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Active contours and surfaces are deformable models used for 2D and 3D image segmentation. In this paper, we propose two
methods developed in order to accelerate 3D image segmentation process. They are adaptations on active surfaces of two
methods developed for 2D active contour. We use them on a discrete 3D surface model (mesh) evolving with the greedy
algorithm. Those methods will be compared to the classical greedy algorithm and to a recent fast adaptation of the level set

method.
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1. INTRODUCTION

Active contours or snakes, initially developed by Kass et
al. in [1], are powerful segmentation tools thanks to their
noise robustness and ability to generate linked closed
boundaries. Their 3D extensions, active surfaces, were
developed according to several implementations (see[2] [3]
for surveys on 3D deformable models). Among these
implementations, meshesareexplicit discrete representations
[4], which represents the surface as a set of interconnected
vertices. The modd is deformed by direct modifications of
vertices coordinates. Several evolution algorithms have been
developed to deform them. One of the most popular is the
greedy algorithm [5] because of its fficiency. An adaptation
of the greedy algorithm on 3D surface was proposed by
Bulpitt and Efford in [6].

Conversdly, implicit implementations, based on theleve
set framework [7], handle the surface asthe zerolevel of a
hypersurface, defined on the same domain astheimage (for
3D images, the hypersurfaceisaR®— R application). Level
satsare often chosen for their natural handling of topol ogical
changes and adaptiveness to any dimension. Their
algorithmic complexity is proportional to the image
resolution, making them time-consuming. Despite the
development of accel erating methods (like the narrow band
technic [ 7], the fast marching method [8] and therecent fast
level set [9]), their computational cost remains high,
preventing their usein time-critical applications. Moreover,
mesh surfaces have several advantages over their implicit
counterparts. Ther representation ismoreintuitive, and thus
allow easier modeling of a priori knowledge and user
interaction. The main drawback isthat meshesdo not modify
their topology naturally (technicsfor detection of topol ogical
changes must be implemented beside the evolution
algorithm).

In many applications, thetopol ogy of thearea of interest
is known in advance. When segmenting images in which
prior knowledge about the object topology is available, we

believe that mesh-based approaches should be privileged
over implicit surfaces. In this paper, we deal with a 3D
triangular mesh driven by greedy algorithm. The model is
able to perform remeshing, thus providing geometrical
versatility (in the sasmemanner that 2D reparameterization
technics overcome the lack of geometrical flexibility of
traditional snakes). Severa methods have been developed
in [10] in order to accelerate 2D active contours. In this
paper, we study 3D adaptations of these methodsin order to
accelerate discrete active surfaces, as an extension of the
work in [11].

The outline of this paper isasfollows: section 2 presents
the 3D modd anditsenergies, the greedy algorithmfor active
surfaces and the remeshing principle. Section 3 and 4
describe the shifted nel ghborhood method and the line search
method. Section 5 describes the Fast Level Set
implementation for active contours. Section 6 shows our
experimental results on 3D models, comparing the
performances of our acceleration methods with the basic
greedy algorithm and the recent Fast Level Set
implementation method. Section 7 concludes with our work
expecting thefuture developments.

2. THE3DACTIVE SURFACE MODEL

In a continuous domain, a 3D deformable model is
represented by a parameterized surface S mapping a couple
of parameters (u, v) toaspace point (x,y, 2":

S: 2> R

(U, V) = (x(u, V), y(u, v), Zu, v))T (1)

The parameter domain isnormalized : Q =[O0, 1]. The

aurfaceisattached totheimage |, whichisaR® — R function,
mapping each voxd (X, y, 2) toagray level 1(X, y, 2). Basing
ourselves on thework by [25], the surfaceis endowed with
the energy functional E(S).
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Segmentation of a region of interest in image | is
performed by determining the optimal surface S minimizing
E. The energy functional depends on two kinds of energies.
The first one quantifies the geometrical regularity of the
surface, whereas the second one is the external term,
depending on the distance between the surface and the salient
edges of theimage. First and second order partial derivatives
of Swith respect to u and v are smoothing terms. Coefficients
o, weight the significance of regularizing componentswith
respect to the external term. o, and w,, are the elasticity
coefficients, o, and w, aretherigidity coefficientsand o,
istheresistanceto twist. Since our segmentation is boundary-
based, Pisthe external term attracting surfacepointstowards
salient boundaries ontheimage. It must decreaseasthe edge
magnitudeincreases, hence we choose P =—| VI ||. It should
be noted that other attracting functions could be chosen, e.g.
adistance map with respect to the thresholded edge image.

To implement the active surface, we use the discrete
representation described in [12], which isatriangular mesh
made up of n vertices, denoted p, = (x, Y, z)" € R?, and
edges connecting the vertices (making a set of adjacent
triangles). In order torepresent the connectivity notion, each
vertex pi hasa set of adjacent vertices, denoted A. The mesh
isbuilt from successi ve subdivisions of an icosahedron [13]
[14], thus leading to a sphere-like surface with a
homogeneous vertex distribution (seefigure 1).

Figure 1. The basic icosahedron and its first two tesselations

Initialy devel opped for 2D active contours by Williams
and Shah in [5], thegreedy agorithm isan energy minimizing
method first proposed as an alternative to the variationnal
method [1] and the dynamic programming [15]. It hasbeen
recently used for 2D segmentation in [16] and [17]. In [6]
one may find an extension of thisalgorithm for 3D meshes.
Global energy minimization is performed via successive
local optimizations. Each vertex is endowed with its own
energy. Hence, unlikein eq. 2, the energy functional isthe
sum of vertex energies.

E(S)= Y. E(p) &)

At each iteration, a cubic neighborhood of sidelength
w around each vertex is considered (seefig. 2). The energy
is computed at each voxd belonging to the neighborhood
and thevertex is moved to thelocation leading to the | owest

energy. This approach avoids to perform gradient descent
of a partial derivatives equation, derived from the energy
functional using classical Euler-Lagrange scheme [13].
Hence, it isnot necessary to derive anaytically the energies,
with respect to vertex coordinates.

Figure 2: Cubic centered neighborhood

Unlikein the classical greedy algorithm, our methods
will deal with neighborhoods which are not necessarily
centered around the vertices. We define N, the
neighborhood of thei™ vertex at iteration t:

NO ={p® +r -5 |re[0, w-1°} (4)

5§ =(s,,s,,s,)" is the shift vector, representing the

coordinates of the i" vertex at iteration t relatively to an
original voxel chosen on the corner of the neighborhood. At
the beginning, all verticesare centered in their neighborhood,

hencewe have § = (w/2, w/2, w/2)".

The initial position being p,, we denote p’; a tested
location in the neighborhood. Once all energies have been
computed the new location of vertex p, is chosen:

(t+1)

pi” =ag min E(py) (5)

Theenergy of avertex at location p’, isa weighted sum
of discreteinternal and external energies, normalized on the
whole neighborhood.

E(P) = 4By (1) + BE,,(P) + 1E,, (P + SE,(P)  (6)
The coefficients a, B, y and & are the weights defining
the relative influence of the energies. The continuity E_|
andthecurvature E_ are discreteimplementations of first
and second order surface derivatives of eg. 2, respectively.
Parameters o controlsthe surface elasticity whereas 3 isthe
rigidity. They haveasimilar rolethan coeffici entsw, inthe
continuous mode!.

Let us describe the adaptation of the different energies
to our 3D model. The energies are intuitive extensions of
the 2D active contour ones, suitable to our mesh
representation. While the discretization of internal energies
is simple for a parametric snake, it is not obvious how to
implement the surface derivatives of eg. 2 in a triangular
mesh. For a discrete planar contour, the continuity is the
digtance between successive neighbors. However, likein [5],
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it is preferable to use the absolute difference between this
distance and a default length g , which may be the mean

distance computed over al vertices. Extending this principle
tothemesh, E__ maintainsthe vertices evenly spaced along
the surface. Minimizing it reducesthe gap between themean

squared distance 2 and thedistance between the considered
vertex and its adjacent vertices.

Eou(0)) = 3|0 [Ip; -
jeA
= ZlAlJEZA”pi_pj” (7)

Thesecond internal energy isthe curvature E_, , which
minimization resultsin alocal smoothing effect, by making
the vertex get closer to the centroid of itsadjacent vertices.
In a2D snake, curvatureisequivalent to the squared distance
between the vertex and the middle of its two neighbors. By
extension to 3D, the curvature of the tested point p/’ is the
squared distance between p,’ and the centroid of the
neighbors of vertex p..

Ecurv(pi') le __Z p] (8)

|Ali=
Note that for a given mesh vertex p,, E_, (p,) = Oif p,

and all its adjacent verticeslie on the same p?uz;]e To attract
vertices towards salient edges, the external energy Eye isa
function of normalized gradient magnitude g of imagel. In
presence of noisy data, theimageis smoothed with agaussan
filter prior to gradient operation. In thefoll owing equations,
G, isagaussian kernel with standard deviation o, * is the
convolution operator and g___isthe maximal edgeintensity

intheimage.

a(p) =1IVI(p) * G,lI/9,,,

E,.(p)) =-0(p) 9)
Asregards gradient magnitude, real 3D edge detection
is obtained by convolving the image with the Zucker-
Hummel operator [18], which usually yields better edge
localization than using direct finite differences. It is made
up of three 3x3x3 masks ZH , ZH, and ZH, each mask

filtering theimagein onedimension.

K 0 k||-k 0 k|l-k 0 Kk
ZH, =k, 0 k|| 0 k||-k 0 k| ()
-k 0 k]|-k O k]|-k 0 k

ko -k, Kk -k [k -k -k
{O 0 O]{O 0 0] 0 0 0] (11)
ko k ke ko kLK kK

-k -~k k][0 0 O|[k k Kk

K, —k3 —k2 00 0f[k k k|

-k -k, -k [[0 0 Oflk k Kk

3., N2,
k=" k=" k=1

To increase the capture range, we introduce a ball oon
energy E_, derived from theinflation force proposed in [19].

It allows the mesh to be initialized far from the object
boundaries.

Eoa (0)) =I1P; = (p; + ki) I (14)
where 0, is the unit inward normal, defined at vertex p..
Thenormal of vertex p, isthenormalized sum of thenormal's
of theneighboring triangles[14]. Rigoroudly, the normal of
atriangletistheunit vector orthogonal tothe plane defined
by t. In thefollowing expressions, T isthe set of neighboring
triangles of p.. The normal i, of a given triangle is the

normalized cross product between two vectors belonging to
the corresponding plane.

20

= teT; I

20

n, =
teT;

(13)

(P,
Il (e,

_ptl)x(pt3 _ptl)
_ptl)x(pt3 _ptl) ”

t =

(15

where Py, j = 1.3 arevertices of trianglet (p, must be one
of them). s =1 isthesign changing the orientation of n,

insuring that it points towards the interior of the surface.
Such a calculation of the normal vector is necessary to a
correct balloon implementation. The mation resulting from
the ball oon energy minimization iseither an expansion or a
retraction of the surface, depending on thesign of coffiecient
8. Thisone must be chosen regarding theinitial position of
the surface with respect to thetarget object.

In order to adapt | ocal topol ogy, remeshing is performed
after each iteration of the greedy algorithm. The mesh is
allowed to add or dd ete verticesto keep the distance between
adjacent vertices homogeneous, resulting in a stable vertex
distribution [20] [14] [21]. It insures that every couple of
adjacent vertices (p,, pj) satisfiesthe constraint:

d, <lp —pll<d, (16)
whered ; and d__ are two user-defined thresholds, such
that d < 2d . . We choose their values near the
neighborhood width w, so that the surface sampling is
consistent with the motion range of the vertices. Adding or
deleting vertices modifies local topology, thus topol ogical
constraints should be verified. To perform vertex adding or
deleting, p, and P, should shareexactly two common adjacent
vertices: |A N AJ| =2.When ||p, - pj|| >d ., anewvertexis
created at the middle of line segment PP, and connected to
p,and p, (seemiddle part of figure 3). When ||p, - pj|| <d.
P, isdeleted and p, is translated to the middle location (see
right part of figure 3).

3. THESHIFTED NEIGHBORHOOD METHOD

In order toimprove active surfaces completion time, weused
the shifted neighborhood method developed for 2D snakes
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Figure 3: Remeshing operations: vertex adding and deleting

in [10]. We adapted this greedy-based method on active
surfaces. For each vertex and at each iteration, we modify
the neighborhood in order to direct the searching space of
each vertex tothe directionsthat seemsthe most interesting.
To definewherethese directions are, weuse theinformation
of the direction followed by each vertex during the last
iteration. So each neighborhood will be shifted from one
voxd in thedirection followed previoudy. At each iteration,
we compute the next shift applied to the vertex with:

B( 11 Lp(Hl) (t))

The vector quantity d,“ represents the displacement

applied on the neighborhood of thei™ vertex at iteration t. B
isashift limiting function, bounding the vector coordinates
between two scalars:

ai(Hl) (17)

max(by, min(b,, u, )

B(by,b,,0) =| max(b;, min(b,,u,))

max (b, min(b,, u, ))

The displacement d** given by equation (17) allows

usto define the new shift vector §“** for each vertex of the
active surface. Thus we have:

s(Hl) — B(:LW_Z, S(t) _a_(Hl)
Algorithm 1 Shifted Neighborhood Method: 3D Modd

1: fort«<1toTdo
2 fori < 1tondo

min, E(p})

(18)

(19)

3 ptY=arg , v

4 d"=B(-11p" -p{”)

5. g =Bw-25"-d")

6 N = {p* +r -89 re[o,w-1°}
7 end for

8: endfor

Thenext iteration of the greedy algorithm will be helded
with these new neighborhoods. At this stage, we can define
the algorithmfor the shifted neighborhood method. Thislast
consists in computing the new neighborhood N9 with
equations (4), (17) and (19) at the end of each iteration, once
all the vertices of the active surface have been modified.
When included in the greedy algorithm for an active surface
of n vertices and T iterations, the shifted neighborhood
method isdescribed in algorithm 1.

4. THELINE SEARCH METHOD

The line search method [10] originally applied for two-
dimensional active contours allows to reduce completion
time efficiently. We adapted this method on 3D active
surfaces. The principle of this approach isto anticipate on
the next iteration of the greedy algorithm using the
information taken from the previous one. This method is
launched at theend of each iteration of the greedy algorithm,
onceall the vertices have been translated.

Thedirection followed by each vertex p, is memorized
and we look toward it for a fixed number of voxels, which
creates alinear neighborhood. Theselastsare compared by
computing their global energiesin asimilar way asit isdone
with the cubic neighborhood (see equation (6)). The voxel
giving the lowest energy isthen chosen for thenew location
of the current vertex. As a result, for each vertex, two
nei ghborhoods are scanned consecutively: the cubic centered
neighborhood and the linear neighborhood. The second
algorithm describestheline search method integrated in the
greedy algorithm for active surfaces. Let T be the number
of iterations to be done by the greedy algorithm and | the
number of voxels to be explored (length of the linear
nei ghborhood).

5. LEVEL SETANDFAST LEVEL SET
IMPLEMENTATION

In order to compare our methods with recent breaktroughs
in theimage segmentati on domain we adapted the Fast Level
Set implementati on method to our 3D segmentation problem.

Dynamic neighborhoods in active surfaces for 3D
segmentation 9

Algorithm 2: Line Search Method: 3D Mode

1: fort«< 1toTdo
2 fori < 1tondo

(t+1) _

3 pi" =ag min E(py)
et

4 Determinethedirection ||p(t+1) t)"

5: Line Search: m= argkrr?lq{E(p“ukv)}

6: Update p(“l) <_p(t+1 e

7. endfor

8. endfor

Basing ourselves on the work of Osher et al. [22] and
[7], weimplemented our active surface model with level sets.
We consider the parameterized surface S defined in section
2, on which we add a time dependency.

S: xR > R®

(u, v, £) — (X(u, v, 1), y(u, v, t), z(u, v, t))T (20)

The surface evolves according to the following partial

differential equation:
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oS(u,v,t) i
ot

where 7 isthe inward normal vector and F is the speed

function applied on the surface points. The surface boundary

isimplicitly represented as the zero-level of afunction ¢ :
R® x R* — R. It comes:

P(Su, v, 1),)=0 VY(u,v) e Q3 Vt>0 (22)

Function v evolves on its zero-level according to the

equation:

w: F (U v, )l VoS, v, |

If the speed function F isdefined over the entiredomain
R3 x R* then eg. 23 can be extended such as:

(21)

(23)

%:F(x,t)uw(x,t)n VxeR®, Vt20  (24)

The main advantage of thelevel-set implementation is
its ability to automatically handle topological changes.
Indeed, the curve can naturally split or merge with others
without any additionnal implementation. Unfortunately the
level-set method requires significant computationnal time.
Several methods have been devel oped in order to accelerate
the level-set implementation. The narrow band
implementation [8] allowsto decrease the complexity of the
algorithm from O(n?) to O(n), n being the size of theimage
grid. The author considers a band around the zero-level of
theleve-set function. Thepartial dierential equation (PDE)
is solved only inside this region and not in the entire
definition domain of ¢. Although this technique allows to
significally reduce computational time of the level-set
implementation, it still limitstheuse of the level-set inreal
time applications such as object tracking. Shi et al have
recently developed in [9] an acceleration method based on
the narrow band implementation called the Fast Level Set
method. Asit wasoriginally designed for 2D segmentation,
we extended it to 3D. The Fast Level Set method uses two
lists to represent the surface: the list of outside boundary
pointsL . and the list of inside boundary pointsL, .

Lo = {x19(x) > 0,3y e N(x), ¥y) < 0}
L, ={x] ¥(x) <0,3y e N(x), ¥y) > 0}
where N(x) isthe discrete neighborhood of x.

The authors assume v(x) totake only four integer values,
according to the position of x:

1 if xel,,
-1 if xeL,,
b(x) = o
3 if xisoutsideSandx¢L,,
-3 if xisinsideSandx gL,
The authors define the dicrete optimality condition for
the surfaceas:

Thesurface Swith boundary pointsL,_andL , isoptimal
if the speed function F satisfies:

(25)

(26)

Fx)<Ovxel ,adF(X)>0vxel, (27)
While this optimality condition is not reached, the speed
function F is calculated for every pointin L, _and L .. If
F(x) >0atapointin L_, the surface is moved outward. If
F(x) <Oatapointin L, thesurfaceismoved inward. Once
the surface has moved, the two lists are updated.

Themain ideaof thismethod isthusto make the surface
evolve without solving the PDE of 24 which requires
significant computationnal time but only by computing the
speed function F. Again, segmentation is boundary-based,
hence the surface should stop on strong edges. Asa result,
Fisafunction of curvature x and gradient magnitude.

FO) = I VIO =2, k< (X) (28)
The curvature regularizes and i s wei ghted by coecient
A Itis expressed asfollows:

K= div(LwJ
vl
(0] +03) + 0y (05 +03) + 0 (U5 4 05) = 2 thtby = 20 0ph, = 20,00,
B (WE g+ )
. . 0 0?
with notations V¥, =—w,1bxx =—12b,
OX OX

For more details and testings on the method one can
refer to [9]. The next section describes and compares the
results obtained on tested images with our greedy
accel eration techniques.

6. EXPERIMENTAL RESULTS

In this section, we present our experiments on 3D images.
We comparethe shifted neighborhood method and the line
search method to the classical greedy algorithm. This
comparative study also includes the results obtained with
implicit surface modeling implemented with the fast level
set method. Each tested image is made of several slices of
gray objects embedded in white backgrounds, highly
corrupted with gaussian noise. Dierent values of
neighborhood width w are tested (obvioudy, the shifted
neighborhood is not experimented with w = 3). For each
image, the surface isinitialized as a sphere with identical
center and radiusfor all evolution methods, independently
fromitsimplementation (amesh or alevel set).

In order to evaluate segmentation, we use a function
taking into account the overall distance between the
estimated boundary and ground truth. Let R be the set of
voxels bel onging tothereal boundary, and £ the set of voxds
bel onging to the estimated boundary. For each voxel on the
estimated boundary, we consider the distanceto the nearest
voxel on the real boundary, and conversely. The modified
Hausdor distance H, __ introduced in [23] measures the
averagefitting of the surface tothe real boundary.

H (& R)=max(h (£ R), h_(R,¢E)

1
h _(&R)= 77

B minlip-qll

(30)
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In what follows, we compare computational times
obtained on final surfaceshaving equivalent qualities, with
respect to the modifief Hausdo distance. Typically, H . have
values around 1, which corresponds to good fitting of the
real boundaries.

The first image is a 400 x 400 x 400 data set
representing a spiral and was chosen in order to test the
methods when vertex adding is enabled. The active surface
isinitialized insidethe 3D model with only 12 vertices. The
final meshes for the three methods contain about one
thousand vertices. We choosea. =0, 3 =0.5,y=2and s €
[-0.6,-1.1].

The second imageisa 200 x 200 x 200 moddl of avase
and isinteresting to test theinfiltration of the mode intothe
concavities. For thisparticular 3D dataset, remeshing of the
model is disabled. We use o = 0, B = 0.5 for the greedy
algorithm, 0.4 for the shifted neighborhood method and 0.3
for thelinesearch, y =2 and 6 = 0.8. Weinitializethe meshes
with 2562 vertices.

Thethird image represents three ellipsoids and all ows
to have both salient and smooth angles on the sasme model.
Theimagesizeis 200 x 200 x 200. We prevent remeshing
of the model and initialize it with 2562 vertices. The
parametersare o = 0.5, § = 0.3 for thegreedy algorithm and
0.4 for the shifted neighborhood method and the line search,
y=2andd €[0.3,0.7].

In order to compare boundary fitting ability of the
methods on real data, we tested them on computed
tomography (CT) data sets of the abdomen, in which the
active surface was used to detect boundaries of the aorta.
Such segmentation isdonein the framework of abdominal
aortic aneurysm diagnosis. The mesh was initialiazed as a

small sphere inside the aorta and inflated thanks to the
balloon energy. Figure4 shows one dlice of each image and
the visual 3D results obtained with the line search method.
Tables 1 and 2 list computational timesobtained on synthetic
and CT images, respectively. Each method and each window
width issystematically tested on theimages (tests were made
on aPentium IV 1.7 GHz with 512 Mb RAM).

Mesh-based methods (initial greedy algorithm, LS and
SN) need fewer iterationsthan thelevel set surfaceto reach
the boundaries, whichismainly duetothelevel set front. A
voxel neighboring the front (the L, list) needs more than
one iteration to changeits status, from outer to inner voxel.
An iterations of the level set method is also more
computationally intensive than one of the explicit methods.
The discretization of the evolving front is the same as the
image grid, so that each voxel | ocated on thefront needsto
be considered. On the mesh, the motion of avertex does not
aect itscoordinates but also all neighboring triangles, which
cover many voxels (the quantity of voxels depends on the
sampling resolution w). Asregards distance measures, it is
interesting to notethat explicit methods|ead to more accurate
resultsthan thelevd set approach, except on the“Vase” data
sat. Wemay assumethat level setsareglobally more sensitive
to noise and prone to boundary leakage issues, because of
theimplicit formul ation of theregularizing curvature energy,
which hasalimited range. On the mesh, theinterna energy
of avertex aects alarger portion of the surface. The better
performance of theimplicit surface on the“Vase” dataset is
explained by the presence of sharp angles at the shape
borders. Curvature prevents the mesh from fitting angular
parts accurately, whereasthelevel set surfaceisnot limited
thankstoitsdiscretization. Indeed, it can easily grow voxels
into small concave parts of the boundary.

Figure 4: 2D dlices of 3D noisy images (top) and surface results obtained with the line search method (bottom)
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Table 1

Comparison of Completion Times between Classical Greedy
Algorithm, Line Search Method (LS), Shifted Neighborhood
Method (SN) and Fast Level Set on Synthetic Data Sets

Image Neighborhood Method # iterations Time (s) Hmean
w=3 Greedy 400 0.30 0.497
Spiral LS 65 0.16 0.499
(400 x 400 x 400 w=5 Greedy 195 052 0.723
voxels) LS 63 0.30 0.734
SN 138 0.31 0.728
w=7 Greedy 145 0.63 0.985
LS 60 0.57 0.997
SN 97 111 0.991
Fast level set 1060 44.17 0.995
3 dlipsoids w=3 Greedy a7 0.63 0.534
(200 x 200 x 200 LS 19 0.41 0.545
voxels) Greedy 25 1.05 0.716
w=5 LS 12 0.69 0.734
SN 16 0.98 0.721
w=7 Greedy 18 224 0.961
LS 12 1.86 0.985
SN 14 2.07 0.972
Fast level set 120 30.82 1.030
Vase w=3 Greedy 155 0.98 0.665
(200 x 200 x 200 LS 68 0.72 0.687
voxels) w=5 Greedy 120 1.27 0.875
LS 50 0.85 0.896
SN 92 1.08 0.892
w=7 Greedy 109 1.98 1.337
LS 43 113 1554
SN 60 220 1423
Fast level set 210 47.04 0.815

Table 2

Comparison of Completion Times between Classical Greedy
Algorithm, line Search Method (LS), Shifted Neighborhood
Method (SN) and Fast Level Set on CT

(Computed Tomogr aphy) Data Sets

Image Neighborhood Method # iterations Time (s) Hmean
CT1 w=3 Greedy 580 25.30 1.324
(512 x 512 x 810 LS 98 17.7 1458
voxels) w=5 Greedy 330 9.65 1.694
LS 117  7.23 1.734

SN 256 8.03 1.710

w=7 Greedy 240 869 1936

LS 102 6.68 2.034

SN 168 9.73 1.967

Fast level set 1227 302.41 3.345

CT2 w=3 Greedy 425 18,57 1.125
(512 x 512 x 400 LS 96 1399 1.241
voxels) w=5 Greedy 242 7.08 1.439
LS 85 530 1.476

SN 187 5.89 1454

w=7 Greedy 176  6.37 1.646

LS 86 495 1.756

SN 136 7.16 1.672

Fast level set 750 185.07 2.381

CT3 w=3 Greedy 313 14.34 0.754
(512 x 512 x 400 LS 75 10.2 0.832
voxels) w=5 Greedy 178 5.23 0.965
LS 65 4.47 0.988

SN 137 4.86 0.974

w=7 Greedy 132 482 1104

LS 62 3.81 1.159

SN 96 549 1121

Fast level set 735 182.446 2.016

7. CONCLUSIONAND FUTURE WORK

In this article we have described two accel eration methods
for active surfaces evolving with the greedy algorithm. The
first oneisbased on asmart orientation of the neighbourhood
grid of each vertex regarding the directionsfollowed in the
preceding iterations. The second one usesthe samedirection
information to make each vertex search for a better position
along an exploration line. The main application domain of
our methods is time-dependent segmentation with a priori
knowledge about the topology of the object, such as 3D
videos. We compared our two accel eration methods with a
recent fast implicit implementation of active contour based
on thelevel-set approach.

Asshown in table 1 and 2, our methods allowed us to
accelerate the greedy algorithm for active surfaces. Mesh-
based methods (the greedy algorithm and our accel eration
methods) |eads to performances turning out to be far beyond
thelevel set-based method ones. Accd erations methods tend
to make completion time fall below 1s (for the best
configuration) whereas the fast level set approach exceeds
30s. The best acceleration method for 2D active contours
was the shifted neighborhood but we detected the line search
as the best to be applied on 3D active surfaces. The
explication isthat in three dimensions an exploration line
staysaline whereas a square neighborhood becomes cubic,
rising the completion times added by the shifted
nei ghborhood method.

We also tested the Deformed Neighborhood method
discribed in [10] but it was not ecient on active surfaces for
the same reasons. We can al so notice that the contribution
of the shifted neighborhood method is better with a large
neighborhood. | ndeed, the shiftings are dependent of itssize.

We are devel oping an hybrid model based on the shifted
neighborhood method and the physic-based approach of
parametric active contours[24]. Themain ideaisto usethe
information of the force vector to direct the shift of the
neighborhood grid. We also plan to upgrade the
performances of our methods by using a multi-resolution
approach.
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