i

!

0000000... X space:s.:

wherem is the number classeB(w) is the probability

'_'_%‘_ﬁ'_'1%'_‘:%’7(_1—(555?5&537 of the ith classN, is the number of pattern vectors

belonging to the clasw and S(E,k,,éjl)is the DCT

P2DHMMs  distance based measure from tHecandidate pattern of
Branch the class i to thé'lcandidate pattern of the class j defined

& o g >y
I Max I 8(Ek va )= ‘Ek _EI‘ = Zéi _E.’Ij )2 (14)
v Classified =

Figure 7: The T-ComP2DHM M s structure whered is the dimension of candidate space. In the T-
] ) . ] CombP2DHMMSs context, it is needed to optimize the
dimensional vectorg(t) belonging to the spacg with joint class separability of the Stem and P2DHMMs. From
time lengthT(X) samp_lesxo(t) is defined as sub-vectoripe equation (13), the values of the class probai(ity)
of X(1), x(1) € S;; x,(t) is a sub-vector af, are possible to estimate only for the P2DHMMs output.
x() € S andS c Sand§ c §S=S§ xS (10) The classification criterion is based on the probability of
gror obtained for the P2DHMMSs. It can be modeled

As we are dealing with temporal series, we need % k
create a space Sable to describe completely the tim@ccording:
variations existing in the chosen subspaceS® we m
propose the application of a Time Normalization Jr =Jss +ZJSBp (15)
procedure on the time independent space Bhis p=t

procedure is needed because a fixed dimension vectaitigreJ _ is the interclass distance measure for the Stem
due in the input of the LVQ that composes the Stem

network. The dimension of the Stem input layer L iyjeasurements- mput vector:
related to the original input time sequence X by X(t) A Stem
L=Dim(@S) x T; T= N|N e NandN > E{T(X)} (11) Feat ﬁﬂd
‘caturc
where Dim@) is the dimension of the selected subspa Selection Al
S and is the first interger greater than the expected val I:> Branch I:;"
. . ) Result
of the time lengtiT(X). To obtain the vectoX' from the P2DHMM
original time sequenc¥, we suggest the modeling ol Input vector:
the time sampling series by Dimf$ontinuous functions X;’

using cubic spline interpolation procedure. Given a Migure 8: Applying feature selection to T-CombP2DHMMs
dimensional time series = {X (t), X (t,), ..., x'o(tT(X'o)

and defining a set of Dim(} continuous associatednetwork andJs, for the f"P2DHMMs, defined as
functionf (t) = CubicSplineX' ) fori =1, 2,..., Dim(§.
Resampling each continuous functiff) in T" sample
points byx! (n)=f,(n x T,),wheren=1,2,..T and
T, is sample period in an appropriate time basis. T
system input vector

1o n 1 3.,
Jis =22 PO Py )= > 8(%,.%,) (16)
2 i=1 j=1 NiNj k=11=1
WﬁereP(wi) is the priori probability obtained for thé i
pseudo class designed by the Stem network training
X,=[%E (1), X3(1),....8™S) (1), % 2).,7% (2).... algorithm,%, are the input vectors in the $pace, and
$Om&)(2) % (1), 3 (7),.. 3™ ()] (12) mis the total number of vectors.

The selection of the subspaces So and Sl is very _1g Plw & Pw 1 S SR X
important in the T-CombP2DHMMSs structure. The ™ 221: ( 'pl\v")jzzl ( IpI\Vp)NiN,- ;Zl %% (17)
feature selection can be based on a class separability
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whereP(w, |y ,) is the conditional probability obtained [nput Space

for the I"class of the PP2DHMMSs given the Stenx, is S(Xp5X,y)

the input vectors allocated for the class theS space
by the Stem network anluhp is the number of classes

allocated to the Stem network. The set of features of

and %, that maximize the class separability criterion givel
by equation (15) has chose to define the sp&geS,
and S . Doing this can required a huge amount o
computation time to obtain an optimum solution, sinc
the equation (15) must be evaluated for e\@,l}oy
combination of the input space dimensidhs

4.2. Space Splitting
Besides the structural modifications, the T

CombP2DHMMSs model adds value by using the Spac Domain of A& X3

Splitting technique. In the T-CombP2DHMMSs, the inpu Stem (P2DHMMS)

space of the Stelfis the same space of the input laye g

in the branch P2DHMMs, meaning that the same inp =% v

vectory is analyzed twice for different P2DHMMs. "0~y Domain of the
Obviously, it is performed in different levels of accuracy Ny \'. Branch p2oHMMSE
as we can see in Figure 9 (a), but almost the sal 3 :

information is used by the Stem and Branch P2DHMM: W/
becoming in a redundant processing. In the new -

CombP2DHMMSs, the Stem and Branch P2DHMMs l{ E >

work in different input space§ andS,. These subspaces i S X,

are derived from the original input spa8eFigure 9(b)  / ;---!-----5:0' : =) )
presents a simple example of Space Splitting techniqt I (P”DHMMQ‘)‘

In this example, the original input spa®is a 3-D space ’/“ - =

composed byl; x2; x3 axis. We chose the subspace

composed by the axie3 to define the spacg and the (b)

subspacel; x2 to define the spa;. Therefore, an input Figure 9: (a) Theinput space analyzed by P2DHMMss, (b) Space
vectorX in the spac&is first projected into the subspace Splitting-the input space analyzed by T-Comb

ol . : P2DHMM
S, in this example axig3, generating the vectd( to be S

used by the Stem. In the next step, the input vetter
projected into subspacs, represented by the plad;

X2 in this example, generating the veckrwhich is
analyzed by the Branch P2DHMMs.

The use of Space Splitting permits each P2DHMMs
networks to specialize in analyzing a determined set of °
input features efficiently. So, uncorrelated input feature These two features are characterized by different
can be analyzed separately by the P2DHMMSs, reducicgmponents in the proposed input sp8cé&o select the
the training time and improving the quality of the solut features which define thg subspace, the interclass
The method used to define the subsp&@ndS, given separability measurement optimization procedure
a training set in the input spaBds the most important describe in the section 4.1 can be applied. In this work,
point in Space Splitting. We will present here twwe selected from the input vector, the two coordinates
approaches to do the selection of subspaces. corresponding to thé(t) hand position on the screen to

. ) compose the Ssubspace, generating two-spaceasd
4.3. Temporal Pattern Recognition with T-CombP2 ;¢ complementary S space, to be used by
DHMMs T-CombP2DHMMs model. It is efficient due to the
In order to select which components of input sgaeél  natural uncorrelation existing in the hand posture,
composeS, andS,, the most natural way is using thelescrible by, and the hand trajectory, describedsyy
engineer’s analysis and experience. To obtain invariance of the motion to the camera relative

The use of this input space can lead to some
theoretical analysis. A hand gesture can be decomposed
in two uncorrelated components:

* The translation movement of the hand;
The time variation of the hand posture.
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possition, we use the normalized velocity measuremdnt.2. Evaluation Algorithm

P(t) instead of absolute possition, defined Let us consider &'thorizontal frame, observation future

- - vector O, =6,,...,0,,1 <t < T. This is a one-dimension

(t) - PO)ZPEL) oy P(t,) =0 - <6 o
|P(ti)—P(ti,1)| (18) feature sequences like that@®fin Eq. (13). This is

modeled by a HMM.,, with likelihood P((51|7»k) . Each

WhereP(t,) is the 2-D vector of the obsolute position
' o ] ] HMM A, _may be regarded as a super-state whose
of the hand palm centroid inthe screen at iméJsing  pservation is a horizontal frame of states.

these definitions we are assigning the stem layer to

analyze a normalized trajectory and the P2DHMMs = 3 = B = _
analyze fine hand postures variation for pre—selectt('egkj(o‘|7”‘)_;;Plr(oI R, )_ql,;% oy @)Q%—Mbo« ©:)
trajectory. (20)

Each P2DHMMs is trained by hand gesture or face now let us consider a hand region image, which we

in the database obtained from the training set of eactyaki o a5 3 sequence of such horizontal frames as
the gesture using the Baum-Welch algorithm due to pre-

analysis achieved by Stem network, which reduces thes 0;,0,....0; - Each frame will be modeled by a super-
complexity of the problem. Then, the proposed Ftate or a HMM. LeiA be a sequential concatenation of
CombP2DHMMs structure has expected to be geneFdMMs. Then the evaluation oA given feature

and easily trainable. sequencg of the sample imagX is
For recognitionthe double-Viterbi algorithm is used
to determine the probability of each hand model and face PG =S PG L e
model. The image is recognized as the hand gesture or ( ‘ ) ZR: i 1)[!3”‘ @) (21)

face, whose model has the highest production probabil{;%
Due to the structure of the P2DHMMSs, the most likely
state sequence is calculated in two stages. The first st@@ from the first state. Thé function is the super-state
is to calculate the probability that rows of the individuaikelihood. Note that both of the Eqgs. (20) and (21) can
images have been generated by one-dimensional HMMs, effectively approximated by the Viterbi score. One
that are assigned to the super-stages of the P2ZDHMMsmediate goal of the Viterbi search is the calculation of

These probabilities are used as observation probabilitigg matching likelihood score betwegrand HMM. The

of the super—st_ates O.f the .PZDHMMS' Finally, on thelevgkl)jective function for an HMM is defined by the
second Viterbi algorithm is executed.

maximum likelihood as

ere it is assumed that super-state process starts only

4.4, Pseudo 2D HMM Construction B ﬁ
A(O,?\. )ZmaX 15bs(ﬁ ) 22
4.4.1. Description R § e (22)

Pseudo 2DHMMs in this paper are realized as a vertivdtereQ = q, d,..., d, is a sequence of states Xf

connection of horizontal _HMMﬁk,). Howeyer it is not anda, , =, A@,,%,) is the similarity score between
the only one. In order to implement a continuous forward ™ t

search method and sequential composition of gestdi9 Seéquences of different length. The basic idea behind
models, the former type has been used in this reseafBf. €fficiency of DP computation lies in formulating the
There are three kinds of parameters in the P2DHMNMEPression into a recursive form

However, ;ince the hand image i_s.two—dimensionaI., V(j) = maxa’_, ()ab* ©, ), j = 1..M, s= 1.Sk= 1.K
further divided the Markov transition parameters into '

super-state transition and state transition probabilities; (23)
each is denoted as where §%(j) denotes the probability of observing the
ay =P(r, = I|Irt =k), 1<k, <N and partial sequenag,,...,0, in model k along the best state

sequence reaching the stgtat time/steps. Note
thatA(Q,, %, ) = 85(N,) whereN, is the final state of the
wherer, denotes a super-state which corresponds tgtate sequence. The above recursion constitutes the DP
HMMs A, andg, denotes a state observing at timiehe in the lower level structure of the P2DHMM. The

mode has N super-states and the HMY|ss defined as remaining DP in the upper level of the network is
standard HMM consisting d¥l states. similarly defined by

& = P(Qp.1 = j|Qt =i), 1<i,j<M (19)
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T appearance of the object into “parts” whereby each visual

D(O,A) = mkaxHéMA(Q M) (24) attribute describes a spatially localized region on the

t=1 object. We would like these parts to be suited to the size

that can similarly be reformulated into a recursive forraf the features on each object. However, since important

Here denotes the probability of transition from super-statges for hands at may size, we need multiple attributes
r, tor,. According to the formulation described thus fapver a range of scales. We will define such attributes by
a P2DHMM add only one parameter set, i.e., the supgraking a joint decomposition in both space and
state transitions, to the conventional HMM parametéequency. We would like these parts to be suited to the
sets. Therefore it is simple extension to conventiorgize of the features on each object. Finally, by

HMM. decomposing the object spatially, we do not want to
discard all relationships between the various parts. We

Super-states believe that the spatial relationship of the parts is an

important cue for recognition. With this representation,

$ states each feature vectors now becomes a joint distribution of

attribute and attribute position.

Blocks extraction

oxy)= | --- .-.
L]

Hand ROI partition

Figure 10: The P2DHM M for hand gesture

forehead

eyes Sampling windows

noise

mouth
chine

Figure 11: The P2DHM M s for face

For each gesture there is a P2-DHMM, Fig. 10 ai |
Fig. 11 show a P2DHMMs model consists of 5 supe
states and their states in each super-state that mode.
sequence of rows in the image. The topology of the sup&gure 12: The features extraction
state model is a linear model, where only self transitions
and transitions to the following super-states are possil#ed. Repr esentation of Visual Attributes by Subsets of
Inside the super-states, these are linear one dimensionDCT Coefficients

hidden Markov model to model each row. The stafgsing DCT coefficient as features instead of gray values
sequence in the rows is independent of the state sequegegse pixels in the shift window where most of the image
of neighboring rows. energy is found. They tend to be insensitive to image
noise as well as image rotations or shifts, and changes in
illumination. To create visual attributes that are localized
in space, frequency, and orientation, we need to be able
Our approach is to jointly model visual information thab easily select information that is localized along these
is localized in space, frequency, and orientation. To dinensions. In particular, we would like to transform the
so, we decompose visual appearance a long thésage into a representation that is jointly localized in
dimensions. Below we explain this decomposition amsgpace, frequency, and orientation. To do so, we perform
in the next section we specify our visual attributes basadCT of the image. The DCT transform is not the only
on this decomposition. First, we decompose thp®ssible decomposition in space, frequency, and

4.5.Decomposition of Appearance in Space,
Frequency, and Orientation
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orientation. In our work, instead of use an overlap of 75§
between adjacent sampling windows, we have to consi
the neighboring sampling of a sampling window.

5. EXPERIMENTAL RESULTS
5.1.Hand Tracking

Figure 13: The results of the hand tracking

5.2. Resultsof T-ComP2DHM M Based Hand Gesture
Recognition

The training set consists of 36 hand gestures frc
vocabulary of 36 gestures including the ASL lette
spelling alphabet and digits. Each one of the 36 gestu
was performed 60 times by 20 persons to create §
database. The images of the same gesture were take =
different times. Thus, each set has composed of 1(

images. The combined using of time “spatialization” ar  # - & 7
P2DHMM in the proposed T-CombP2DHMMs mode-

overcoming the classical approaches achieving a 99. j
of correct recognition rate. '

The example is shown in the video clip thaE[
accompanies the paper and is available from the author’s

igure 15: Some results of recognition

. Table 1
website? Recognition rates and complexities of HMM's
5.3.Results of T-CombP2DHM M s Based Hand Complexity Recognition Rate
Gesture and Face Recognition )

) Classical 1D-HMM N, 85%
For_ face,_we gathered a total_of 5015 face images frg&imized 1D-HMM  N.T? 92%
various video sequences of different people signing and .
from Feret databaseWe selected 2405 examples foflassical 2D-HMM — (3.° Nf)*T,T, 96%
training and similarly 2012 face images from differemgsppmm O (NOYPTIT,+ N2T, 98.5%

sequences were retrained for testing. Some of the results o one

of hand detector ran over the test data sequences rE&RMPP2HMMs (3" (") T)To+ NT)) /M 99.5%

time from CCD ce_lmera (_:an be_ seen in Fig. 15_' T -= number of super states,'N= number of states in the k'th super
example is shown in the video clip that accompanies $ige, T= number of vertical observations, ¥ number of horizontal
paper and is available from the author’s welfsite. observations. M = number of P2DHMM in P2DHMM branch)
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6.

CONCLUSIONS

(6]

This work introduced a new structure T-CombP2DHMMs

dedicated to the time series recognition and presented a

new feature extraction method using joint statistics ofig
subset of DCT coefficients to hand gestures and faces.
The T-ComP2DHMM structure uses a Time Normalized
Learning Vector Quantization in the Stem network argl
P2DHMM. We build the T-ComP2DHMM model based
upon the P2DHMM, which allows it to do temporal

analysis and to be used in large set of human movemels’

recognition system. The results obtained for a set of 36
different gestures show a 99.5 % of correct recognition
rate. This results demonstrate that the joint use of tifél

“spatialization” techniques, natural time processin

techniques and P2DHMM given good results.

(1]

(2]

(3]

(4]
(5]

NOTES

currently athttp://www.fsai.kyutech.ac.jp/~ndbinh/Research/
HandTracking.wmv

currently athttp://www.fsai.kyutech.ac.jp/~ndbinh/Research/
HandGestureRecognition.wmv

http: //mwwitl.nist.gov/iad/humanid/feret/feret_master.html
currently athttp://www.fsai.kyutech.ac.jp/~ndbinh/Research/
HandGestureAndFaceRecognition.wnv
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