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Digital geometry is a discipline dealing with geometric properties of digital objects. It provides an adequate mathematical
background for new advanced approaches and algorithms for various problems arising in visual computing. The present
paper is a brief survey on the applications of digital geometry to surface reconstruction, the latter being an important
problem of image analysis and processing.
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1. INTRODUCTION

Digital geometry deals with geometric properties of digital
objects (also called digital pictures). These are usually
modeled as sets of points with integer coordinates
representing the pixels/voxels of the considered digital
objects. Digital geometry has its roots in a number of
classical mathematical disciplines, such as number theory
(since C. F. Gauss), geometry of numbers (since H.
Minkowski),  graph theory (since L. Euler), and
combinatorial topology (since the middle of the 19th
century). It has established itself as an independent discipline
comparatively recently, in the second half of the 20th century,
with the initiation of research in visual computing, including
various applied areas such as image analysis and processing,
computer vision, computer graphics and, more recently,
multimedia technologies. The nature of the used research
approaches and the obtained results put digital geometry on
the border of applied mathematics and theoretical computer
science, as the framework of the performed research is
determined by practical applications in mind.

At present, research in digital geometry requires
knowledge of a variety of mathematical disciplines, such as
number theory, geometry of numbers, classical Euclidean
geometry, analytical geometry, affine geometry, projective
geometry, algebraic geometry, linear algebra (vector spaces,
metric spaces), combinatorial geometry, discrete geometry,
tilings and patterns, computational geometry, general
topology, combinatorial topology, graph theory, linear
programming, integer programming, Diophantine equations,
polyhedral combinatorics, lattice polytopes, mathematical
morphology, discrete dynamical systems, fractal theory,
combinatorics on words, approximation theory, Diophantine
approximations, continued fractions, probability theory and
mathematical statistics, design and analysis of algorithms,
and complexity theory, among others. Knowledge and
approaches from the above-listed subjects are used to obtain

theoretical results and design algorithms for solving various
specific problems. Occasionally, results of digital geometry
turn out to be known in different terms in the framework
of earlier studies. Overall, however, digital geometry
has provided a lot of new results, some of which are
not only useful regarding specific practical applications, but
also technically sound and deep from mathematical point of
view.

Digital geometry is germane with discrete geometry that
deals with similar matters but from a bit more general
perspective (see the topics of Mathematical Subject
Classification number 52Cxx). In particular, discrete
geometry includes a number of subjects (e.g., ones related
to matroid theory) that are not directly connected with
computer imagery, and tackles them from more abstract point
of view. Instead, digital geometry is closely focused on
problems arising from image analysis and
processing,computer graphics, computer vision, and related
disciplines. Below we list some basic subjects of digital
geometry, among others.

Digital topology (topology of digital objects, basic
topological invariants, topology of digital curves and
surfaces, topology of linear digital objects, classification of
digital topologies).

Geometry of digital manifolds (geometry of digital
curves and surfaces, digital straightness in 2D and 3D, digital
planarity, length and curvature of digital arcs, area and
curvature of digital surfaces, digital convexity).

Transformations (axiomatic digital geometry,
transformation groups and symmetries, neighborhood-
preserving transformations, magnification  and
demagnification).

Discrete Tomography

Morphologic operations (dilation, erosion, simplification,
segmentation, decomposition)
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Deformations (topology-preserving deformations,
shrinking, thinning; deformations of curves, 3D pictures, and
multivalued pictures).

Picture properties (moments, operations on pictures,
invariant properties, spatial relations).

For detailed presentation of these and other areas of
digital geometry the reader is referred to the recent
monograph [41].

Digital geometry is developed with the expectation to
provide an adequate theoretical (mathematical) background
for new advanced approaches to and algorithms for solving
various problems arising in visual computing.

In a recent paper [9] we have discussed the mathematical
foundations, motivations, purposes, and basic directions of
digital geometry. In the present survey we focus our attention
on an important problem of visuall computing, known as
surface reconstruction. Basically, given a set of voxels
obtained, e.g., through digitization of some (usually
unknown) real object, one aims to obtain a continuous (e.g.,
polyhedral) surface that faithfully models the surface of the
original real object.

In the next Section 2 we provide an overview of some
advantages and disadvantages of discrete and continuous
object representations. In Section 3 we briefly present some
basic approaches to polyhedrization. In Section 4, we
consider more in detail the digital geometry approach. In
Section 5 we exhibit relations between digital object
polyhedrizationand multigrid convergent estimators. In
Section 6 we discuss complexity issues. We conclude with
some remarks in Section 7.

2. SURFACE REPRESENTATION

Traditionally objects in computer graphics are represented
through their outer surfaces which are modeled in various
ways: via meshes of polygons, 3D splines, or operations on
curves. This approach, called continuous, is based on the
classical Euclidean geometry and has a number of advantages
(see, e.g., [35]) In particular, geometric transformations such
as rotation and scaling can easily be performed applying
simple formulas. Continuous representations have compact
mathematical models and hence do not require a lot of
memory. From these models, it is easy to obtain the area,
perimeter, distances, and other object characteristics.

On the other hand, the main computer system
components (the processor, memory, raster display, and
keyboard) have a discrete nature. Thus, it is logical to
represent the objects in discrete form too, e.g., as a set of
3D integer points contained in the object. This approach is
very appropriate for sampled data, obtained through various
types of scanners or measurements, as well as for porous
objects and amorphous phenomena. Although discrete
representations usually require more memory than their
continuous counterparts, the visualization performance is
insensitive to scene complexity and direct rendering can be
performed. Certain Boolean and set operations such as

intersection, union, and difference can easily be performed,
which is not the case in continuous representation.

Clearly, each of these representations has certain
advantages that are not available in the other one. Thus, it is
an important task to develop techniques for correct
conversion from continuous to discrete representation and
vice versa. For example, a large amount of discrete medical
information obtained by a scanner may need to be
represented in a continuous (e.g., polyhedral) form for
efficient storage. Alternatively, later on the continuous
representation of that medical image may need to be
converted back into a discrete form for the purposes of high
quality visualization. Further discussion on the possible
benefits of each form of representation is given next.

2.1 Digitization

Some basic advantages of discrete representations have been
mentioned above. Because of these, related discrete models
attract growing interest among a broad group of researchers.
In addition to the major applications in medical imaging,
one can list many in 3D image processing (e.g., time-varying
2D images), biology (e.g., confocal microscopy), geology
(e.g., seismic measurement), synthetic volume visualization
(e.g., in studies of galaxy, fluid dynamics, and molecular
structures in chemistry), CAD (e.g., solid modeling), robot
mapping using laser range finders, 3D animation, 3D
simulation (e.g., instrumentation simulation), as well as
applications merging empirical and synthetic images.
Therefore, having very efficient and precise methods for
digitization of continuous object is paramount.

Some methods for efficient digitization of polyhedral
surfaces have been reviewed in [9]. In the rest of this paper
we focus our attention on the continuous form of surface
representation, more specifically, on polyhedrization of
digital objects.

2.2 Polyhedrization

Let M be an arbitrary discrete set of integer points
representing a real three-dimensional object S. M can be an
empirical 3D medical image of S obtained using tomography
scan of a human scalp, or a digital image of some live tissue
obtained by magnetic resonance imaging techniques, or a
synthetic image representing a medical instrument (such as
an injection needle) or any technical devise (e.g., an aircraft).
The problem of interest is to obtain a polyhedral
representation of M. Because of its rich set of applications
in solid modeling, computer vision, and computer graphics,
this problem has been extensively studied by a large number
of researchers that have applied diverse approaches (see
Section 3). A recent monograph [25] summarizes some of
the works based mainly on computational geometric
techniques. An important requirement for  such a
representation is to preserve the topology of the original real
object. Topological properties—such as connectivity,
separability, and genus—play an important role since these
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are the most primitive object features to which the human
visual system is well-adapted. This may be vital for
the purposes of faultless simulations as well as from a point
of view of the theory of knowledge representation (see
Section 3).

Another issue is the optimality of the obtained
representation. For instance, for the purposes of economic
encoding one can require that the number of linear
constraints defining the representation be minimal or as close
to the minimal as possible. To certify such a closeness means
that upper and lower bounds on the algorithm performance
are to be established (see Section 6).

3. BASIC APPROACHES TO POLYHEDRIZATION

Given a digital image M � �3, one looks for a (possibly,
non-convex) polyhedron P, which is called a continuous
reconstruction of M. We will also say that P encloses M.
The problem of finding such a polyhedron P will be referred
to as polyhedrization of M.

In recent years digital object polyhedrization is
attracting an increasing interest, mainly driven by its rich
set of applications. A substantial body of literature has been
developed on the subject. A brief survey on the basic
approaches and results is given next.

3.1 The Grid-Based Approach

A classical approach for generating an enclosing polyhedron
P for a given set M � �3 is the grid-based approach. The
most popular method belonging to this class of methods is
the Marching Cubes algorithm (MC)[48]. Informally, for
each “border” voxel of M this algorithm generates a
triangular patch of a surface contained in the voxel. Then
all these patches are “glued” together thus forming a
triangulated surface as a boundary of P.

Despite of its popularity, the MC algorithm has a number
of shortcomings. Often, the number of the triangular facets of
the obtained polyhedrization is very large, comparable with
the number of the integer points of M. Another problem may
be caused by some ambiguities in the polygon linking in the
process of obtaining the polyhedral representation. As a result,
P may contain small holes  [26, 53]. Many authors have
studied the problem and have proposed approaches to
guarantee that the obtained polyhedrization is “topologically
sound” (see, e.g., [17, 47, 26, 29, 45, 52, 53, 68]). However,
the latter only means that the result is a true manifold. It does
not necessarily ensure that the actual topology of the original
real object S is preserved. The first result that provides such a
guarantee for a certain class of 3D objects has been obtained
recently. It is discussed in Section 3.3.

Let us mention that a recent work [6] proposes a grid-
based algorithm for computing a polyhedral surface with the
same topology as S. However, that algorithm assumes that
the boundary of S is the zero-level set of an available implicit
function g: �3 � � of class C2. Such a function is not
necessarily known, in general.

3.2 Voronoi-Based Algorithms

Another approach to polyhedrization is based on the
traditional computational geometry techniques [1, 25]. The
basic idea is to define a Voronoi diagram whose vertices are
the points of M and then to select a subset of triangles of the
Voronoi diagram defining a triangular mesh. To get
acquainted with the concept of a Voronoi diagram and its
use in computational geometry the reader is referred to [55].
It is proved that if the set of integer points M satisfies a
certain sampling density restriction then the obtained
triangular mesh is guaranteed to be homeomorphic to the
boundary of the digitized original real set S, that is, the
topological properties of the object are preserved.

The main weakness of Voronoi-based algorithms is that
in practice it is not so easy to assure the conditions under
which such guarantee exists  [15]. Thus, for larger sets M
the algorithms of this type (e.g., [1, 25]) are basically non-
applicable.

Similar to the grid-based algorithm from [6], there are
also Voronoi-based topology preserving algorithms which
assume that the boundary of S is the zero-level set of an
available implicit function g: �3 � � of class C1 [7,16].
However, the function g may not be always known, in
general.

3.3 Topology Preserving Methods

Topology deals with the invariance of fundamental object
features such as connectivity and separability. As already
mentioned, these are among the most primitive object
characteristics to which the human visual system seems to
be well-adapted. Since humans do not have direct access to
spatial properties of real objects, the latter are usually
represented as bounded subsets of the Euclidean space R3.
From point of view of the theory of knowledge
representation, this relates two different representations of
real world objects: discrete and continuous.

Two of the first books in computer vision deal with the
relation between the continuous object and its digital images
obtained by a digitization process. Pavlidis [54] and Serra
[61] proved independently in 1982 that an r-regular
continuous 2D set S and the continuous analog of the digital
image of S are homeomorphic. (Recall that a set A � �n is
called r-regular if for each point x from the boundary of A
there exist two tangent open balls of radius r at x such that
one lies entirely in A and the other entirely in its
complement.) An analogous result in the 3D case remained
an open question for over 20 years. The problem was solved
only recently [64]. A further task is seen in considering more
general cases, e.g., when the original set is not r-regular.

4. ALGORITHMS BASED ON DIGITAL
PLANARITY PROPERTIES

In this section we consider more in detail another class of
algorithms that exploit properties of digital planarity and
based on them routines for digital plane segment recognition
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[8, 13, 23, 38, 39, 42, 62, 63, 67, 69]. Comprehensive surveys
on digital planarity and related matters are available in [12,
20]. A short introduction to the matter is given next.

4.1 Digital Planarity

Similar to classical geometry, linear objects play a central
role in digital geometry. Theoretical research on digital
planarity is naturally driven by important practical
applications in image analysis, pattern recognition and
volume modeling. In this section we review some basic
algorithms for digital plane recognition, digital surface
segmentation, and digital polyhedra generation. Before that,
let us recall one of the available several equivalent definitions
of a digital plane.

Definition 1. A set D
a,b,c,µ,� = {(i, j, k) � �3 : � � ai + b

j

+ ck < � + �} is called a digital plane with normal n = (a, b,
c), intercept µ, and thickness �.

If �= max {|a|, |b|, |c|}, then D
a,b,c,µ,� is called a naive

plane, that is the thinnest hole-free digital plane. A digital
plane with � = |a| + |b| + |c| is called standard. A digital
plane segment (DPS) is a connected portion of a digital
plane. One can define lower (resp. upper) supporting points
that determine the lower (resp. upper) supporting continuous
planes defining a digital plane (see Figure 1). The preimage
of a DPS, S, is the set of planes whose digitizations contain
S. It appears to be the solution of a system of linear
inequalities with unknowns �

1
, �

2
, and �. Thus, it is a convex

polyhedron (possibly empty).

by least-square optimization), and [50, 55, 67, 14] (linear
programming when the dimension is fixed). [24] proposes
an approach based on tests for existence of lower and upper
supporting planes for a given set of points.

[28] suggests a recognition method for DPSs by
converting the problem into a system of n2 linear inequalities,
where n is the cardinality of the given set of points. The
system is solved by the Fourier elimination algorithm. One
can also apply the CDD algorithm1 for solving systems of
linear inequalities by successive intersection of half-spaces
defined by inequalities [30]. A very efficient incremental
algorithm based on a similar approach is proposed in [42].
It also provides a polyhedrization of a given digital surface.

Typical timing results for the last three algorithms are
shown in Figure 2, using a polyhedrized digital ellipsoid at
grid resolutions ranging from 10 to 100.

Figure 1: Illustration of a subset of a digital plane D7,17,57,0,57 with
its lower and upper convex hulls on the supporting
planes

4.2 DPS Recognition

DPS recognition and digital surface segmentation are
fundamental problems in image analysis. Table 1 lists
different algorithms and their computational costs. All
complexity bounds are given with respect to the number n
of grid points in S.

In [65] a DPS recognition algorithm based on convex
hull separability is proposed. The recognition of DPSs in
grid adjacency models is discussed in [66, 40] (recognition

Figure 2: Running times of three DPS recognition algorithms on
a PIII 450 running Linux
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4.3 Polyhedrization Algorithms

Digital planarity based algorithms are all of greedy type.
They augment “digital facets”—portions of digital planes—
of the input set M. The augmentation process results in a
“digital polyhedron” whose facets are “digital space
polygons” that are portions of digital planes. Digital facets
are subsequently transformed into polygons that constitute
the facets of the resulting polyhedron.

Specifically, one of the most efficient algorithms [42]
takes advantage of certain geometric properties of digital
planes and repeatedly updates a list of supporting planes.
The set of points is accepted as a DPS iff the final list of
planes is non-empty. The updating step is time-efficient.

One can perform a breadth-first search of the face graph
to agglomerate the faces into DPSs. Figure 3 illustrates
results of the agglomeration process for a digitized sphere
and for an ellipsoid with semi-axes 20, 16, and 12. Faces
that have the same gray level belong to the same DPS. The
respective numbers of faces of the digital surfaces of the
sphere and ellipsoid are 7,584 and 4,744, respectively. The
numbers of DPSs are 285 and 197; the average sizes of these
DPSs are 27 and 24 faces.
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Table 1
Algorithms for DPS Recognition

Reference Description Complexity Comments

Kim 1984 [37] Detection of a supporting plane O(n4) Based on an incorrect theorem

Megiddo 1984 [50] Linear programming O(n)

Preparata & Shamos 1985 [55] Linear programming O(n log n) Provides the complete preimage

Kim & Stojmenović 1991 [39] Detection of a supporting plane O(n2 log n) Optimized [37], also based on
an incorrect theorem

Stojmenović & Tosić 1991 [65] Convex hull separability O(n log n)

Veelaert 1994 [66] Evenness property O(n2) Rectang. DPS

Debled-Renesson & Arithmetic structure n.a. Rectang. DPS
Reveillès 1994 [23]

Reveillès 1995 [56] Arithmetic geometry O(n) Rectang. DPS

Vittone & Chassery 2000 [67] Linear programming and Farey series O(n3 log n) Preimage computation with
arithmetic solutions

Klette & Sun 2001 [42] Comb. procedure n.a.

Buzer 2002 [14] Linear programming for O(n) On-line algorithm
DPS recognition

Gérard et al. 2005 [33] Convex hull analysis O(n�) Fast algorithm in practice

Figure 3: Agglomeration into DPSs of the faces of a sphere and an ellipsoid (grid resolution h = 40)

Figure 4: From left to right: A polyhedrized sphere and ellipsoid; The polyhedrized sphere and ellipsoid where the breadth-first
search depth is restricted to 7
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To complete the polyhedrization process, one sets all
the face vertices that are incident to at least three of the DPSs
to be vertices of the polyhedron. The first two subfigures of
Figure 4 show the final polyhedra for the sphere and
ellipsoid. Note that the surfaces of these polyhedra are not
always hole-free.

Restricting the depth of the breadth-first search changes
the polyhedrization from global to local and results in “more
uniform” polyhedra. The last two subfigures of Figure 4 show
results when the depth is restricted to 7. The number of small
DPSs is reduced and the sizes of the DPSs are more evenly
distributed. The respective numbers of DPSs are 282 and
180 and their average sizes are 27 and 26. Note that these
are nearly the same as in the unrestricted case.

The output of Klette-Sun’s algorithm is not, in general,
a valid polyhedron but like a patchwork of planar segments.
It is desirable to obtain a polyhedron with the following
reversibility property: the polyhedron digitization coincides
with the originally given set of grid points. Some recent
algorithms [21, 22] combine ideas from Marching Cubes
and digital planarity approaches. They appear to be reversible
and attempt to achieve a smaller number of polygonal facets
by employing linear programming techniques [21].

The main idea of the algorithm from [22] is to simplify
the polyhedron obtained by the Marching-Cubes (MC)
algorithm [48], using information about the digital surface
segmentation. Recall that the MC considers local grid point
configurations to replace them by small triangles composing
the global isosurface. With a reference to [43], the obtained
triangulated surface is a combinatorial manifold. In other
words, the surface is closed, hole-free and without self-
crossing. Furthermore, the object boundary quantization of
this polyhedron is exactly the input binary object. See the
first two subfigures of Figure 5.

The output of the algorithm is a digital polyhedron such
that a large facet is associated to each recognized DPS. The
facets of the polyhedron are stitched together by strips of
triangles. These triangles are called non-homogeneous in
[22] because their three vertices do not belong to the same
digital plane. The obtained polyhedron is a combinatorial
manifold and possesses the reversibility property. See the
last two subfigures of Figure 5.

For more details on the presented problems and
algorithms we refer to the recent survey on digital planarity
[12].

The practical computational efficiency and performance
of some of the described algorithms is satisfactory. However,
similar to the Marching Cubes algorithms, the obtained
polyhedral surface is not always a manifold surface and, in
general, these algorithms are not topology preserving [42].
Also, due to the specificity of the augmentation processes
and the very nature of the underlying discrete structure, the
appearance of the obtained polyhedron may be non-
satisfactory regarding some applications. Thus sometimes
the obtained polygonal facets may be non-convex (Figures
4, 5) or may significantly differ in size (Figure 5); see [12]
for more details and illustrations. Bounds on these
algorithms’ performance are not available. Coping with the
above problems is seen as a challenging further task.

5. MULTIGRID CONVERGENT ESTIMATORS
AND POLYHEDRIZATION

Polyhedrization is also useful for the purposes of geometric
approximation of digital surfaces and estimation of their
properties. Estimating geometric features (properties) of
digital objects without any knowledge of the corresponding
continuous shape is a classical problem in image analysis
and pattern recognition. Some of the estimated geometric
properties—such as area, perimeter, and moments—are
global, while others—such as tangent, normal, and
curvature—are local. A desired property of an estimator is
to converge to the actual value of the real (continuous) object
as the digitization resolution increases. (Roughly speaking,
this interprets the possible improvement one can gain as a
result of improvement of technology.) Problems of this kind
are related to some important questions in number theory
and therefore have long ago attracted the attention of
mathematicians like C. F. Gauss [32] and R. Lipschitz [46].
Some estimators (known as “moments”) admit physical
interpretations, e.g. in terms of total mass or inertia of an
object. More details and an extensive list of references are
available in the recent monograph [41].

A general scheme for comparing measurements made
on digital pictures with the actual measurement on the
preimage in the Euclidean space has been suggested by J.
Serra [61]. Specifically, let � be a family of sets S � �n, and
let dig

h
(S) denote a digitization of S on a grid of resolution

h. (Grid resolution h is the inverse of the grid constant that
refers to the number of grid elements per unit of distance

Figure 5: From left to right: A {0, 1}-binary object; A Marching-Cubes surface obtained with an iso-level in (0, 1); Final result on
the object from the left; Result on a sphere of radius 25
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without specifying the physical size of the unit.) Assume that
a property Q (e.g., area, volume, or curvature) is defined
for all S � �. An estimator E

Q
 is multigrid convergent for �

and dig
h
 iff for any S � � there is a grid resolution h

S
 > 0,

such that the estimated value E
Q
(dig

h
(S)) is de.ned for any

grid resolution h > h
S
 and |EQ(dig

h
(S)) – Q(S)| � k(h), where

k is a function defined on � that takes only positive real
values and converges to zero as h tends to infinity. The
function k specifies the speed of convergence of the
estimator.

Despite a lot of work in the field many problems are
still open. For instance, several convergent estimators of
global properties have been designed while the existence of
ones for most of the local properties is still an open question.

Moreover, there has been very little work that extends
these results to higher dimensions. While a lot of estimators
exist for properties of digital curves (see the extensive
bibliography at the end of Ch. 10 of [41]), the study of the
problem in higher dimensions is still in a very initial stage
(see, e.g., [36, 42, 44, 69]).

Note that some basic methods for obtaining estimators
of digital curve properties are based on finding an
appropriate polygonization of the curve [41]. Thus, on the
basis of the obtained results on digital volume
polyhedrization, new reasonable definitions of area, normal,
tangent lines/planes, and curvature of (appropriately defined)
digital surfaces are to be sought and algorithms for their
efficient computation are to be designed.

6. COMPLEXITY ISSUES

Given a polyhedron P � �n, the number of its i-dimensional
facets (i-facets, for short) is denoted by f

i
(P), 0 �� i �� n.

Usually, the 2-facets of P are required to be convex polygons,
as two adjacent polygons may be co-planar. Their number
f

2
(P) is desired to be as small as possible. Note that the latter

is a “soft” constraint. It describes the quality of the
polyhedron that may not be related to the real object.

Let us define polyhedral complexity of M as PC(M) =
min

P
 {f

2
(P) : P is an enclosing polyhedron for M}. If f

2
(P) =

PC(M), P is minimally enclosing for M. Although there has
always been an evidence that finding a minimally enclosing
polyhedron is computationally hard, obtaining a formal proof
was an open problem for a long time. It was very recently
proved that the following version of the problem is strongly
NP-hard [10]:
Optimal Discrete Volume Polyhedrization (OptDVP):
Instance: A set M � �3 and a bound � � �

+
.

Problem: Decide if there is a polyhedron P, such that
M = P

Z
 and with no more than � facets that are all convex

polygons some of which may be co-planar.
The NP-hardness of the optimization version of discrete

volume polyhedrization suggests to look for efficient
approximation algorithms with guaranteed bounds on their
performance, i.e., ones showing how far the obtained
solution is from the optimal one. One can also study the

computational complexity of finding a minimally enclosing
polyhedron as well as the polyhedral complexity for certain
interesting classes of digital objects. The intrinsic complexity
of the problem makes it a true challenge to researchers in
computational mathematics and theoretical computer
science. It explains the overwhelming usage of greedy
algorithms, that, as a rule, are not accompanied by rigorous
performance estimations. Note that this is not the case in
two dimensions where an optimal solution can be found in
linear time [27].

6.1 Results on Polyhedral Complexity

The proposed study of the polyhedral complexity of a given
discrete set of points is germane with studies in the theory
of lattice polytopes and polyhedral combinatorics [2, 3, 4,
5, 18, 19, 34, 49, 51, 57, 58, 59] and integer and linear
programming (see, e.g., [60]). The case when the digitized
set S is convex is the only non-trivial special case where
theoretical bounds are available for the number of facets of
a minimally enclosing polytope. Here an enclosing polytope
for M = S

Z
 is provided by the convex hull of M that can be

computed in time O(|M|2) [55]. The following results are
valid in arbitrary dimension n. Let S � C(D) where C(D) is
the family of convex bodies with C2 boundary and radius of
curvature at every point and every direction between 1/D
and D, D � 1. Under this conditions, the following upper
bound for the number of facets of P = conv(S

Z
) holds [5]:

For every n � 2 there are constants c
1
(n) and c

2
(n) such that

for all k � {0, 1, . . . , n – 1}, 
1 1

1 1
1 2( ) ( ) ( ) ,

n n
n n

n n
kc n d f P c n d

� �
� �� �

where d = diam(P) is sufficiently large. In the particular case
of interest n = 3 we have c

1
d3/2 �  f

k
(P) � c

2
d3/2 for some

positive constants c
1
 and c

2
. The second of the above two

inequalities provides an upper bound O(d3/2) for the number
of facets of a minimally enclosing polytope. By using results
from the theory of lattice polytopes and integer
programming, the following lower bound have been recently

obtained: 
( 1) 1

* ( 1)[ / 2] [ / 2]
1( ) ( ) log ,

n n n

n n n
n S Sf P c n d d

� �
�

� �  where P* is

a minimal enclosing polytope for M [10, 11]. This last result
implies an upper bound on the performance of the convex
hull algorithm. In particular, for n = 3, it follows that

22
0*

2

( )
log

( ) S

f P
d

f P
��  for some constant �

0
 ���

+
. Thus for a

convex set S, the convex hull algorithm finds an enclosing
polytope for M with a guaranteed performance. Moreover,
a digitization scheme is presented in [11] so that the convex
hull polyhedrization is reversible.

The polyhedral complexity of some interesting classes
of digital objects and related issues have been studied also
experimentally [20]. It may be of interest to have information
about the number of vertices and facets of the convex hull
of portions of digital planes. Figures 6 and 7 illustrate some
results obtained for  two extreme cases: digital
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(hyper)rectangle and digital (hyper)disc. One can see that
for the case of dimension three the number of vertices
increases quite slowly with the increase of the object size.
This suggests that the average performance of certain
algorithms may be significantly better than the theoretical
worst-case bounds.

7. CONCLUDING REMARKS

In this paper we considered the problem of digital object
polyhedrization. In particular, we reviewed some common
approaches to the problem and demonstrated the potential
usefulness of digital geometry to such kind of problems.
Relations to multigrid convergence estimators as well as
complexity issues have been outlined. Some general
shortcomings of the existing methods have also been
mentioned. The latter can appear as a starting point for future
research in the area.

The paper is an extended version of [9] and is based on
a Keynote talk given by the first author at the International
Conference CompIMAGE’06–Computational Modelling of
Objects Represented in Images: Fundamentals, Methods and
Applications, Coimbra, Portugal, October 21-22, 2006.
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digital planes by least square fits and generalizations.
Graphical Models and Image Processing 58, 295–300, (1996).

[41] Klette, R. and A. Rosenfeld, Digital Geometry–Geometric
Methods for Digital Picture Analysis, Morgan & Kaufmann
Pu., San Francisco, (2004).

[42] Klette, R. and H. J. Sun, Digital planar segment based
polyhedrization for surface area estimation. In: C. Arcelli, L.P.
Cordella, and G. Sanniti di Baja (Eds.), Visual Form, Springer,
Berlin, 356–366, (2001).

[43] Lachaud, J. O. and A. Montanvert, Continuous analogs of
digital boundaries: A topological approach to iso-surfaces,
Graphical Models and Image Processing, 62 , 129–164,
(2000).

[44] Lenoir, A., R. Malgouyres, and M. Revenu, Fast computation
of the normal vector .eld of the surface of a 3D discrete object,
In: Discrete Geometry for Computer Imagery’96, LNCS 1176,
101–112, (1996).

[45] Lewiner, T., H. Lopes, A. Wilson, and G. Tavares, Efficient
implementation of marching cubes cases with topological
guarantee, Journal of Graphics Tools 8, 1–15, (2003).



172 International Journal of Computational Vision and Biomechanics

[46] Lipschitz,  R.,  Asymptotische Gesetze gewisser
zahlentheoretischer Functionen, Monatsbericht Königl.
Akademie der Wissenschaften zu Berlin, 174–184, (1865).

[47] Lopes, A. and K. Brodlie, Improving the robustness and
accuracy of the Marching Cubes algorithm for isosurfacing,
IEEE Transactions on Visualization and Computer Graphics
9(1), 16-27, (2003).

[48] Lorensen, W. E. and H. E. Cline, Marching cubes: a high
resolution 3d surface construction algorithm, Computer
Graphics 21(4), 163–169, (1987).

[49] McMullen, P., The maximum number of faces of a convex
polytope, Mathematica 171, 179–184, (1970).

[50] Megiddo, N., Linear programming in linear time when the
dimension is .xed. J. ACM 31, 114–127, (1984).

[51] Morgan, D. A., Upper and lower bound results on the convex
hull of integer points in polyhedra, Mathematika 38, 321–328,
(1991).

[52] Nielson, G. M., Dual Marching Cubes, In: Proc. of the 15th
IEEE Visualization 2004 (VIS’04), 489–496, (2004).

[53] Nielson, G. M. and B. Hamman, The asymptotic decider:
resolving the ambiguity in Marching Cubes, In: Proc. of the
2nd IEEE Conference on Visualization (Visualization’91), San
Diego, CA, October 22–25, (1991).

[54] Pavlidis, T., Algorithms for Graphics and Image Processing,
Computer Science Press, (1982).

[55] Preparata, F. P. and M. I. Shamos, Computational Geometry:
An Introduction, Springer, New York, (1985).

[56] Reveillés, J. P., Combinatorial pieces in digital lines and planes.
In: Proc. Vision Geometry IV, SPIE 2573, 23–34, (1995).

[57] Rubin, D. C., On the unlimited number of faces in integer hulls
of linear programs with a single constraints, Operations
Research 18(5), 940–945, (1970).

[58] Schevchenko, V. N., On the number of extreme points in integer
programming, Kibernetika 2, 133–134, (1981).

[59] Schevchenko, V. N.,  Algebraic approach in  integer
programming, Kibernetika 4, 36–41, (1984).

[60] Schrijver, A., Theory of linear and integer programming,
Chichester, Wiley, (1986).

[61] Serra, J., Image Analysis and Mathematical Morphology,
Academic Press, (1982).

[62] Sivignon, I., De la caract´erisation des primitives ‘a la
reconstruction polyédrique de surfaces en géométrie descréte,
Ph.D. thesis, Institut National Polytechnique de Grenoble,
France, (2004).

[63] Sivignon, I., F. Dupont, and J. M. Chassery, Decomposition of
three-dimensional discrete objects surface into discrete plane
pieces, Algorithmica 38, 25–43, (2004).

[64] Stelldinger, P., L.J. Latecki, and M. Siqueira, Topological
equivalence between a 3D object and the reconstruction of its
digital image, IEEE Transactions on PAMI, 29 (1), 126–140,
(2007).
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