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The study of the motion of deformable objects is one of the most important topics in computer animation, computer modelling,
and so on. This paper presents a dynamic evolution model in order to deform parametric surfaces with linear complexity.
The deformation model is based on an associated energy to one surface, that it check the shape of it. The associated
variational formulation to the problem of minimize the energy functional is solved using the finite element method based on
B-splines. The spatial discretization where these finites elements are defined and computed shows as a reduced number of
control points is deformed instead of all the surface points, obtaining an efficient numerical scheme.
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1. INTRODUCTION

The deformation models include a large number of
applications, and they have been used in fields as edge
detection, computer animation, geometric modelling, and so
on. In this work, a deformation model will be introduced that
uses B-splines as finite elements. This theory was introduced
by Höllig in [Höllig 2003]. In fact, we have used a variational
formulation similar to the used one in [Cohen 1992] changing,
among other things, the selected finite elements.

The most used finite elements for surfaces are triangles,
squares, among others; with them, it is easy to make a mosaic
that it fills all space, but this technique needs long
computation time since we must use some big data structures
to solve our problem. This data structure are bound by the
quantity of surface points that we must to take to obtain a
good approximation of the surface.

In this work1, we have applied the finite elements method
based on B-splines to solve numerically a partial differential
equation problem. The advantage to use B-splines finite
elements is that it combines the computational advantage of
B-splines and standard mesh-based elements. Thus, we will
obtain a data structure smaller than the obtained one using
the usual finite elements.

This work is organized as follows. In section 2, we
define the uniform B-splines used to introduce finite
elements. First, we introduce one dimensional B-splines: we
display the recurrence relation they verify and how to
compute their derivatives. Next, we define the multivariate
B-splines. The section finishes with the definition of a B-
spline parametric surface. Section 3 is devoted to the model
of surface deformation where we have applied the finite
elements methods using B-splines. Once we have introduced

the partial differential equation verified by the surface, we
have solved it numerically in section 4. In this section, we
have raised the variational formulation to follow with its
spatial and temporal discretization where the finite elements
B-splines are defined. We have shown that a subset of the
control points are deformed instead of all the surface points.
The model evolution has also been introduced. In the next
section, several numerical computed deformations are
displayed using the evolution model with different forces.
In section 6, we have shown the efficiency of our method
computing its computational cost. In section 7, we have
studied how the deformation of the surface changes under
the influence of first order parameters. Finally, some
conclusions are exposed.

2. SPLINES

The B-splines are piecewise polynomial functions. It has been
verified, with others approximations functions technics [Piegl
1997] that the polynomials provide a good local
approximation for smooth functions. However, if we use large
intervals, accuracy of the approximation can be very low, the
exactitude of the approach could be very low and local changes
have global influence. Therefore, it is natural to use piecewise
polynomials, defined on a fine partition of the function
domain. We have choosed B-splines as piecewise polynomial
approximation because of its local support. This property
reduces the computational cost of the model.

2.1 Splines Functions

Uniform B-splines can be defined in several ways [de Boor
1978] [Farin 1997] [Piegl 1997] [Höllig 2003]. In this work
we have taken the definition given by Höllig in [Höllig 2003],
which we describe next.

Definition 1. [Höllig 2003] An uniform B-spline of
degree n, bn, is defined by

1This work is an extended version of (González-Hidalgo, Mir, and Nicolau
2006) presented in ComplMAGE’06 Conference
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The previous definition is not adapted for numerical
evaluations. In order to be able to evaluate the B-splines in
a simple form and fast computationally, we can use the
recurrence equation. This equation was given by De Boor
[de Boor 1978] and Cox [Cox 1972], and it is a linear
combination of smaller degree B-splines.

1 1( 1 )
( ) ( ) ( 1)n n nx n x

b x b x b x
n n

� �� �
� � � (1)

In order to construct the finite elements bases, we will
use a scaled and translated uniform B-spline. They are
defined by transforming the standart uniform B-spline, bn,
to the grid hZZ = {..., –2h, h, 0, h, 2h,...}, where h is the
scaled step.

Definition 2: The transformation for h > 0 and k � ZZ

is � �, ( ) .n n x
k h hb x b k� �  The support of this function is

[k, k + n+1)h
In order to build a variational formulation of a

differential equation problem, we will need the derivatives
of the finite elements. From the definition 1 we obtain that
the first order derivative of degree n B-spline is given by
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with bn(0) = 0 [Höllig 2003]. If we apply the transformation
given in definition 2.2, the first order derivative of the
transformed B-spline is given by
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[Höllig 2003]. We also need the derivatives of any order.
These ones are given by a linear combination of lower degree
B-splines. The differentiation formula can be expressed in a
compact form as follows.

Theorem 2.1: The mth derivative of a degree n
transformed B-spline following the definition 2.2 is given
by the recurrence relation
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Obviously, this equation has sense if m � n since in others
cases the derivative is 0.

2.2 Multivariate B-Splines

There is no unique generalization of one dimensional B-
splines. These generalizations differs in the underlying
partition for the polynomial segments [de Boor, Höllig and
Riemenschneider 1993] [Piegl 1997], [Höllig 2003].

A possibility is to form products of one dimensional B-
splines, as described in the following construction. The
N-variate B-spline of degree n = (n

1
,...,n

N
), of index

k = (k
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N
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Applying basic properties of differential calculus and
applying theorem 2.1, a compact expression for any partial
derivative of multivariate B-spline can be obtained. Using
theorem 2.1, the derivatives can be evaluated and they are
obtained with a smaller computational cost, since less
recurrences are applied.

In the next figure, the graph of several bidimensional
B-splines are shown.

Figure 1: Bicubic B-splines with scaled step h = 1/6. Left: using
a translation k = (4, 9). Right: using a translation
k = (9, 0)

2.3 Parametric Surfaces with B-Splines

A parametric surface is defined as S : � � IR2 � IR3, (u, v)
� S(u, v) = (x(u, v), y(u, v), z(u, v)) with the necessary degree
of differentiability [do Carmo 1976], where � is a bounded
bidimensional subset. This surface will be B-spline if we
can put it as a linear combination of bidimensional B-splines.
That is,
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where n � IN2, and h � IR2 with positive coordinates. The
coefficients P

k
 � IR3 are called control points and they are

the elements that determine the B-spline surface.
In order to be able to work with finite elements, we will

need bases with a finite number of elements. The parametric
surfaces we will use must have a bounded domain.
Consequently, all P

k
 will be zero except a finite number of

them. In order to find this set of control points, we must
find the relevant B-splines.  These ones fulfill

( ) .Sup B Ø� � �n
k h �

The relevant B-splines of our surface are determined
by the spatial discretization, since the B-splines support
depends on them. This problem will be addressed in the
section of numerical resolution (section 4).

3. DEFORMATION MODEL. MINIMAL SURFACES

The deformation model is based on an associated energy to
one surface, that it checks the shape of it.
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The energy function is a non convex function with a
local minimum. The goal is to achieve this minimum using
an evolution model. This mininum depends on the initial
surface and the used evolution model.

The associated energy functional, E : F(S) � IR, S �
E(S), is defined as
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[Terzopoulos 1986], [Cohen 1992], [Montagnat, Delingette
and Ayache 2001], where � is a potential of the forces that
works on the surface. Using the equations of Euler-Lagrange,
it can be proved [Cohen 1992] that an energy local minimum
must satisfy:
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+ boundary conditions (6)
The surface domain is � = [0, 1]2 and the boundary

conditions are: S(u, 0) = (u, 0, 0), S(u, 1) = (u, 1, 0), S(0, v)
= (0, v, 0), S(1, v) = (1, v, 0).

4. NUMERICAL RESOLUTION

4.1 Variational Formulation

With the purpose of establishing the variational formulation
of the boundary value problem done by (6), we recall the
definition of a Sobolev Space of order two H2 (�),
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We will consider the set of functions (H2 (�))3 satisfying the
previous boundary conditions. We will denote this set by �.

The weak formulation of the equation (6) is:
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where the functions S, T belongs to � and u, v are the spatial
variables.

It can be proved [Cohen 1992] [Raviart 1992] that
solving equation (6) is equivalent to find an element S � �,

such that a(S, T) = L(T) for all T � �, where ( )�� �a  is a
bilinear form defined as
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and L(.) is the following linear form
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4.2 Discretization

We want to find a function S � � such that
a(S, T) = L(T), �T � �. (8)

In order to do this, the surface domain will be
discretized. But, first of all, we have to find a set of functions

of finite dimension. The B-splines defined in section 2 will
be the finite elements that we will use as the base of our
function set. The problem is to find the relevant B-splines;

that is, the B-splines satisfying ( )Sup B Ø� � �n
k h � , and

from this, the set of index k of the B-splines satisfying the
boundary conditions. Therefore, we want to evolve N

1
 × N

2

control points of the B-spline surface S. To do it, we need
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2
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be in �.
The solution S � � is a B-spline surface of degree n =
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surface will come determined by the relevant B-splines, and
they are specified by the following equation
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In addition, deforming only the corresponding N
1 
× N

2

control points of the B-spline surface (9), we made sure that
the boundary conditions are satisfied.

The B-spline bases are determined by the following set

of finite elements of finite dimension: ,{( ( , ), 0,0) :V B u v��n n
h k h

,} {(0, ( , ),0): }B u v k� �n
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boundary conditions, the control points P

k
 associated to B-

splines belonging to the set V n
h are the unique ones that are

computed using the equations (10) and (11) (see below).
Using equations (8) and (9) we can obtain three linear

systems, one for each coordinate:
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i
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The static problem has been introduced. Next, we will

construct the evolution model.

4.2.1 Dynamic Evolution Model

The classical dynamical model of evolution has been applied
[Cohen 1992], [Qin 1997], [Montagnat, Delingette and
Ayache 2001], [González, Mascaro, Mir, Palmer and Perales
2001], [Mascaró 2002] [Mascaro, Mir and Perales 2002].
In our dynamic model, the surface depends on time. So, we
have S(u, v, t). Nevertheless, this dependency only affects
to the control points which is an advantage since in each
iteration we do not have to calculate all the surface.
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Therefore, we only must calculate the new control points.
Thus, our dynamic model of evolution comes determined
by the equations

2

2
1 2 3i i
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d P dP
M C AP L i

dtdt
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where M and C are the mass and damping matrices
respectively and they are diagonal matrices.

The dynamic system (11) has been discretized in time
using the standard finite-difference approximation operators.
In a first place a scheme based on central finite-differences
has been used, where the difference operators are done by
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Placing these operators in the evolution equation (11) we
obtain
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So, to solve equation (12) we have to solve the following
three linear system of equations for P

i
 (t + �t), associated to

an explicit integration procedure for the ordinary differential

equation:

G . P
i
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where G = 2M + �t C and H
i
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i
 – (2�t2 A – 4M) (P

i
(t)

– (2M – �t C) P
i
 (t – �t). The previous system is easy to

solve because matrix G is diagonal. Then, the original
nonlinear differential equation (11) has been reduced to a
sequence of diagonal linear algebraic systems done by (13).
And, taking in account the set of finite elements that
determines our B-spline bases, this algebraic system of
equations is solved only for a reduced number of control
points.

The used numerical scheme in the dynamic model
depends on two previous iterations Pt–�t and Pt, taking the
same P0 and P1, where P0 = S(u, v, 0).

5. EXAMPLES

This section shows several examples of deformations
obtained applying our dynamical model. All the experiments
displayed in this section has been made using �

10
 = �

01
 =

0.1 and �
11

 = �
20

 = �
02

 = 0.01 and taking a temporal step
t = 0.1.

In Figure 2, we show several iterations obtained using
the dynamic model with bicubic B-splines, a positive force
in the direction (0, 1, 0) and N

1
 × N

2
 = 25, The force is applied

only in one point of the surface.

Figure 2: Dinamic simulation of a plane deformation using a positive constant force with direction (0, 1, 0)



Dynamic Parametric Surface Deformation using Finite Elements based on B-splines 155

Figure 3: Dinamic simulation of a plane deformation using two constant forces simultaneously in opposite sense

Figure 3 shows the deformation obtained using bicubic
B-splines, two forces simultaneously in opposite sense in
the direction (0, 0, 1) and N

1
 × N

2
 = 25. The force is applied

in two nearly points of the surface.
Not only we can apply forces in vertical directions.

Also, we can apply forces in other directions as we
can see in Figure 4, where we have applied over all the
surface domain an oblique force in  the direction
(1, 4, 1), with module 106, taking bicubic B-splines and
N

1
 × N

2
 = 49.

Figure 5 shows several iterations obtained using the
vertical force (0, 200, 0) over all the surface, using bicubic
B-splines and N

1
 × N

2
 = 36. We can compare this deformation

with the obtained one in Figure 2.
The next figures, Figure 6 and Figure 7, display

experiments using sinusoidal forces. In Figure 6 the force is
given by ��(u, v) = (50 sin v�, 50 sin u�, 200 cos u��sin v�),
B-splines of degree n = (4, 4) and N

1
 × N

2
 = 36. In Figure 7

the force is given by ��(u, v) = (–50 sin u�, 0, 200 cos v��sin
u�), bicubic B-splines are considered and N

1
 × N

2
 = 36.
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Figure 4: Dynamic simulation of a plane deformation using a force in the direction (1, 4, 1)

Figure 5: Several iterations of a plane deformation using the vertical force (0, 200, 0) over all the surface.

6. COMPUTATIONAL COST OF THE MODEL

We now consider the problem of study the computational
cost of our model behavior, done by equation (13). More
precisely, a simulation where N

1
 × N

2
 control points are

evolved, is considered. Let n = (n
1
, n

2
) be the B-spline degree.

First of all, we have to compute the computational cost
of the vectors and matrices which are necessary to solve the
ordinary differential equation numerically.

Initially, the computational cost of the bilinear matrix
(a(S, T)) is O((N

1
 × N

2
)2), but, taking into account that

(a) the support of the product of B-splines ,
n
k hB  and

,
n
j hB  or their derivatives only depends on the degree

of the chosen B-splines n = (n
1
, n

2
),

(b) only O((2n
1
 + 1) × (2n

2
 +1)) values of each of the

rows of matrix (a(S,T)) are non zero, and
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Figure 6: Dinamic simulation of a plane deformation using a sinusoidal force. Details in the text.

Figure 7: Deformations obtained using other sinusoidal force different from the applied one in the figure 6. Details in the text.

(c) the rows of this matrix are simply a shift of the
values of the first row,

it is easy to check that the computational cost of the matrix
associated to the bilinear form is only O((2n

1
 + 1) × (2n

2
 +

1)). So, the computational cost of the bilinear matrix
(a(S, T)) is constant since only depends on the degree of the
B-splines.

This matrix is computed only one time at the beginning
of the simulation process.

The mass and damping matrices are diagonal and
constant for all the control points; so, its associated
computational cost is constant.

Taking into account the support of B-splines , ,n
k hB  the

order of the computational cost of the vector L
i
 with

components

,( ( , )) ( , ) ,n
k hS u v B u v dudv

�
�� �

is O(N
1
 × N

2
).
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Now we are going to analize the computational cost, in
time, of the simulation part of our linear algebraic system
(see equation (13)),

G . P
i
(t + �t) = F

i
 – B

i
 – D

i
, i = 1, 2, 3, (14)

where G = 2M + �tC, F
i
 = 2�t L

i
, B

i
 = (2�t2A – 4M) P

i
(t)

and D
i
 = (2M – �tC) P

i
(t – �t). In general, the product of a

vector by a matrix requieres O((N
1
 × N

2
)2) time computing.

But, to compute B
i
, we need only O(N

1
 × N

2
) time computing,

because M is diagonal and each row of the matrix A has
only O((2n

1
 + 1) × (2n

2
 + 1)) (constant) elements non zero.

On the other hand, the computational cost of the matrices D
i

and F
i
 is O(N

1
 × N

2
) because we only make the product of

diagonal matrices by vectors.
Finally, to solve the three diagonal linear algebric system

(14), we only require O(N
1
 × N

2
) computational cost since

G is diagonal and the calculus of its inverse G–1 and the
product of G–1 by F

i
 – B

i
 – D

i
 are O(N

1
 × N

2
).

Then, we can conclude that the explicit procedure to
integrate through time the ordinary differential equation
represented by equation (13) need only a O(N

1
 × N

2
) time

computing. That is, we obtain a linear complexity depending
on the number of control points to deform.

7. THE INFLUENCE OF FIRST ORDER
PARAMETERS

In this section, we have studied how the simulations of the
model can change if the value of the parameters �

01
 and �

10

are changed.
To do this, we have made several deformations changing

the value of the parameter �
01

 first, and �
10

 later. The other
parameters and the applied force remain constant throughout
the simulation.

Let P0 be the vector of control points of the initial
surface; that is, the vector of control points of the surface
before the deformation. The number of components of P0 is
3 × N

1
 × N

2
, three spatial components for each control point.

So, if 
1 2

0 0
1 , ... N NP P � are the initial control points, P0 can be

written as:

1 2 1 2 1 2

0 0 0 0 0 0 0
1,1 1,2 1,3 ,1 ,2 ,3( , , ,..., , , )N N N N N NP P P P P P P� � �� �

Using the same notation, we define Pf the vector of
control points of the deformed surface; that is, the vector of
control points of the surface after the deformation. So, Pf

can be written as:

1 2 1 2 1 21,1 1,2 1,3 ,1 ,2 ,3( , , ,..., , , ) .f f f f f f f
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The influence of the parameters has been measured
using the following norm:

� �
1 2 3 20 0
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|| || .
N N

f f
i j i j

i j

P P P P
�

� �
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7.1 Study for the Parameter 
10

With the purpose of study the influence of parameter �
10

,
we have made several simulations with differents values of

them. The values of the other parameters have been �
01

 =
0.1, �

11
 = 0.01, �

20
 = 0.01, �

02
 = 0.01. The applied force in

the simulations is zero over all surface except in a small
central square whose value is 100.

In figure 8, we have shown a graphic where horizontal
axis is the values of the parameter w

10
 and the vertical axis

is the quadratic norm described above.

Figure 8: In this graphic are represented the norms (15) of the
simulations with the values of w10 = 0; 0.0001; 0.001;
0.01; 0.1; 0.3; 0.5, 1; 2; 5; 7; 10; 25; 50; 75; 100; 150
and 200. Also, it displays the linear approximation of
the values.

We can see in figure 8, as larger is the parameter �
10

,
smaller is the resistance to the deformation. The relationship
between the increase of the parameter �

10
 and the decrease

of the resistance to the deformation (15) is linear. If one
compute the line of regression, one obtains n = 0.4 + 0.038
�

10
 where n is the norm (15) with regression coeffcient

0.9924.
The effects made by this parameter can be seen in figures

9 and 10. The figure 9 shows the effect of this parameter on
a deformation made by a vertical force over a central square
of surface 0.04u2 and module 200. In the figure 10, we can
see the effect of this parameter over a deformation made by
an oblique and positive force in direction (10, 40, 10), in
this case, as we increase the parameter the length defomation
is increased, following the direction of the applied force.
So, we can conclude that the resistance to the length
deformation decreases as the value of parameter �

10

increases.

7.2 Study for the Parameter 
01

We have studied the behaviour of parameter �
01

 using the
same outline of the previous one. The values of the other
parameters have been �

10
 = 0.1, �

11
 = 0.01, �

20
 = 0.01, �

02
 =

0.01. The force applied in the deformation is zero over all
surface except in a small central square which value is 100.

In figure 11, we show a graphic where horizontal axis
is the values of the parameter w

01
 and the vertical axis is the

quadratic norm described above (see (15)). We can also
observe, (see figure 11), that as larger is the value of this
parameter, smaller is the resistance to the deformation.

|| 
P

f  –
 P

0 
||

�
10
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w10 = 0.0 w10 = 10.0

w10 = 100.0 w10 = 200.0

Figure 9: last iteration of deformation with t = 0.1 and t = 1. Vertical Force (0,200,0)

w01 = 0.0 w01 = 10.0 w01 = 100.0 w01 = 200.0

Figure 10: two points of view of the last iteration of deformation with Dt = 0.1 and t =1. Oblique force (10, 40, 10)
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We can conclude that the growth of the first order
parameters w

10
 and w

01
 makes a decreasing resistance to the

length deformation of the surface. Moreover, if we represent
the first order parameters in front of the deformations of the
simulations, we obtain a linear curve. The line of regression
is, in its case, n = 0.3924 + 0.0407�

01
, with regression

coefficient 0.9922.
Figure 11 shows as the surface deformation (15) is

modified by the influence of parameter w
01

. The effects made
by this parameter can be seen in figures 12 and 13. The figure
12 shows the effect of this parameter on a deformation made
by a vertical force over the central square of surface 0.04u2

and module 200. In the figure 13, we can see the effect of
this parameter over a deformation made by an oblique and
positive force in direction (10, 40, 10). We conclude that
we observe the same effect as in the parameter w

10
.

Figure 11: In this graphic are represented the quadratic norms
of the simulations with the values of !01 = 0; 0.0001;
0.001; 0.01; 0.1; 0.3; 0.5, 1; 2; 5; 7; 10; 25; 50; 75; 100;
150 and 200. Also, the linear approximation of the
values, is displayed.

|| 
P

f  –
 P

0 
||

�
01

Figure 12: last iteration of deformation with t = 0.1 and t=1. Vertical Force (0,200,0)

w01 = 0.0 w01 = 10.0 w01 = 100.0 w01 = 200.0

w01 = 0.0 w01 = 10.0 w01 = 100.0 w01 = 200.0

Figure 13: last iteration of deformation with t = 0.1 and t=1. Oblique force (10, 40, 10)

8. CONCLUSIONS AND FUTUREWORK

We have developed a variational formulation of a model that
allows us the deformation of a surface. Moreover, we have
shown how to solve the variational equations numerically
in a efficient way using B-splines as finite elements. More
explicitly, since only a certain number of control points is
evolved, the numerical scheme obtained is very efficient.

Also, we have obtained a low computational cost to
solve the equations.

The study of behaviour of first order parameters shows
that the growth of these makes a decreasing resistance of
the surface.

If we want to obtain a smooth deformation, the external
force module must be small or the first order parameters
must be smaller than 1.

Now, we are working in the stability of the model and
the behaviour of second order parameters w

20
, w

11
 and w

02
.

Once we have studied all the previous topics of the model,
we will work with other functionals in order to improve the
deformation of the surface. As a future work, gravity forces,
spring viscosity forces and collision forces will be applied.
Moreover, we will apply our model to deform second order
surfaces as cones, ellipsoids, spheres and so on.

The implementation of this model has been made using
C++ and Coin3D, a 3D modelling toolkit which simplifies
visualization and scene composition tasks.
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