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Shape-preserving Mesh Simplification based on Curvature
Measures from the Polyhedral Gauss Map
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This paper presents an improvement on methods for simplification of triangular meshes, based on discrete curvature measures.
The basic tool is the Polyhedral Gauss Map (PGM), which is computed directly from a mesh and provides a detailed description
of curvature associated with each individual vertex. Taking into consideration this description, we determine the Total
Absolute Curvature, abbreviated as TAC, for each vertex. The TAC measure is more precise than the discrete analogue of
the Gaussian curvature obtained using the Angle Deficit (AD) method, as it reflects the complexities in the surface shape
around a vertex. We apply the TAC to attach a relevance weight to each vertex in a mesh and select the vertices to be
decimated. The weight of a vertex is also based on measurements of its neighbourhood. To this end we introduce the concept
of weighted total absolute curvature (WTAC). The TAC is also used in an additional step to the decimation algorithm to
optimise the curvature of the simplified mesh. Taking into consideration the theoretical background and numerical experiments,
we can also conclude that the TAC decimation algorithm is shape-preserving.
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1. INTRODUCTION

The most common representation for an object in computer
aided applications, specially in 3D graphics, is still the
polygonal mesh, where a collection of points in space are
joined together by edges and faces to form a shape. This
provides great flexibility in representing a variety of shapes,
from simple to very complex ones, and in varying degrees
of detail. Modern methods for generating 3D objects involve
high definition scanning of data, providing very detailed
meshes of the target objects. Often this produces an
enormous amount of data, which is difficult to handle by
current computer systems for applications in real time.
Meanwhile, the data acquired with these methods may be
redundant or excessive to portray the basic shape of the
object.

For these reasons, it is desirable to simplify the
polygonal geometry in a model. Mesh simplification is the
process of decreasing the number of components from a
polygonal mesh, reducing its overall combinatorial and
geometric complexity, while at the same time still providing
a good visual representation of the original object. The
necessity to simplify a model may come from limited
resources, either storage, transmission bandwidth, processing
power or display in real time. All of these constraints benefit
from having a smaller mesh that still appropriately represents
the original object.

Several different techniques already exist to simplify a
polygonal mesh. The approaches taken vary greatly from one
method to another, however all of them must identify which
parts of the object are important to the shape, and which can
be safely removed. The curvature of an object is a good
measure of the behaviour of the shape, and thus an important

characteristic to consider when modifying a mesh model.
Curvature can be calculated for the whole object, specific
regions, or individual vertices or edges. The curvature of a
vertex is a measure of how far its neighbourhood is ‘pulled
away’ from a plane. It is a good estimate of how relevant is
the vertex for the general shape of the object.

The Angle Deficit (AD), known also as the discrete
Gaussian curvature, is regularly used as the measure of the
curvature associated with a vertex. However, it does not fully
reflect the local shape structure around the vertex and therefore
is not fully suited for decimation based on curvature.

In this paper we present a new decimation method based
on the estimation of the Total Absolute Curvature
(abbreviated as TAC) as a better measure to guide mesh
simplification methods. The TAC is obtained for each
individual vertex using the Polyhedral Gauss Map (PGM).
The Polyhedral Gauss Map for a vertex consists of a set of
spherical polygons, which areas are each equipped with a
‘+’ or ‘-’ sign and correspond to the positive and negative
parts of the curvature concentrated at this vertex. Therefore
it permits the full characterisation of the curvature at a vertex
and identification of hidden features not recognised by other
methods. Thus the TAC, computed by summating the
absolute values of curvatures parts, is ideal for correctly
determining the importance of a vertex for the shape of the
mesh. The paper (Alboul and Echeverria 2005) provides a
detailed theoretical background of both the AD and TAC
curvature measures and provides more references. The
method to compute and visualise the Total Absolute
Curvature for complex polyhedral surfaces is also presented
in more detail there.

We present a series of weight values for the vertices of
a polygonal mesh to specify how relevant each vertex is to
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the overall shape of the object. All of these weights are based
on the TAC and in most cases also include the area estimation
around the vertex. These measures weigh the complexity of
the vertex with the visual impact it has on the overall surface
of the object.We present the reasoning behind the selection
of four different weights, and compare the results obtained
from using them to guide the simplification process.

We also use the TAC to optimise the corresponding
region in the simplified mesh after a vertex removal by using
edge flip technique, first presented in (Lawson 1972) and
later applied in (Alboul 2003). This procedure ensures a
further simplification of the mesh with respect to curvature,
since the higher TAC yields more complex mesh geometry.
As the TAC of a mesh region is computed by summating the
TAC of the vertices belonging to this region, our method
can be considered also as shape-preserving. It emphasises
domains of the most prominent curvature of the region, that
is either positive or negative, while decreasing or completely
eliminating curvature domains of the opposite sign.

We also compare the results obtained from using either
the common AD method or the new TAC. We show how
this new curvature calculation improves the obtained results
when using the AD to estimate the curvature.We produce
simplified meshes using both measures, and the results are
compared numerically against the original models to draw a
conclusion. Figure 1 shows an example of decimation using
the TAC.

curvature measurement methods. Other novel contribution
is the procedure of updating the mesh after a vertex removal,
which is based on the minimisation of the TAC. The research
in this paper has been partially presented in (Echeverria and
Alboul 2006).

The structure of the document is as follows: Section 2
presents the existing research in the field of mesh
simplification. Section 3 presents the method used to
compute the TAC of a vertex based on its PGM. Section 4
shows the selection of the vertex weight measures and
compares them. The details of our decimation program are
presented in Section 5, followed by experimental results in
Section 6. Section 7 presents the conclusions and future
research directions are pointed at in Section 8.

2. PREVIOUS RESEARCH ON MESH
SIMPLIFICATION

Extensive research has already been done in the field. There
are several different approaches to simplifying a polygonal
mesh. The papers (Cignoni et al. 1998 – Comparison) and
(Luebke 2001) review the most important of these methods,
and compare their advantages and shortcomings. Cignoni
et al. do a comparison of the error differences, from the
original models to the simplified ones, and the time taken to
obtain the results, using several different algorithms. To do
this they created the Metro tool (Cignoni et al. 1998 - Metro),
which has since been used by others to compare any new
algorithm with the existing ones. As explained in these
papers, simplification techniques vary in: optimisation goal;
local or global optimisation; preservation of the original
object’s topology; maintaining the original vertices or re-
meshing the model. Some simplification methods also
perform view dependant decimation. That is, a model is more
decimated in areas that are far away or hidden from the
current perspective. This permits a larger reduction of the
mesh, but requires that the mesh be re-simplied if the view
direction changes. The algorithms tested in  the
aforementioned works include Mesh Decimation,
Simplification Envelopes, Multiresolution Decimation, Mesh
Optimization, Progressive Meshes and Quadric Error Metric
Simplication. (We refer the reader to the cited works for the
precise descriptions of these methods). In the tests, Mesh
Decimation produces the largest error with respect to the
original model, although it is by far the fastest algorithm.
Other techniques perform better in most respects, in
particular Quadric Error Matrix (QEM) (Garland and
Heckbert 1997), which is generally considered as a very
effective simplification method and used as a parameter of
comparison for newer techniques.

The first method for decimation was proposed by
(Schroeder et al. 1992), and is based on progressive removal
of specific vertices from a mesh. All vertices are classified
according to their local topology, and are handled
accordingly. Vertices are labelled as ‘simple’, ‘complex’ or
‘boundary’. Complex ones are generally non-manifold

Figure 1: Triceratops model: shaded (top), wireframe (bottom).
Left: original (2,832 vertices); Right: 88.3% decimated
(332 vertices)

The measurement of vertex weights presented here can
be applied to various mesh simplification algorithms based
on decimation or edge collapse to improve their selection
of the vertices to simplify. To demonstrate the advantages
of using the TAC in a simplification algorithm we have
implemented a simple vertex decimation program to test and
compare the results obtained on different models.

The main contribution is the application of the TAC
measure to a mesh simplification algorithm, proving its
advantages over decimation algorithms based on existing
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vertices, and are left untouched. Simple and boundary
vertices are treated differently. Simple vertices are further
classified according to the number of feature edges connected
to the vertex. Vertices are selected for decimation according
to a distance metric. For simple vertices the parameter is
the distance from an average plane; for border vertices, it is
the distance to the line connecting the neighbours along the
border. The vertex with the shortest distance is selected for
removal, along with the triangles surrounding it. The hole
produced in the mesh is filled using a recursive splitting of
the remaining region into triangles. This method generates
a subset of the original vertices, not adding any new ones. It
also preserves the topology of the object.

A scheme to re-tile a polygonal mesh with less vertices
was proposed by (Turk 1992). First, a new set of vertices is
distributed over the original model, the new vertices will
repel one another to adequately cover the whole surface.
Next the surface is re-triangulated using both new and old
vertices to preserve the shape, and later the old vertices are
removed. An extra step is also included which uses an
estimation of the curvature to aid in the distribution of the
new vertices over the surface.

A method to preserve more accurately the appearance
of a simplified model is developed in (Cohen et al. 1998),
by using texture and normal maps, in addition to the
polygonal mesh. They initially compute the shading colours
and the normals of the full model, and convert this data into
maps that contain this important visual information. Then
the mesh can be simplified to several levels of detail.
Applying the maps with the original information will make
the model look very similar to the full detail version. The
main improvement for this method is the texture deviation
metric which is used to assign texture coordinates to the
remaining vertices in their corresponding position with
respect to previous vertices. This metric can also be used to
guide the simplification algorithm.

(Lindstrom and Turk 1998) implemented an algorithm
using edge collapses where the position of new vertices is
obtained from the optimisation of a few simple geometrical
properties of the local neighbourhood of the edge. They use
preservation and optimisation of the volume and boundary
related to the edge. The same optimisations are used to give
weights to the edges for the selection of the collapses.

A probabilistic approach is employed by (Wu and Kobbelt
2002) to reduce resource requirements of a simplification
algorithm. They use a Multiple-Choice Algorithm to randomly
select a few candidate edges and select from those the best
option. This avoids having to keep an updated queue of the
best possible options at all times. Doing so they significantly
speed up the simplification process and reduce the memory
requirements, while obtaining a good degree of simplification,
comparable to the QEM method.

In (Kim et al. 2002) a measure based on curvature is
used to assign a cost to the edges, and to select the ones to
be collapsed. The authors make use of both the Gaussian

and mean curvatures on the mesh. After deciding on an edge
to collapse, a new vertex is generated in place of the two
edge vertices. The location of this new vertex is found using
a butterfly subdivision mask. Using curvature to decide on
the geometry to eliminate, they prove that important features
of the object are preserved after heavy simplification.

(Hussain et al. 2004) propose a simplification method
driven by half-edge collapses that keeps at least one of the
vertices of the edge removed. They use a metric based on
the angle difference from the original faces to the ones that
will be created after the collapse; which is effectively an
approximation of the curvature of the region, although not
very accurate, but nevertheless useful in preserving important
geometry. This implementation competes in performance
with QEM but claims to require less memory to store data.

3. DESCRIPTION OF THE POLYHEDRAL GAUSS
MAP

In many applications only the Gaussian curvature of a vertex
is measured, using the Angle Deficit method. This technique
is only capable of identifying two kinds of vertices: convex
or saddle. Vertices which do not fit in these categories will
present problems to the algorithm, and their true curvature
cannot be found. This is the case, for example, when a non-
saddle vertex has concavities (folds) in its neighbourhood.

The new method presented to compute the curvature of
a polyhedral surface is based on the area of the Gauss Map
constructed for a vertex. It is an analogous technique to
compute the integral curvature on smooth surfaces (Banchoff
1970). The curvature of a whole mesh is computed as the
sum of the curvatures of the individual vertices that belongs
to the mesh.

In what follows we assume that a mesh M represents an
orientable surface, and therefore we can determine a coherent
orientation on the whole mesh (Alboul 2003). Then the
direction of the outwards pointing normals is chosen to be
positive. The edge will be called convex if the two lines
determined by the normals to its adjacent faces (triangles)
intersect in the negative direction; otherwise it is called
concave.

If V is the set of all the vertices in the mesh M, for every
vertex v � V, we define the star of the vertex as the set of
faces incident on �, ordered in counter clockwise direction
with respect to the chosen orientation, and denote it as
star(�). The Polyhedral Gauss Map of � is computed using
the normal vectors of the faces in star(�). These vectors are
translated to the same origin, which will become the centre
of a sphere. The endpoints of the vectors are joined by
geodesic arcs in their corresponding order, creating what is
called the spherical indicatrix, shown in Figure 2. The
ordering of the vectors from their corresponding faces is
used to determine the sign of the curvature.

If the star of the vertex is shaped as a convex cone, i.e.
all its edges either convex or concave, or a simple saddle or
its generalised version, the arcs in the spherical indicatrix
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will not intersect and will draw a single spherical polygon
on the surface of the sphere. Under a simple saddle we
understand a saddle vertex whose star consists of two
concave and two convex edges in alternated order. Recall
that a saddle vertex does not posses a supporting plane. A
generalised simple saddle is a saddle where a concave or
convex edge are substituted by several edges of the same
type. A convex and a generalised simple saddle can be seen
in Figure 3.

polygons. It is possible for two or more spherical polygons
to overlap. Figure 4 shows a vertex whose star is a non-
convex cone. In this case, the concavity causes the normals
of the faces to switch directions temporarily and go clockwise
with respect to the vertex, opposite to the direction of their
corresponding faces. When this occurs, two of the arcs
intersect, signifying a change in the sign of the curvature.
The intersection point is where two separate spherical
polygons of opposite signs meet. The first step in the
Polyhedral Gauss Map computation consists of identifying
all such spherical polygons.

The next step is to determine the orientation, positive
or negative, of the spherical polygons. Each one of them
splits the surface of the sphere into two areas, only one of
which corresponds to the vertex curvature. The correct area
chosen is based on the ordering of the faces and the
corresponding normals. Positive polygons result from the
ordering of the normal vectors which complies to the
ordering of their corresponding faces. If the ordering of the
normals goes in the opposite direction, then the area of the
polygon represents a negative curvature. The Total Absolute
Curvature is obtained by adding together the absolute values
of the areas of both positive and negative polygons.

In the visualisation of the Gauss Map shown in Figure
4 the areas of positive curvature are shown in black, while
negative areas are shown in white. On the mesh each vertex
is also given a colour based on its curvature: it will be black
if it has only positive curvature, white if it has only negative
curvature and grey if its Gauss Map has spherical polygons
of both positive and negative orientation.

Figure 2: Using the normal vectors of faces in star( ) to create
the Gauss Map

(b) Saddle

Figure 3: Vertices  with intersections in their spherical
indicatrix

(a) Convex cone

In all other cases, there will be self-intersections in the
indicatrix. It is necessary to identify where these intersections
occur and separate the indicatrix into individual spherical

Figure 4: A vertex with non-convex neighbourhood (showing
the indicatrix) and its corresponding Gauss Map

The algorithm is fast as all computations are nearly
linear with respect to the number of vertices in the mesh.
All relevant information about each vertex is gathered
simultaneously with the computation of the Polyhedral Gauss
Map: mean and Gaussian curvature (using Angle Deficit),
the number of neighbours and incident triangles in star(�).
All of this information is stored in linked data structures for
its later use.
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The PGM algorithm can also handle non-manifold
vertices, correctly identifying the curvature of vertices with
self intersecting faces. These vertices will produce larger
than normal areas in the Gauss Map. The Polyhedral Gauss
Map obtained gives a complete characterisation of the vertex.
All irregularities of the mesh can be determined based on
the Gauss Map technique proposed, without resorting to
computationally expensive methods.

The PGM provides a better  understanding of
the geometry of an object than the Gaussian curvature.
It can identify more detailed features of the shape such as
hidden regions of negative curvature that exist in the
concavities of a cone and appear only when analysing both
the positive and negative components of the curvature of
the vertices. The Gauss Maps for two different vertices are
shown in Figure 5. While Angle Decit methods would
conclude that the two vertices are equal, using the PGM it is
immediately evident that both vertices have different
curvature.

The PGM of a vertex represents, therefore, a set of
spherical polygons equipped with a positive or negative sign.
The algebraic sum of these polygons is equal to the discrete
Gaussian curvature, or Angle Decit, of the vertex; and the
sum of the absolute areas represents the measure of Total
Absolute Curvature associated with this vertex. Figure 6
shows a vertex whose PGM has various areas both positive
and negative.

(b) Nonñconvex object

Figure 5: Gauss Map of a vertex in two different objects. Left:
convex vertex (only positive curvature). Right: non-
convex vertex (positive and negative curvature
components)

(a) Convex object

Figure 6: A vertex with the Gauss Map consisting of several
spherical polygons of positive and negative signs

4. CURVATURE AS DECIMATION MEASURE

Most mesh simplification algorithms based on vertex
decimation assign a weight to each individual vertex, further
referred to as the relevance weight, that signifies its
importance to the shape of the object. If the value is small
the vertex can be removed without significantly altering the
mesh, while if the weight is larger the vertex must be kept.

The values used as weights for the vertices are different
for each implementation, but generally are based on the
geometrical properties of the surrounding region, such as
distances, areas or measures of curvature. We present a set
of new vertex weight measurements to guide decimation
based on the Total Absolute Curvature. We refer to this
measurement set as the Weighted Total Absolute Curvature,
denoted as WTAC. The WTAC measures consist of
multiplying the TAC by some factor related to some
geometric shape parameter associated with each vertex. Four
different weight measures are tested and compared in our
decimation program. We first present definitions of shape
parameters used in the WTAC.

For any vertex �, as well as the star star(�), we define
neighbours(�) as the set of vertices in star(�) other than �
and link(�) as the collection of the n edges joining the vertices
in neighbours(�), which forms a polygonal closed line in
space. N� is an artificial vector, computed as the average of
the sum of normals and areas of the incident triangles. It
can be considered to be the normal to the vertex.

Then, the projected link of � is the polygon P obtained
by orthogonally projecting the list of vertices in neighbours(�)



186 International Journal of Computational Vision and Biomechanics

on a plane that passes through � and is perpendicular to the
vector N�. The projected link can also be defined for saddle-
like vertices; in this case the vertices will be projected from
both half-spaces determined by the plane.

We define T� as the list of the n triangles in star(�), so that
t
i
 � T�, then the cone area of vertex � is the sum of the areas of

all the triangles in star(�), and is denoted as A
C
(�). Thus,

1

( ) ( ).
n

C i
i

A area t
�

� � �
The projected area of vertex � is computed as the planar

area of the polygon P�, and is denoted as A
P
(�). It is possible,

however, that the projection of the link into the plane chosen
may produce self-intersections, specially when dealing with
very complex saddle type vertices. In these cases the area
computed will be unreliable. This problem is recognised in
(Lee et al. 1998), and an alternative projection into a
conformal map is proposed.

In order to overcome the aforementioned difficulties and
shortcomings related to the determination of the flat
projection, we also use the well-known isoperimetric
inequality (Osserman 1978) L2 = 4� ��A (where L is the length
of the figure in the plane, and A is its area) in order to get an
approximated area of the flat projection. We define E� as
the list of the n edges in link(�), so that e

i
 � E�, then by

denoting with length(e
i
) the sum of the lengths of edges, we

determine the shape parameter length-area of vertex by using
the formula:
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Using these definitions of the areas around a vertex,
the four versions of WTAC are as follows:

4.1 TAC

In this case we use exclusively the Total Absolute Curvature
of the vertex � as its relevance weight, denoted as TAC(�).
All other properties of the vertex are discarded, and only
the curvature has an effect on its importance.

4.2 ATAC

Multiplication of the TAC by the cone area around vertex �.
ATAC(�) = TAC(�) × A

C
(�)

This measure takes into account the complexity of the
vertex and its visual importance in terms of the area and
curvature simultaneously. It gives more priority to vertices
with large incident triangles making them less susceptible
to elimination, but those with small stars are more likely to
be removed.

4.3 PTAC

Knowing the cone and projected areas we can use a
normalised area of � as the parameter to multiply TAC:

PTAC(�) = TAC(�) × 
( )

.
( )

P

C

A

A

�
�

An important feature of this parameter is that the values
of factor will always lie in the half-open interval (0, 1]. It is
clear that if the star of a vertex represents a flat region, both
the cone and projected areas will be the same, making the
factor 1. If the vertex has a very sharp cone, the projected
area will be much smaller than the cone area, making the
factor close to 0 (zero).

The PTAC weight thus considers the local properties
of the neighbourhood around the vertex, but disregards the
size of the region. It ensures that vertices with similar stars
at different scales will be treated in the same way. This may
result in the removal of a vertex in a relatively flat region
that leaves a very large hole in the mesh. It can be difficult
to properly re-triangulate such a hole and may lead to a more
expensive optimisation of the initial triangulation.

As mentioned before the computation of the projected
area is not always reliable, depending on the plane chosen
for the projection of the vertices.

4.4 LTAC

Using the projected area and the length-area inequality, we
establish an alternate version of the normalised area.

LTAC(�) = TAC(�) × 
( )

.
( )

L

C

A

A

�
�

This weight measure attempts to solve the shortcomings
of PTAC, by computing a planar area by means of the
perimeter of the star instead of the projection into a plane.
This avoids any self intersections in the projection. In this
case the factor is not guaranteed to lie in the interval (0, 1].
However this weight also disregards the scale of the
neighbourhood of the vertex.

The Metro tool was also used to compare the different
weights used to guide the decimation. The results from this
comparison, both visually and numerically indicate that the
best results are produced by using the ATAC weight. Using
normalised areas, as in PTAC and LTAC, preserves better finer
details in the mesh, but produces much larger errors on areas
of small curvature. This is due to the fact that areas of relatively
small curvature will eventually be reduced to a single vertex
with small curvature and several very large incident triangles.
This single vertex represents the shape previously represented
by the whole region. If it is removed, the appearance of the
object is altered signicantly. This is exemplified in Figure 7.

Figure 7: Triceratops model simplified with LTAC to 84.4%.

(a) Vertex with many large
incident faces

(b) Removal of the vertex
changes the shape
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The graphs in Figure 8 show a comparison of the Metro
results. They plot the Hausdorff distances obtained when
comparing the original model with different decimated meshes
using the various vertex weights. The Decimation % parameter
shown refers throughout this document to the percentage of
the original vertices removed during the decimation.

5. IMPLEMENTATION OF A VERTEX
DECIMATION ALGORITHM

For the purpose of testing the curvature measure on
simplification, a simple vertex decimation algorithm is used,
similar to the one described in (Schroeder et al. 1992).

The algorithm makes several passes over the whole
dataset, removing each time the vertex with the smallest
weight. After removing the vertex it updates the mesh by re-
triangulating the obtained ‘hole’ in the mesh in such a way
that the curvature of the mesh does not increase. In order to
achieve this we apply to the initial re-triangulation the
optimisation procedure based on the minimisation of the
TAC by means of the edge flip as explained in (Alboul et al.
1999) and (Aichholzer et al. 2002). This preserves topology
as well as the shape up until very high levels of decimation.

The process of vertex decimation is as follows:
• The polygonal mesh to be decimated is analysed, and

lists are created for the vertices and faces. The lists are
then converted into arrays that make reference to each
other by their indices. This simplies the search for
specific vertices or triangles.

Initially, the TAC is computed for all vertices in the
mesh, obtaining along the way all other required
information for each vertex: the Angle Deficit, list of
triangles in the star, list of neighbours, artificial vector
normal to the vertex, projection of the neighbours and
feature edges. All of these are stored in an array of data
structures.

• After gathering all the above-mentioned information,
an extra parameter is assigned to each vertex: the
relevance weight, which is described in general as the
WTAC. All vertices are sorted by increasing value of
WTAC, to simplify the process of selecting the next
vertex for decimation. To this end, two new arrays are
created. One of them has the vertices ordered by WTAC,
and includes the vertex ID number and the value
assigned to it. The other array is ordered by vertex ID
numbers, and contains the index location of each vertex
in the other array. This second array is used to simplify
searching for other vertices. Vertices to delete are taken
from the top of the array, and after each removal the
array is updated with the new values for the affected
neighbour vertices.

• A vertex � is selected for removal if it has the smallest
value for the WTAC measure being used. For the special
case of vertices on the boundary of the surface of an
open object, the parameter used for selection also
considers the Angle Deficit, since the Gauss Map area
in these vertices can be equal to zero.

• The region around the removed vertex is updated using
the technique of half–edge collapse. A vertex �

c
 is

chosen from the neighbours of the deleted vertex �. Only

the two triangles that share the edge c��  are deleted
from the mesh, and the rest of the triangles incident on
� are updated to be now incident on �

c
. This method is

likely to create some degeneracies, mainly in the form
of adjacent triangles facing opposite directions but lying
in the same plane. The program will check that two
identical faces are not facing in opposite directions.

Figure 8: Comparison of the vertex weight parameters: TAC,
ATAC, PTAC and LTAC
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There is no check in the case of non-identical but
overlapping triangles, however this case is taken care
of by optimising the triangulation.

• Once the initial re–triangulation is complete, the
curvature data for all the neighbour vertices �

j
 is

recalculated using the new triangles, and afterwards the
triangulation is optimised using edge flips. The objective
of this optimisation step is to reduce the curvature of
the proposed triangulation. A list of edges is created
only for the triangles that now cover the previous star(�),
the edges on the borders of the polygon are then
discarded and only the edges lying inside of the polygon
are kept. Each edge structure contains the vertices that
define it, the two neighbour triangles and the two
opposite vertices. All of the edges are tested by flipping
them and recomputing the curvature of the 4 vertices
involved. If the sum of curvatures is smaller than
previously the flip is accepted, otherwise the edge and
incident triangles and vertices are returned to the
previous state. This process is repeated until none of
the edges will flip to a smaller curvature configuration.

Figure 9 shows an example of the removal of a vertex
and how edge flipping can reduce the curvature of the
resulting object. In the figure the original mesh is shown to
the left, followed by two possible re–triangulations after the
removal of a vertex. Regardless of what the initial
triangulation may be, both results are tested using edge flips,
and ultimately the program will select the third mesh because
of the smaller curvature.

Once a valid triangulation has been obtained, for every
vertex �

j
 the curvature and areas are updated according to

the new mesh. The decimation procedure then continues until
a termination condition is met. Otherwise, the algorithm
continues until the shape of the object is completely lost.
For an input mesh of genus 0, the algorithm can continue
until the object is simplified to a tetrahedron. Termination
condition for the decimation can be selected according to

the requirements of the final mesh. It can be set as the
maximum value of WTAC of the vertices to be deleted. Since
all vertices are sorted by their WTAC value, once a certain
threshold is reached, the decimation stops. Alternatively, the
termination condition can be a maximum error difference
between original and decimated model, to avoid losing detail
in the mesh. If the requirement is to reach a certain file size
for the model, the limit can be set to a decimation percent or
a specified number of faces/vertices in the final model.

6. EXPERIMENTAL RESULTS

Figure 10 shows the results of using both curvature measures
to decimate a polygonal mesh. The top row has the original
mesh, while the centre row has the mesh decimated using
the TAC and the mesh in the bottom row was obtained using
the AD. In the right column of images all vertices are colour
coded according to the value of the TAC, shown in black
for positive curvature, white for negative, and grey for mixed
(both positive and negative) curvature. Regions of similar
curvature can be distinguished where several vertices of the
same kind are linked together. It is noticeable that the model
decimated using the AD possesses more regions of mixed
curvature (grey colour), which represents irregular geometry.
The mesh decimated with the use of the TAC has more
clearly defined areas of either positive or negative curvature
that mimic those in the original mesh. This produces a more
smooth and visually pleasant surface.

We evaluate the benefit of using the TAC instead of the
AD to guide a simplification algorithm. The same decimation
algorithm was applied to various models using both curvature
measures to assign the importance weight to vertices and to
select optimal edge flips. In both cases the formula to
compute the weight for the vertices is the ATAC, but by
substituting the AD with the TAC and multiplying by the
cone area A

C
(�). The resulting simplfiied models were

compared using the Metro tool. Figure 11 shows the results
of using the decimation program on three different meshes
using both curvature measures.

Figure 9: Comparison of the triangulations obtained after removal of a saddle vertex

(a) Original mesh TAC = 13.817166 (b) Before flip TAC = 14.177234 (c) After flip TAC = 12.566371
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As can be seen from the results, the use of TAC instead
of AD as an estimation of curvature produces a smaller error,
and the difference in performance increases as the decimation
goes further. We have not done tests to compare the time
difference to do similar levels of decimation using both
measures. Computing the TAC is more complex than Angle
Deficit, but it still has almost linear complexity, once all the
information required has been extracted from the model and
stored in appropriate data structures. Currently our
application computes both the TAC and AD simultaneously,
and thus the time taken is the same in both cases.

During decimation the geometric properties of the mesh
are altered in differing ways. Table 1 and Table 2 show the
values of the curvature as computed with the TAC and AD,
total surface area of the object and Hausdorff distance to
the original mesh. TAC and area both decrease with the loss
of geometry, but the change in TAC is more dramatic,

because it is more sensitive to the changes in the geometry
of the object. On the other hand, the Gaussian curvature of
the whole mesh, as represented by the AD remains the same,
at the value equal to 4��for closed meshes of genus 0.

Some of the existing mesh simplification algorithms
produce a mesh with evenly distributed triangles around the
final model, particularly those that re–sample the mesh and
use new vertices. This presents some advantages, specially
for more even texture mapping. However, some of the finer
detail is lost from the original shape. The use of curvature
to drive a simplification algorithm ensures that the reduced
mesh will have more triangles where the shape changes more
rapidly, and less triangles in flatter areas. As an example,
we use the rockerarm model in Figure 12. As can be seen in
the close-ups of the decimated rockerarm in Figure 13 the
finer detail of the model is preserved even after several steps
of decimation.

Figure 10:Venus model: shaded (left), wireframe (centre), curvature coded (right)

(a) Original (11,362 vertices)

(c) 96.8 % decimation with AD (362 vertices)

(b) 96.8 % decimation with PGM (362 vertices)
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Figure 11: Comparison of the results obtained using TAC or AD
as a measure for curvature in decimation

Table 1
Comparison of the Curvature of the venus Model with

Increasing Decimation

Decimation Vertices TAC AD Surface Area Hausdorff

0% 11,362 77.045602 12.566380 30.136994 0

17.60% 9,362 69.976640 12.566385 30.136968 0.002301

35.21% 7,362 68.334118 12.566394 30.136956 0.003741

52.81% 5,362 66.487840 12.566390 30.136331 0.004303

70.41% 3,362 63.640547 12.566383 30.136502 0.007639

88.01% 1,362 57.489905 12.566375 30.123395 0.021712

96.81% 362 47.290207 12.566365 30.005538 0.076089

Table 2
Comparison of the Curvature of the igea Model with

Increasing Decimation

Decimation Vertices TAC AD Surface Area Hausdorff

0% 33,587 730.119954 12.566346 23505.330791 0

11.91% 29,587 706.423968 12.566354 23505.398398 0.108923

23.82% 25,587 703.362744 12.566344 23504.541003 0.153921

35.73% 21,587 652.604403 12.566359 23503.028226 0.164336

47.64% 17,587 587.653313 12.566370 23501.645275 0.164336

59.55% 13,587 513.781304 12.566373 23500.950160 0.242121

71.46% 9,587 442.974448 12.566368 23499.417764 0.247055

83.37% 5,587 340.123710 12.566366 23498.766032 0.390726

95.27% 1,587 175.379923 12.566375 23450.253691 1.292738

98.25% 587 71.259997 12.566376 23343.561350 1.499396

Figure 12:Rockerarm model: shaded (top), wireframe (bottom).
Left: original (10000 vertices); Right: 95% decimated
(500 vertices)

7. CONCLUSIONS

We have implemented a vertex decimation program that
bases its selection of vertices for removal on the curvature
and area of the vertex. The program progressively removes
vertices from the mesh, choosing the next vertex with the
smallest importance weight. The changes made to the local

geometry are optimised using again the curvature measures
of the affected vertices.

Experimental results have shown how the use of the
Total Absolute Curvature of a vertex provides significantly
improved results in mesh simplification over the use of the
more common Angle Deficit computation. This is due to the
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fact that the TAC provides a more detailed description of
the neighbourhood of a vertex and can distinguish features
that the AD would not. Both curvature measures are
employed to assign relevance weights to vertices and to
optimise the triangulation of affected areas using edge flips.

We have experimented with different parameters to
determine the importance of a vertex in the mesh. A set of
vertex weights based on the TAC were presented, generally
referred to as the WTAC. These involve various measures
of the area of the neighbourhood of the vertex. From the
results obtained, the best overall factor is the one known as
the ATAC, where the TAC is multiplied by the surface area
of the triangles incident on the vertex. Other weights are
better at preserving the smaller details of the object, but alter
significantly the shape of the object in more even regions.

The ATAC parameter gives more importance to vertices
with larger stars and large curvature. It is more likely to
remove vertices with large curvature and small areas, since
these represent relatively minor details of the mesh. Large
regions of small curvature are better preserved and help
retain the overall shape of the object. The parameters that
emphasise the curvature (TAC, PTAC, and LTAC) modify
the shape of the object by changing the regions of smaller
curvature into very large flat areas, but keep the smaller
regions with high curvature that make up the sharp details.

8. FUTURE RESEARCH DIRECTIONS

At the moment the algorithm works progressively vertex by
vertex. The next step is to move from vertices to regions, by
grouping together regions of similar curvature and removing
all vertices within that region with minimal WTAC. The
Gauss Map allows us to identify such regions. This however
implies a graph-theoretical problem to navigate around the
mesh analysing the regions, and is outside of the scope of
the current work.

After the removal of a vertex, the current policy for the
optimisation of the modified region focuses only on
minimisation of the local curvature. In some cases this may
actually alter the shape of the object, since important feature
edges may be flipped for the sake of a smaller curvature. It
is necessary to identify these edges and ensure they are not
flipped during the optimisation phase. One way to address
this problem is to also use the difference between the
curvature of the region before and after the removal of the
vertex as a parameter to select vertices for decimation. This
requires extra computational load to compute the cost of

Figure 13:Detail of the decimated rockerarm model at 95%
decimation

removing every single vertex, but may produce better results.
Currently the proposed ATAC weight gives the best results,
but at the loss of some detail in the mesh, while the other
three weights tested are better at preserving such detail. An
implementation that can keep the shape of the object on both
large and small features would be desirable. This could be
possible by selecting an appropriate weight measure for each
individual vertex according to the properties of its
neighbourhood.
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