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Shape-preserving Mesh Simplification based on Curvature
Measures from the Polyhedral Gauss Map

G. Echeverria & L. Alboul
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Thispaper presents an improvement on methods for simplification of triangular meshes, based on discrete curvature measures.
Thebasictool isthe Polyhedral Gauss Map (PGM), which is computed directly froma mesh and provides a detailed description
of curvature associated with each individual vertex. Taking into consideration this description, we determine the Total
Absolute Curvature, abbreviated as TAC, for each vertex. The TAC measure is more precise than the discrete analogue of
the Gaussian curvature obtained using the Angle Deficit (AD) method, as it reflects the complexities in the surface shape
around a vertex. We apply the TAC to attach a relevance weight to each vertex in a mesh and select the vertices to be
decimated. The weight of a vertex isalso based on measurements of its neighbourhood. To this end we introduce the concept
of weighted total absolute curvature (WTAC). The TAC is also used in an additional step to the decimation algorithm to
optimisethe curvature of the simplified mesh. Taking into consideration the theoretical background and numerical experiments,
we can also conclude that the TAC decimation algorithm is shape-preserving.
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1. INTRODUCTION

Themost common representation for an object in computer
aided applications, specialy in 3D graphics, is still the
polygonal mesh, where a collection of points in space are
joined together by edges and faces to form a shape. This
provides great flexibility in representing avariety of shapes,
from simple to very complex ones, and in varying degrees
of detail. Modern methods for generating 3D objectsinvolve
high definition scanning of data, providing very detailed
meshes of the target objects. Often this produces an
enormous amount of data, which is difficult to handle by
current computer systems for applications in real time.
Meanwhile, the data acquired with these methods may be
redundant or excessive to portray the basic shape of the
object.

For these reasons, it is desirable to simplify the
polygonal geometry in amodel. Mesh simplification isthe
process of decreasing the number of components from a
polygonal mesh, reducing its overall combinatorial and
geometric complexity, while at the sametime still providing
a good visual representation of the original object. The
necessity to simplify a model may come from limited
resources, either storage, transmission bandwidth, processing
power or display inreal time. All of these congraints benefit
from having asmaller mesh that still appropriatdy represents
the original object.

Several different techniques aready exist to smplify a
polygonal mesh. The approachestaken vary greatly from one
method to another, however all of them must identify which
parts of the object areimportant to the shape, and which can
be safely removed. The curvature of an aobject is a good
measure of thebehaviour of the shape, and thus an important

characteristic to consider when modifying a mesh model.
Curvature can be calculated for the whole object, specific
regions, or individual vertices or edges. The curvature of a
vertex is ameasure of how far its neighbourhood is‘ pulled
away’ from aplane Itisagood estimate of how relevant is
the vertex for the general shape of the object.

The Angle Deficit (AD), known aso as the discrete
Gaussian curvature, is regularly used as the measure of the
curvature associated with a vertex. However, it doesnot fully
reflect thelocal shape structure around thevertex and therefore
isnot fully suited for decimation based on curvature.

In this paper we present a new decimation method based
on the estimation of the Total Absolute Curvature
(abbreviated as TAC) as a better measure to guide mesh
simplification methods. The TAC is obtained for each
individual vertex using the Polyhedral GaussMap (PGM).
The Polyhedral Gauss Map for a vertex consists of a set of
spherical polygons, which areas are each equipped with a
‘+’ or ‘-’ sign and correspond to the positive and negative
parts of the curvature concentrated at this vertex. Therefore
it permitsthefull characterisation of the curvatureat avertex
and identification of hidden features not recognised by other
methods. Thus the TAC, computed by summating the
absolute values of curvatures parts, is ideal for correctly
determining theimportance of a vertex for the shape of the
mesh. The paper (Alboul and Echeverria 2005) provides a
detailed theoretical background of both the AD and TAC
curvature measures and provides more references. The
method to compute and visualise the Total Absolute
Curvaturefor complex polyhedral surfacesisalso presented
in moredetail there.

We present a series of weight valuesfor the vertices of
a polygonal mesh to specify how relevant each vertex isto
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theoverall shape of the object. All of theseweights are based
on theTAC and inmost casesa so incdudethe areaestimation
around thevertex. These measures weigh the compl exity of
thevertex with thevisual impact it has on the overall surface
of the object.We present the reasoning behind the selection
of four different weights, and compare the results obtained
from using them to guide the simplification process.

We also use the TAC to optimise the corresponding
region in thesimplified mesh after avertex removal by using
edge flip technique, first presented in (Lawson 1972) and
later applied in (Alboul 2003). This procedure ensures a
further simplification of the mesh with respect to curvature,
sincethe higher TAC yields more complex mesh geometry.
Asthe TAC of amesh region iscomputed by summating the
TAC of the vertices be onging to this region, our method
can be considered also as shape-preserving. It emphasises
domains of the most prominent curvature of theregion, that
iseither positive or negative, whiledecreasing or completely
eliminating curvature domains of the opposite sign.

We al so compare the results obtained from using either
the common AD method or the new TAC. We show how
thisnew curvature cal culation improves the obtained results
when using the AD to estimate the curvature.We produce
simplified meshes using both measures, and the results are
compared numerically against the original modelstodraw a
conclusion. Figure 1 shows an example of decimation using
theTAC.
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Figure 1. Triceratops model: shaded (top), wireframe (bottom).
Left: original (2,832 vertices); Right: 88.3% decimated
(332 vertices)

The measurement of vertex weights presented here can
be applied to various mesh simplification algorithms based
on decimation or edge collapse to improve their selection
of the vertices to smplify. To demonstrate the advantages
of using the TAC in a smplification algorithm we have
implemented a simplevertex decimation program totest and
compare theresults obtained on different models.

The main contribution is the application of the TAC
measure to a mesh simplification algorithm, proving its
advantages over decimation algorithms based on existing

curvature measurement methods. Other novel contribution
isthe procedure of updating the mesh after avertex removal,
which isbased on the minimisation of the TAC. Theresearch
in this paper has been partially presented in (Echeverriaand
Alboul 2006).

The structure of the document is as follows: Section 2
presents the existing research in the field of mesh
simplification. Section 3 presents the method used to
compute the TAC of a vertex based on its PGM. Section 4
shows the selection of the vertex weight measures and
comparesthem. Thedetails of our decimation program are
presented in Section 5, followed by experimental resultsin
Section 6. Section 7 presents the conclusions and future
research directionsare pointed at in Section 8.

2. PREVIOUSRESEARCH ON MESH
SIMPLIFICATION

Extensive research hasaready been doneinthefield. There
are several different approachesto simplifying apolygonal
mesh. The papers (Cignoni et al. 1998 — Comparison) and
(Luebke 2001) review the most important of these methods,
and compare their advantages and shortcomings. Cignoni
et al. do a comparison of the error differences, from the
original modelsto the simplified ones, and thetimetaken to
obtain theresults, using several different algorithms. To do
thisthey created the Metro tool (Cignoni et al. 1998 - Metro),
which has since been used by others to compare any new
algorithm with the existing ones. As explained in these
papers, simplification techniquesvary in: optimisation goal;
local or global optimisation; preservation of the original
object’s topology; maintaining the original vertices or re-
meshing the model. Some simplification methods also
perform view dependant decimation. That is, amode ismore
decimated in areas that are far away or hidden from the
current perspective. This permits alarger reduction of the
mesh, but requires that the mesh bere-simplied if the view
direction changes. The algorithms tested in the
aforementioned works include Mesh Decimation,
Simplification Envelopes, Multiresolution Decimation, Mesh
Optimization, Progressive Meshesand Quadric Error Metric
Simplication. (Werefer thereader to the cited worksfor the
precise descriptions of these methods). In the tests, Mesh
Decimation produces the largest error with respect to the
original model, although it is by far the fastest algorithm.
Other techniques perform better in most respects, in
particular Quadric Error Matrix (QEM) (Garland and
Heckbert 1997), which is generally considered as a very
effective smplification method and used as a parameter of
comparison for newer techniques.

The first method for decimation was proposed by
(Schroeder et al. 1992), and isbased on progressive removal
of specific vertices from amesh. All verticesare classified
according to their local topology, and are handled
accordingly. Verticesarelabelled as‘simple’, ‘ complex’ or
‘boundary’. Complex ones are generally non-manifold
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vertices, and are left untouched. Simple and boundary
vertices are treated differently. Simple vertices are further
classified according to the number of feature edges connected
tothevertex. Vertices are sel ected for decimation according
to a distance metric. For simple vertices the parameter is
the distance from an average plane; for border vertices, itis
the distance to the line connecting the neighbours along the
border. The vertex with the shortest distanceis selected for
removal, along with thetriangles surrounding it. The hole
produced in themesh isfilled using arecursive splitting of
the remaining region intotriangles. This method generates
asubset of the original vertices, not adding any new ones. It
also preserves the topology of the object.

A schemetore-tile a polygonal mesh with less vertices
was proposed by (Turk 1992). First, anew set of verticesis
distributed over the original model, the new vertices will
repel one another to adequately cover the whole surface.
Next the surface isre-triangul ated using both new and old
verticesto preserve the shape, and later theold verticesare
removed. An extra step is also included which uses an
estimation of the curvatureto aid in the distribution of the
new vertices over the surface.

A method to preserve more accurately the appearance
of asimplified modd is developed in (Cohen et al. 1998),
by using texture and normal maps, in addition to the
polygonal mesh. They initially compute the shading colours
and the normalsof thefull model, and convert thisdatainto
mapsthat contain this important visual information. Then
the mesh can be simplified to several levels of detail.
Applying the mapswith the original information will make
the model look very similar to the full detail version. The
main improvement for this method isthe texture deviation
metric which is used to assign texture coordinates to the
remaining vertices in their corresponding position with
respect to previousvertices. This metric can also be used to
guidethe simplification algorithm.

(Lindstrom and Turk 1998) implemented an algorithm
using edge collapses where the position of new vertices is
obtained from the optimisation of afew simple geometrical
properties of thelocal neighbourhood of the edge. They use
preservation and optimisation of the volume and boundary
related to the edge. The same optimisations areused to give
wel ghts to the edges for the sel ection of the collapses.

A probabiligtic approach isemployed by (Wu and Kobbelt
2002) to reduce resource requirements of a simplification
algorithm. They useaMultiple-ChoiceAlgorithm to randomly
select a few candidate edges and select from those the best
option. Thisavoids having to keep an updated queue of the
best possible optionsat all times. Doing so they significantly
speed up the simplification process and reduce the memory
requirements, while obtaining agood degree of Smplification,
comparable to the QEM method.

In (Kim et al. 2002) a measure based on curvature is
used to assign acost to the edges, and to select the onesto
be collapsed. The authors make use of both the Gaussian

and mean curvatures on the mesh. After deciding on an edge
to collapse, a new vertex is generated in place of the two
edge vertices. Thelocation of this new vertex isfound using
abutterfly subdivision mask. Using curvature to decide on
the geometry to eliminate, they provethat important features
of the object are preserved after heavy simplification.
(Hussain et al. 2004) propose a simplification method
driven by half-edge collapses that keeps at |east one of the
vertices of the edge removed. They use a metric based on
the angl e difference from the original facestothe onesthat
will be created after the collapse; which is effectively an
approximation of the curvature of the region, although not
very accurate, but neverthel essuseful in preserving important
geometry. This implementation competes in performance
with QEM but claimsto require less memory to store data.

3. DESCRIPTION OF THE POLYHEDRAL GAUSS
MAP

In many applicationsonly the Gaussan curvature of a vertex
ismeasured, using the Angle Deficit method. Thistechnique
isonly capable of identifying two kinds of vertices: convex
or saddle. Vertices which do not fit in these categories will
present problemsto thealgorithm, and their true curvature
cannot be found. Thisisthe case, for example, when a non-
saddlevertex has concavities (folds) in its neighbourhood.

The new method presented to compute the curvature of
apolyhedral surfaceisbased on the area of the Gauss Map
constructed for a vertex. It is an analogous technique to
computetheintegral curvature on smooth surfaces (Banchoff
1970). The curvature of a whole mesh is computed as the
sum of the curvatures of the individual verticesthat belongs
to the mesh.

In what followswe assumethat amesh M representsan
orientable surface, and therefore we can determine acoherent
orientation on the whole mesh (Alboul 2003). Then the
direction of the outwards pointing normalsis chosen to be
positive. The edge will be called convex if the two lines
determined by the normals to its adjacent faces (triangl es)
intersect in the negative direction; otherwise it is called
concave.

If Visthe set of all theverticesin themesh M, for every
vertex v € V, we define the star of the vertex as the set of
facesincident on v, ordered in counter clockwisedirection
with respect to the chosen orientation, and denote it as
gtar(v). The Polyhedral Gauss Map of v is computed using
the normal vectors of the facesin star(v). Thesevectorsare
trandated to the same origin, which will becomethe centre
of a sphere. The endpoints of the vectors are joined by
geodesic arcsin their corresponding order, creating what is
called the spherical indicatrix, shown in Figure 2. The
ordering of the vectors from their corresponding faces is
used to determinethe sign of the curvature.

If the star of the vertex is shaped asa convex cone, i.e.
all itsedgeseither convex or concave, or asimplesaddleor
its generalised version, the arcsin the spherical indicatrix
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Figure 2: Using the normal vectors of faces in star (v) to create
the Gauss M ap

will not intersect and will draw a single spherical polygon
on the surface of the sphere. Under a simple saddle we
understand a saddle vertex whose star consists of two
concave and two convex edges in alternated order. Recall
that a saddle vertex does not posses a supporting plane. A
generalised simple saddle is a saddle where a concave or
convex edge are substituted by several edges of the same
type. A convex and ageneralised s mple saddle can be seen
inFigure3.

Showing vertex 1
Curvature: 0.445364
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Figure 3: Vertices with intersections in their spherical
indicatrix

In all other cases, therewill be self-intersectionsin the
indicatrix. Itisnecessary toidentify wheretheseintersections
occur and separate the indicatrix into individual spherical

polygons. It is possible for two or more spherical polygons
to overlap. Figure 4 shows a vertex whose star is a non-
convex cone. In this case, the concavity causesthe normals
of thefacesto switch directionstemporarily and go clockwise
with respect to the vertex, oppositeto the direction of their
corresponding faces. When this occurs, two of the arcs
intersect, signifying a change in the sign of the curvature.
The intersection point is where two separate spherical
polygons of opposite signs meet. The first step in the
Polyhedral Gauss Map computation consists of identifying
all such spherical polygons.

The next step isto determine the orientation, positive
or negative, of the spherical polygons. Each one of them
splits the surface of the sphere into two areas, only one of
which correspondsto the vertex curvature. Thecorrect area
chosen is based on the ordering of the faces and the
corresponding normals. Pasitive polygons result from the
ordering of the normal vectors which complies to the
ordering of their corresponding faces. If the ordering of the
normals goesin the opposite direction, then the area of the
polygon represents a negative curvature. TheTotal Absolute
Curvatureisobtained by adding together the absol ute values
of the areas of both positive and negative polygons.

In the visualisation of the Gauss Map shown in Figure
4 the areas of positive curvature are shown in black, while
negative areas are shown in white. On themesh each vertex
isalso given acolour based onits curvature: it will be black
if it hasonly positive curvature, whiteif it has only negative
curvatureand grey if its Gauss Map has spherical polygons
of both positive and negative orientation.

Figure 4: A vertex with non-convex neighbourhood (showing
theindicatrix) and its corresponding Gauss M ap

The algorithm is fast as all computations are nearly
linear with respect to the number of vertices in the mesh.
All relevant information about each vertex is gathered
s multaneously with the computation of the Polyhedral Gauss
Map: mean and Gaussian curvature (using Angle Deficit),
the number of neighboursand incident trianglesin star(v).
All of thisinformation isstored in linked data structures for
its later use.
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The PGM algorithm can also handle non-manifold
vertices, correctly identifying the curvature of vertices with
salf intersecting faces. These vertices will produce larger
than normal areasin the Gauss Map. The Polyhedral Gauss
Map obtained gives a complete characterisation of the vertex.
All irregularities of the mesh can be determined based on
the Gauss Map technique proposed, without resorting to
computationally expensive methods.

The PGM provides a better understanding of
the geometry of an object than the Gaussian curvature.
It can identify more detail ed features of the shape such as
hidden regions of negative curvature that exist in the
concavities of a cone and appear only when analysing both
the positive and negative components of the curvature of
the vertices. The Gauss Mapsfor two different vertices are
shown in Figure 5. While Angle Decit methods would
concludethat thetwo verticesare equal, using the PGM it is
immediately evident that both vertices have different
curvature.

(b) Nonficonvex object

Figure 5: Gauss Map of a vertex in two different objects. Left:
convex vertex (only positive curvature). Right: non-
convex vertex (positive and negative curvature
components)

The PGM of a vertex represents, therefore, a set of
spherical polygonsequipped with apodtiveor negativesgn.
Thealgebraic sum of these polygonsisequal to the discrete
Gaussian curvature, or Angle Decit, of the vertex; and the
sum of the absolute areas represents the measure of Total
Absolute Curvature associated with this vertex. Figure 6
showsa vertex whose PGM hasvarious areas both positive
and negative.

Showing vertex 1
Curvature: 0.890728

Figure 6: A vertex with the Gauss Map consisting of several
spherical polygons of positive and negative signs

4. CURVATUREASDECIMATION MEASURE

Most mesh simplification algorithms based on vertex
decimation assign aweight to each individual vertex, further
referred to as the relevance weight, that signifies its
importance to the shape of the object. If the valueis small
the vertex can be removed without significantly altering the
mesh, whileif theweight islarger the vertex must be kept.

Thevauesused asweightsfor thevertices are different
for each implementation, but generally are based on the
geometrical properties of the surrounding region, such as
distances, areas or measures of curvature. We present a set
of new vertex weight measurements to guide decimation
based on the Total Absolute Curvature. We refer to this
measurement set asthe Weighted Total Absolute Curvature,
denoted as WTAC. The WTAC measures consist of
multiplying the TAC by some factor related to some
geometric shape parameter associated with each vertex. Four
different weight measures are tested and compared in our
decimation program. We first present definitions of shape
parameters used in theWTAC.

For any vertex v, aswell as the star star(v), we define
neighbours(v) as the set of verticesin star(v) other than v
and link(v) asthe call ection of the n edgesjoining the vertices
in neighbours(v), which forms a polygonal closed line in
space. N isan artificial vector, computed asthe average of
the sum of normals and areas of the incident triangles. It
can be considered to be the normal to the vertex.

Then, the projected link of v isthe polygon P obtained
by orthogonally projecting thelist of verticesin neighbour g(v)
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on aplane that passes through v and is perpendicular to the
vector N . The projected link can al so be defined for saddle-
like vertices; in this case the verticeswill be projected from
both half-spaces determined by the plane.

WedefineT asthelist of thentrianglesin star(v), sothat
t € T , then thecone area of vertex v isthe sum of the areas of
al thetrianglesin star(v), andisdenoted as A (v). Thus,

A() =Y areat).

The projected area of vertex v iscomputed as the planar
areaof thepolygon P, and isdenoted as A_(v). Itispossible,
however, that the projection of thelink intothe plane chosen
may produce salf-intersections, specially when dealing with
very complex saddle type vertices. In these cases the area
computed will be unredliable. Thisproblem isrecognised in
(Lee et al. 1998), and an alternative projection into a
conformal map is proposed.

In order to overcomethe aforementioned difficultiesand
shortcomings related to the determination of the flat
projection, we also use the well-known isoperimetric
inequality (Osserman 1978) L2= 4> A (whereL isthelength
of thefigurein the plane, and Aisitsarea) in order to get an
approximated area of the flat projection. We define E, as
the list of the n edges in link(v), so that e € E , then by
denoting with length(e) the sum of the lengths of edges, we
determinethe shape parameter length-area of vertex by using
theformula:

" length(e )?
Mv)zz,ﬂ e:gt @)
TC

Using these definitions of the areas around a vertex,
the four versions of WTAC are as follows:

4.1 TAC

In this casewe use exclusively the Total Absolute Curvature
of thevertex v asits relevance weight, denoted as TAC(v).
All other properties of the vertex are discarded, and only
the curvature has an effect on itsimportance.

4.2 ATAC

Multiplication of the TAC by the cone areaaround vertex v.
ATAC(v) = TAC(v) x A(v)

This measure takes into account the complexity of the
vertex and its visual importance in terms of the area and
curvature simultaneoudly. It gives more priority to vertices
with largeincident triangles making them less susceptible
to elimination, but those with small starsaremorelikely to
be removed.

4.3 PTAC

Knowing the cone and projected areas we can use a
normalised area of v as the parameter to multiply TAC:
AWM.

A (v)

PTAC(v) = TAC(v) x

Animportant featureof thisparameter isthat the values
of factor will alwaysliein the half-open interval (0, 1]. Itis
clear that if the star of avertex representsaflat region, both
the cone and projected areas will be the same, making the
factor 1. If the vertex has a very sharp cone, the projected
areawill be much smaller than the cone area, making the
factor closeto O (zero).

The PTAC weight thus considers the local properties
of the neighbourhood around the vertex, but disregardsthe
sizeof theregion. It ensuresthat verticeswith similar stars
at different scaleswill betreated in the sameway. This may
result in the removal of avertex in areatively flat region
that leaves avery large holein the mesh. It can be difficult
toproperly re-triangulate such ahole and may lead toamore
expensive optimisation of theinitial triangulation.

As mentioned before the computation of the projected
areaisnot always reliable, depending on the plane chosen
for the projection of the vertices.

4.4 LTAC

Using the projected areaand the length-areainequality, we
establish an alternate version of the normalised area.

AN
A (v)

Thisweight measure attemptsto solve the shortcomings
of PTAC, by computing a planar area by means of the
perimeter of the star instead of the projection into a plane.
Thisavoids any self intersectionsin the projection. In this
casethefactor isnot guaranteedtoliein theinterval (0, 1].
However this weight also disregards the scale of the
nei ghbourhood of the vertex.

The Metro tool was also used to compare the different
weights used to guide the decimation. The results from this
comparison, both visualy and numerically indicatethat the
best results are produced by using the ATAC weight. Using
normalised areas, asin PTAC and LTAC, preservesbetter finer
detailsin themesh, but produces much larger errorson areas
of small curvature Thisisduetothefact that areasof rdatively
small curvaturewill eventually bereduced to asngle vertex
with small curvature and several very largeincident triangles.
Thissngle vertex representsthe shape previously represented
by the whole region. If it isremoved, the appearance of the
object is altered signicantly. Thisisexemplifiedin Figure7.

AT
P |
LT A Al

LTAC(v) = TAC(v) x

| |

V- i |
A & ‘
(a) Vertex with many large (b) Removal of the vertex
incident faces changes the shape

Figure 7: Triceratops model simplified with LTAC to 84.4%.
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Thegraphsin Figure 8 show a comparison of the Metro
results. They plot the Hausdorff distances obtained when
comparing theorigina mode with different decimated meshes
using the various vertex weights. The Decimation % parameter
shown refersthroughout this document to the percentage of
the original verticesremoved during the decimation.

5  IMPLEMENTATION OF A VERTEX
DECIMATION ALGORITHM

For the purpose of testing the curvature measure on

simplification, asimplevertex decimation algorithm isused,
similar to theone described in (Schroeder et al. 1992).
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Figure 8: Comparison of the vertex weight parameters: TAC,
ATAC, PTAC and LTAC

The algorithm makes several passes over the whole

dataset, removing each time the vertex with the smallest
weight. After removing the vertex it updatesthe mesh by re-
triangul ating the obtained ‘hole’ in the mesh in such away
that the curvature of the mesh doesnot increase. In order to
achieve this we apply to the initial re-triangulation the
optimisation procedure based on the minimisation of the
TAC by means of the edgeflip asexplained in (Alboul et al.
1999) and (Aichholzer et al. 2002). This preserves topology
aswell asthe shape up until very high levels of decimation.

The process of vertex decimation is asfollows:

The polygonal mesh to be decimated is analysed, and
listsare created for the verticesand faces. Thelistsare
then converted into arrays that make reference to each
other by their indices. This smplies the search for
specific vertices or triangles.

Initially, the TAC is computed for al verticesin the
mesh, obtaining along the way all other required
information for each vertex: the Angle Deficit, list of
trianglesinthe star, list of neighbours, artificial vector
normal to the vertex, projection of the neighbours and
feature edges. All of these are stored in an array of data
structures.

After gathering all the above-mentioned information,
an extra parameter is assigned to each vertex: the
rel evance weight, which is described in general asthe
WTAC. All vertices are sorted by increasing value of
WTAC, to simplify the process of selecting the next
vertex for decimation. To this end, two new arraysare
created. Oneof them hasthevertices ordered by WTAC,
and includes the vertex ID number and the value
assigned to it. The other array is ordered by vertex 1D
numbers, and containstheindex location of each vertex
in the other array. Thissecond array isused to smplify
searching for other vertices. Verticesto deletearetaken
from the top of the array, and after each removal the
array is updated with the new values for the affected
neighbour vertices.

A vertex v is selected for removal if it has the smallest
valuefor the WTAC measure being used. For the special
case of vertices on the boundary of the surface of an
open object, the parameter used for selection also
considersthe Angle Deficit, since the Gauss Map area
in these vertices can be equal to zero.

Theregion around the removed vertex isupdated using
the technique of half-edge collapse. A vertex v_is
chosen from the neighbours of the del eted vertex v. Only
the two triangles that share the edge V_Vc are deleted
from the mesh, and therest of thetrianglesincident on
v are updated to be now incident on v_. Thismethod is
likely to create some degeneracies, mainly in theform
of adjacent trianglesfacing oppositedirectionsbut lying
in the same plane. The program will check that two
identical faces are not facing in opposite directions.



188

International Journal of Computational Vision and Biomechanics

There is no check in the case of non-identical but
overlapping triangles, however this caseis taken care
of by optimising thetriangul ation.

* Once the initial re-triangulation is complete, the
curvature data for all the neighbour vertices v, is
recal culated using thenew triangles, and afterwards the
triangulation is optimised us ng edgeflips. The objective
of this optimisation step is to reduce the curvature of
the proposed triangulation. A list of edges is created
only for thetrianglesthat now cover the previous star(v),
the edges on the borders of the polygon are then
discarded and only the edges lying insde of the polygon
are kept. Each edge structure contains the vertices that
define it, the two neighbour triangles and the two
opposite vertices. All of the edges aretested by flipping
them and recomputing the curvature of the 4 vertices
involved. If the sum of curvatures is smaller than
previously theflip is accepted, otherwise the edge and
incident triangles and vertices are returned to the
previous state. This process is repeated until none of
the edgeswill flip toasmaller curvature configuration.

Figure 9 shows an example of the removal of a vertex
and how edge flipping can reduce the curvature of the
resulting object. In the figure the original mesh is shown to
theleft, foll owed by two possible re-triangulations after the
removal of a vertex. Regardless of what the initial
triangul ation may be, both results aretested using edgeflips,
and ultimately the program will select thethird mesh because
of thesmaller curvature.

Onceavalid triangul ation has been obtained, for every
vertex v, the curvature and areas are updated according to
the new mesh. The deci mation procedurethen continuesuntil
a termination condition is met. Otherwise, the algorithm
continues until the shape of the object is completely lost.
For an input mesh of genus 0, the algorithm can continue
until the object is simplified to a tetrahedron. Termination
condition for the decimation can be selected according to

(a) Original mesh TAC = 13.817166

(b) Beforeflip TAC = 14.177234

the requirements of the final mesh. It can be set as the
maximum val ue of WTAC of the verticesto be deleted. Since
all vertices are sorted by their WTAC value, once a certain
threshold isreached, the decimation stops Alternatively, the
termination condition can be a maximum error difference
between original and decimated modd, to avoid losing detail
in the mesh. If therequirement isto reach acertainfilesize
for themodedl, thelimit can be set to a decimation percent or
a specified number of faces/verticesin the final model.

6. EXPERIMENTAL RESULTS

Figure 10 showstheresults of using both curvature measures
to decimate a polygonal mesh. Thetop row hasthe original
mesh, while the centre row has the mesh decimated using
the TAC and the mesh in the bottom row was obtained using
theAD. Intheright column of images all vertices are col our
coded according to the value of the TAC, shown in black
for positive curvature, white for negative, and grey for mixed
(both positive and negative) curvature. Regions of similar
curvature can be distinguished where several vertices of the
samekind arelinked together. It is naticeable that the mode
decimated using the AD possesses more regions of mixed
curvature (grey colour), which representsirregul ar geometry.
The mesh decimated with the use of the TAC has more
clearly defined areas of either positive or negative curvature
that mimicthosein the original mesh. Thisproducesamore
smooth and visually pleasant surface.

We eval uate the benefit of using the TAC instead of the
AD toguideasmplification al gorithm. The same decimation
algorithm was applied to various modd susing both curvature
measures to assign theimportance weight to vertices and to
select optimal edge flips. In both cases the formula to
compute the weight for the vertices is the ATAC, but by
substituting the AD with the TAC and multiplying by the
cone area A_(v). The resulting simplfiied models were
compared using the Metro tool . Figure 11 showsthe results
of using the decimation program on three different meshes
using both curvature measures.

| T .. A\
| = .- A
- 4 . A
- 4 .. \

(c) After flip TAC = 12.566371

Figure 9: Comparison of the triangulations obtained after removal of a saddle vertex
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Ascan beseen from the results, theuse of TAC instead
of AD asan estimation of curvature producesasmaller error,
and thedifferencein performanceincreases asthedecimation
goes further. We have not done tests to compare the time
difference to do similar levels of decimation using both
measures. Computing the TAC ismorecomplex than Angle
Deficit, but it still hasalmost linear complexity, onceall the
information required has been extracted from the model and
stored in appropriate data structures. Currently our
application computes both the TAC and AD simultaneously,
and thus the time taken is the samein both cases.

During decimation the geometric properties of themesh
are altered in differing ways. Table 1 and Table 2 show the
values of the curvature as computed with the TAC and AD,
total surface area of the object and Hausdorff distance to
the original mesh. TAC and area both decreasewith theloss
of geometry, but the change in TAC is more dramatic,

because it is more sensitive to the changesin the geometry
of theobject. On the other hand, the Gaussian curvature of
thewhole mesh, asrepresented by the AD remainsthe same,
at the value equal to 4x for closed meshes of genusO.

Some of the existing mesh simplification algorithms
produce amesh with evenly distributed triangles around the
final model, particularly those that re-samplethe mesh and
use new vertices. This presents some advantages, specially
for more even texture mapping. However, some of thefiner
detail islost from the original shape. The use of curvature
todriveasimplification algorithm ensuresthat the reduced
mesh will have moretriangles wherethe shape changesmore
rapidly, and less triangles in flatter areas. As an example,
we use therockerarm model in Figure 12. Ascan beseenin
the close-ups of the decimated rockerarm in Figure 13 the
finer detail of themode! is preserved even after several steps
of decimation.

(a) Original (11,362 vertices)

(c) 96.8 % decimation with AD (362 vertices)

Figure 10: Venus model: shaded (left), wireframe (centre), curvature coded (right)



190

International Journal of Computational Vision and Biomechanics

Figure 11: Comparison of the results obtained using TAC or AD
as a measure for curvature in decimation

7. CONCLUSIONS

We have implemented a vertex decimation program that
bases its sel ection of vertices for removal on the curvature
and area of the vertex. The program progressively removes
vertices from the mesh, choosing the next vertex with the
smallest importance weight. The changes madeto thelocal

Table 1
Triceratops model Comparison of the Curvature of the venus Model with
’ Increasing Decimation
h /‘ Decimation  Vertices TAC AD Surface Area Hausdorff
16
S 1 0% 11,362 77.045602 12.566380 30.136994 0
g
g e - ATAC 17.60% 9,362 69.976640 12566385 30.136968 0.002301
£ = AD
= 35.21% 7,362 68334118 12.566394 30.136956 0.003741
S ., e P -+ LTAC 0
% v 52.81% 5,362 66.487840 12.566390 30.136331 0.004303
= 04 .‘//' /'/ 70.41% 3,362 63.640547 12566383 30.136502 0.007639
02 /// 88.01% 1,362 57.489905 12.566375 30.123395 0.021712
0 96.81% 362 47.290207 12.566365 30.005538 0.076089
0.0% 70.6% §8.3% 95.3%
2832 ‘ 832 332 ‘ 122
Decimation % and vertices
Table 2
Comparison of the Curvature of the igea Model with
Increasing Decimation
Rockerarm model
. Decimation  Vertices TAC AD  Surface Area Hausdorff
1.0 /_ 0% 33,587 730.119954 12566346 23505.330791 0
o / 11.91% 29,587 706.423968 12566354 23505.398398 0.108923
Q
E 2 / 23.82% 25,587 703.362744 12566344 23504541003 0.153921
o
: ! / -+ ATAC 35.73% 21,587 652.604403 12.566359 23503.028226 0.164336
= » AD
§C8 / = 47.64% 17,587 587.653313 12566370 23501.645275 0.164336
ﬁw / 59.55% 13,587 513.781304 12566373 23500.950160 0.242121
c4
71.46% 9,587 442974448 12.566368 23499.417764 0.247055
c2
83.37% 5,587 340.123710 12.566366 23498.766032 0.390726
0
0% ‘ % 0% g% acse ‘ 5% 95.27% 1,587 175.379923 12.566375 23450.253691 1.292738
1000 BO0C 3000 annn 2000 H00
Decimation % and vertices 98.25% 587 71.259997 12566376 23343561350 1.499396
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Figure 12: Rockerarm model: shaded (top), wireframe (bottom).
Left: original (10000 vertices); Right: 95% decimated
(500 vertices)

geometry are optimised using again the curvature measures
of the affected vertices.

Experimental results have shown how the use of the
Total Absolute Curvature of avertex provides significantly
improved results in mesh simplification over the use of the
more common Angle Deficit computation. Thisisdueto the
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A4

Figure 13: Detail of the decimated rockerarm model at 95%
decimation

fact that the TAC provides a more detailed description of
the neighbourhood of a vertex and can distinguish features
that the AD would not. Both curvature measures are
employed to assign relevance weights to vertices and to
optimisethetriangulation of affected areasusing edgeflips.
We have experimented with different parameters to
determine the importance of avertex in the mesh. A set of
vertex wei ghtsbased on the TAC were presented, generally
referred to as the WTAC. These involve various measures
of the area of the neighbourhood of the vertex. From the
results obtai ned, the best overall factor isthe one known as
the ATAC, wherethe TAC ismultiplied by the surface area
of the triangles incident on the vertex. Other weights are
better at preservingthe smaller details of theobject, but alter
significantly the shape of the object in more even regions.
TheATAC parameter givesmore importanceto vertices
with larger stars and large curvature. It is more likely to
remove verticeswith large curvature and small areas, since
these represent relatively minor details of the mesh. Large
regions of small curvature are better preserved and help
retain the overall shape of the object. The parameters that
emphasise the curvature (TAC, PTAC, and LTAC) modify
the shape of the object by changing the regions of smaller
curvature into very large flat areas, but keep the smaller
regionswith high curvature that make up the sharp details.

8. FUTURE RESEARCH DIRECTIONS

At themoment the algorithm works progressively vertex by
vertex. The next step isto move from verticestoregions, by
grouping together regionsof similar curvature and removing
all vertices within that region with minimal WTAC. The
Gauss Map allows ustoidentify such regions. Thishowever
implies a graph-theoretical problem to navigate around the
mesh analysing the regions, and is outside of the scope of
the current work.

After theremoval of avertex, the current policy for the
optimisation of the modified region focuses only on
minimisation of thelocal curvature. In some cases this may
actually alter the shape of the object, since important feature
edges may be flipped for the sake of a smaller curvature. It
is necessary to identify these edges and ensure they are not
flipped during the optimisation phase. One way to address
this problem is to also use the difference between the
curvature of the region before and after the removal of the
vertex asaparameter to select verticesfor decimation. This
requires extra computational load to compute the cost of

removing every singlevertex, but may produce better results.
Currently the proposed ATAC weight givesthe best results,
but at the loss of some detail in the mesh, while the other
threeweightstested are better at preserving such detail. An
implementation that can keep the shape of the object on bath
large and small features would be desirable. This could be
possible by sel ecting an appropriate we ght measurefor each
individual vertex according to the properties of its
nei ghbourhood.
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