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Thestudy of the motion of deformabl e objectsis one of the most important topicsin computer animation, computer modelling,
and so on. This paper presents a dynamic evolution model in order to deform parametric surfaces with linear complexity.
The deformation model is based on an associated energy to one surface, that it check the shape of it. The associated
variational formulation to the problem of minimize the energy functional is solved using the finite element method based on
B-splines. The spatial discretization where these finites elements are defined and computed shows as a reduced number of
control pointsis deformed instead of all the surface points, obtaining an efficient numerical scheme.
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1. INTRODUCTION

The deformation models include a large number of
applications, and they have been used in fields as edge
detection, computer animation, geometric modelling, and so
on. In thiswork, a deformation model will beintroduced that
uses B-splinesasfinite e ements. Thistheory was introduced
by Hollig in [Hollig 2003]. In fact, we have used a variational
formulation smilar tothe used onein[Cohen 1992] changing,
among other things, the sd ected finite d ements.

Themost used finite elementsfor surfacesaretriangles,
sguares, among others; with them, itiseasy tomakeamosaic
that it fills all space, but this techniqgue needs long
computation time sincewe must use somebig data structures
to solve our problem. This data structure are bound by the
quantity of surface points that we must to take to obtain a
good approximation of the surface.

In thiswork?, we have applied thefinite d ementsmethod
based on B-splinesto solve numerically a partial differential
equation problem. The advantage to use B-splines finite
elementsisthat it combinesthe computational advantage of
B-splines and standard mesh-based € ements. Thus, we will
obtain adata structure smaller than the obtai ned one using
the usual finite el ements.

This work is organized as follows. In section 2, we
define the uniform B-splines used to introduce finite
elements. First, weintroduce one dimensional B-splines: we
display the recurrence relation they verify and how to
compute their derivatives. Next, we define the multivariate
B-splines. The section finishes with the definition of a B-
spline parametric surface. Section 3 isdevoted to the model
of surface deformation where we have applied the finite
elements methods using B-splines. Once we haveintroduced

1Thiswork isan extended version of (Gonzalez-Hidalgo, Mir, and Nicolau
2006) presented in ComplMAGE'06 Conference

the partial differential equation verified by the surface, we
have solved it numerically in section 4. In this section, we
have raised the variational formulation to follow with its
spatial and temporal discretization where the finite elements
B-splines are defined. We have shown that a subset of the
control points aredeformed instead of all the surface points.
The model evolution has al so been introduced. In the next
section, several numerical computed deformations are
displayed using the evolution model with different forces.
In section 6, we have shown the efficiency of our method
computing its computational cost. In section 7, we have
studied how the deformation of the surface changes under
the influence of first order parameters. Finally, some
conclusions are exposed.

2. SPLINES

The B-splinesare piecewi se polynomial functions. It has been
verified, with othersapproximationsfunctions technics[Piegl
1997] that the polynomials provide a good local
approximation for smooth functions. However, if weuselarge
intervals, accuracy of the approximation can bevery low, the
exactitude of theapproach could be very low and | ocal changes
have global influence. Therefore, it isnatural to use piecewise
polynomials, defined on a fine partition of the function
domain. We have choosed B-splines as piecewi se polynomial
approximation because of its local support. This property
reducesthe computational cost of the model.

2.1 SplinesFunctions

Uniform B-splines can be defined in several ways[de Boor
1978] [Farin 1997] [Piegl 1997] [HAllig 2003]. In thiswork
we have taken the definition given by Holligin [Hdllig 2003],
which we describe next.

Definition 1. [Hdllig 2003] An uniform B-spline of
degreen, b", isdefined by
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b"(x) = j:_lb"-l(t)dt

1 xe[0),

inawith B°(X) =
starting with b (X) {O, otherwise

The previous definition is not adapted for numerical
evaluations. In order to be ableto evaluate the B-splinesin
a simple form and fast computationally, we can use the
recurrence equation. This equation was given by De Boor
[de Boor 1978] and Cox [Cox 1972], and it is a linear
combination of smaller degree B-splines.

b" (%) =%b”’1(x) +(n+—r1]_x)b”’1(x—1) 1)

In order to construct thefinite e ements bases, we will
use a scaled and translated uniform B-spline. They are
defined by transforming the standart uniform B-spline, b",
to the grid hZZ = {..., =2h, h, 0, h, 2h,...}, where h is the
scaled step.

Definition 2: Thetransformation forh>0andk € ZZ
ishy, (x) =b"(£-k). The support of this function is
[k, k+ n+1)h

In order to build a variational formulation of a
differential equation problem, wewill need the derivatives

of thefinite e ements. From the definition 1 we obtain that
thefirst order derivative of degree n B-splineis given by

ib"(x) =b"*(x)-b"*(x-1)

dx
with b"(0) = 0[Hd&llig 2003]. If we apply the transformation
given in definition 2.2, the first order derivative of the

transformed B-splineisgiven by

d n — n-— n-—

o n()=h H(, (%)~ b (%) )
[HAllig 2003]. We also need the derivatives of any order.
These ones aregiven by alinear combination of lower degree
B-splines. Thedifferentiation formula can beexpressedin a
compact form asfollows.

Theorem 2.1: The m" derivative of a degree n
transformed B-spline following the definition 2.2 isgiven
by therecurrence relation

dm n -m < i m n-m
o by () =h" (-2 [ jbm,h(X) ©)
X i=0 I
Obvioudly, this equation has senseif m< n since in others
casesthederivativeisO.

2.2 Multivariate B-Splines

There is no unique generalization of one dimensional B-
splines. These generalizations differs in the underlying
partition for the polynomial segments[de Boor, H6llig and
Riemenschneider 1993] [Piegl 1997], [HAllig 2003].

A possihility isto form products of one dimensional B-
splines, as described in the following construction. The
N-variate B-spline of degree n = (n,,...,n,), of index

k= (k,...,k) and the space discretization h = (h,,..., h) is
defined as
Bl 09 = [T (%). (4)

The support of thisfunctionis HiN:l[Ig,lg +n +Dh.

Applying basic properties of differential calculus and
applying theorem 2.1, acompact expression for any partial
derivative of multivariate B-spline can be obtained. Using
theorem 2.1, the derivatives can be evaluated and they are
obtained with a smaller computational cost, since less
recurrences are applied.

In the next figure, the graph of several bidimensional
B-splines are shown.
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Figure 1. Bicubic B-splines with scaled step h = 1/6. Left: using
a translation k = (4, 9). Right: using a translation
k=(9,0)

2.3 Parametric Surfaceswith B-Splines

A parametric surfaceisdefined asS: Q < IR > IR®, (u, v)
— YU, V) = (X(u, v), ¥(u, v), Zu, v)) with the necessary degree
of differentiability [do Carmo 1976], where Q) isabounded
bidimensional subset. This surface will be B-spline if we
can put it asalinear combination of bidimensional B-splines.
That s,

S(X) = kgz:? R< B<,h (X) (5)
wheren e IN2, and h € IR? with positive coordinates. The
coefficients P, e IR® are called control points and they are
the elements that determinethe B-spline surface.

In order to be able to work with finite elements, we will
need bases with afinite number of e ements. The parametric
surfaces we will use must have a bounded domain.
Consequently, all P, will be zero except a finite number of
them. In order to find this set of control points, we must
find the relevant B-splines. These ones fulfill

up(e!,) e =2.

The relevant B-splines of our surface are determined
by the spatial discretization, since the B-splines support
depends on them. This problem will be addressed in the
section of numerical resolution (section 4).

3. DEFORMATION MODEL.MINIMAL SURFACES

The deformation model isbased on an associated energy to
one surface, that it checks the shape of it.
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The energy function is a non convex function with a
local minimum. The goal isto achieve this minimum using
an evolution model. This mininum depends on the initial
surface and the used evolution model.

The associated energy functional, E: F(S) — IR, S—
E(S), isdefined as

osf +P(S(u, v))dudv

ov

oS
ouov

8%S|
By

a2s”
o’
[Terzopoul 0s 1986], [Cohen 1992], [Montagnat, Ddingette
and Ayache 2001], where P is a potential of the forcesthat
workson the surface. Us ng theequations of Euler-Lagrange,
it can beproved [Cohen 1992] that an energy local minimum
must satisfy:
Fs_, s
@y PYe 0152

& - [l

ou + O |

F Oyl +Wx| | t W

o's o's a“s
W+w — -VP(S(u,Vv))
+ boundary conditions  (6)
The surface domain is Q = [0, 1]? and the boundary
conditionsare: Yu, 0) = (u, 0, 0), Yu, 1) = (uy, 1, 0), SO, v)
=(0,v,0), 91, v)=(1,v,0).

+ 20,

4. NUMERICAL RESOLUTION

4.1 Variational Formulation

With the purpose of establishing the variational formulation
of the boundary value problem done by (6), we recall the
definition of a Sobolev Space of order two H? (),

plaredg
X, 0Xy?
Wewill consider the set of functions (H? (Q2))3 satisfying the

previous boundary conditions. We will dencte this set by H.
The weak formulation of the equation (6) is:

I o

H?(Q)={Se LZ(Q) el?(Q),0<a,+a,<2,a,,a,c IN}.

" %S 9T
! udv dudv

osar |
1 6u ou

0S oT
®gy EE +

9°So°T
P20 o
wherethefunctions S, T belongsto H and u, v arethe spatial
variables.

It can be proved [Cohen 1992] [Raviart 1992] that
solving equation (6) isequivalent tofind an element Se H,
such that a(S, T) = L(T) for al T € H, wherea(-,-) isa
bilinear form defined as

0’S o T

dudv=-| VP(S)Tdudv
Wy % PTG 5U J _[ (9)

oS oT oS oT 8°S 27T 0°So°T 082S o°T
asm =, [“’”’a W T sy oy P o T v}dmv
(7

and L(.) isthefollowing linear form

L(T)=— jQ VP(S)Tdudv.
4.2 Discretization
Wewant to find afunction S € ‘H such that

as T T)=L(T), VT e H. (8)

In order to do this, the surface domain will be
discretized. But, first of all, wehavetofind aset of functions

of finitedimension. The B-splines defined in section 2 will
be the finite elements that we will use as the base of our
function set. The problem isto find the relevant B-splines,

that is, the B-splines satisfying Sup(aih)ﬂQ #@, and

from this, the set of index k of the B-splines satisfying the
boundary conditions. Therefore, wewant toevolveN, x N,
control points of the B-spline surface S. To do it, we need
N, x N, bidimensional B-splines such that its support will
bein Q.

The solution S € H isaB-spline surface of degreen =
(n,n ). The surface domain is discretized by h, ZZ x h,.ZZ

and h,=

discretization will fix the control points that are not zero.
The index k = (k, k) belongs to the set

{-n,,..., , — 4 x{-n,,...,N,+n -1 . So, theB-spline

surfacewill come determined by therelevant B-splines, and
they are specified by the following equation

whereh =+ sz <. This spatial

N, +n

Ny +n,~1 Np+n, -1

> YR

k=-n, ky=-n,

S(u,v) = (ky.k) (k1 ko)h (u,v) 9)
In addition, deforming only the corresponding N, x N,
control points of the B-spline surface (9), we made surethat
the boundary conditions are satisfied.
The B-spline bases are determined by thefollowing set

of finiteedementsof finitedimension: V' =<{(B;,, (u,v),0,0):

k e Z}U{(0,B/,, (u,v),0):keZ}U {(0,0,B;,(u,v)) :k eZ} > where
7={0..,N,-3x{0,..,N, -3 . Thus, taking into account the
boundary conditions, the control points P, associated to B-
splines belonging to the set V,' are the unique onesthat are
computed using the equations (10) and (11) (see below).
Using equations (8) and (9) we can obtain three linear
systems, one for each coordinate:
AP=L,i=123
where Aisasguare matrix andtheir dementsare:

a((Bk hﬂo O) (BJ hao O))(k,j)elxl s

P. isavector of component i of each control pointand L, is
a vector with

Components L1 = L((B:,hﬂoao))kela L2 = L((O’ Bt?,hao))kelﬂ
LS = L((O’ O’ Blzh))kel .

The static problem has been introduced. Next, we will
construct the evol ution model.

(10)

4.2.1 Dynamic Evolution Model

The classi cal dynamical model of evol ution has been applied
[Cohen 1992], [Qin 1997], [Montagnat, Delingette and
Ayache 2001], [Gonzd ez, Mascaro, Mir, Palmer and Perales
2001], [Mascar6 2002] [Mascaro, Mir and Perales 2002].
In our dynamic model, the surface dependson time. So, we
have Su, v, t). Nevertheless, this dependency only affects
to the control points which is an advantage since in each
iteration we do not have to calculate all the surface.
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Therefore, we only must cal culate the new control points.
Thus, our dynamic model of evolution comes determined
by the equations
d’P drP .
dtzl +Cd—t'+ AP =1,i=123.
where M and C are the mass and damping matrices
respectively and they are diagona matrices.

The dynamic system (11) has been discretized in time
using the standard finite-difference approximati on operators.
In afirst place a scheme based on central finite-differences
has been used, where the difference operators are done by

M

(11)

P P(u,v,t+At) - P(u,v,t - At)

ot 2At
0P P(uv,t+At)—2P(u,v,t) + P(u,v,t —At)
otz At? '

Placing these operators in the evolution eguation (11) we
obtain
M R(t+At)—ZR(2t)+ P(t-At) c P(t+At)- P (t-At)
At 2At
+AR(t)=L, =123 (12
S0, to solve equation (12) we have to sol ve the following

three linear system of equations for P, (t + At), associated to
an explicit integration procedurefor the ordinary differential

[ C; Documents and Settings\Gabriel Nicolaulscritorio\Revistalprograma\programabmain2Dibuixa exe

equation:

G-P(t+A)=H,i=1,23 (13)
whereG=2M + At Cand H, = 2At L — (2At? A—4M) (P,(t)
—(2M - At C) P, (t — At). The previous system is easy to
solve because matrix G is diagonal. Then, the original
nonlinear differential equation (11) has been reduced to a
sequence of diagonal linear algebraic systemsdone by (13).
And, taking in account the set of finite elements that
determines our B-spline bases, this algebraic system of
equations is solved only for a reduced number of control
points.

The used numerical scheme in the dynamic model
depends on two previous iterations P and P, taking the
same P° and P, where P° = Su, v, 0).

5. EXAMPLES

This section shows several examples of deformations
obtained applying our dynamical modd . All the experiments
displayed in this section has been made using o,, = @, =
0.1 and o, = w,, = w,, = 0.01 and taking a temporal step
t=0.1

In Figure 2, we show several iterations obtained using
the dynamic model with bicubic B-splines, a positive force
inthedirection (0, 1, 0) and N, x N, = 25, Theforceis applied
only in one point of the surface.

Figure 2: Dinamic simulation of a plane deformation using a positive constant force with direction (0, 1, 0)
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Figure 3: Dinamic simulation of a plane deformation using two constant forces simultaneously in opposite sense

Figure 3 shows the deformation obtained using bicubic
B-splines, two forces simultaneoudly in opposite sense in
thedirection (0, 0, 1) and N, x N, = 25. Theforceis applied
in two nearly points of the surface.

Not only we can apply forces in vertical directions.
Also, we can apply forces in other directions as we
can see in Figure 4, where we have applied over all the
surface domain an oblique force in the direction
(1, 4, 1), with module 106, taking bicubic B-splines and
N, x N, = 49.

[ C:Wocuments and Settings\Gabriel NicolaulMscritorioWRevista\programalprograma\main2Dibuixa.exe:

Figure 5 shows several iterations obtained using the
vertical force (0, 200, 0) over all the surface, using bicubic
B-splinesand N, x N, = 36. We can compare this deformation
with the obtained onein Figure 2.

The next figures, Figure 6 and Figure 7, display
experimentsusing sinusoidal forces. In Figure 6 the forceis
given by VP(u, v) = (50 sin vr, 50 sin urt, 200 cosur Sin V),
B-splines of degree n = (4, 4) and N, x N, = 36. In Figure 7
theforceisgiven by VP(u, v) = (-50 sin ur, 0, 200 cosvr Sin
ur), bicubic B-splinesare considered and N, x N, = 36.
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Figure 4: Dynamic simulation of a plane deformation using a force in the direction (1, 4, 1)
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Figure 5: Several iterations of a plane deformation using the vertical force (0, 200, 0) over all the surface.

6. COMPUTATIONAL COST OFTHE MODEL

We now consider the problem of study the computational
cost of our model behavior, done by equation (13). More
precisely, a simulation where N, x N, control points are
evolved, isconsidered. Let n =(n,, n,) bethe B-spline degree.

First of all, we have to computethe computational cost
of the vectors and matrices which are necessary to solvethe
ordinary differential equation numerically.

Initially, the computational cost of the bilinear matrix
(@S 1)) isO((N, x N,)?), but, taking into account that

(@) the support of the product of B-splines By, and

B}, or their derivatives only depends on the degree

of the chosen B-splinesn = (n,, n,),
(b) only O((2n, + 1) x (2n, +1)) values of each of the
rowsof matrix (a(S,T)) are non zero, and
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Figure 7: Defor mations obtained using other sinusoidal force different from the applied one in the figure 6. Details in the text.

(c) the rows of this matrix are smply a shift of the
values of thefirst row,

it iseasy to check that the computational cost of the matrix
associated to the bilinear formisonly O((2n, + 1) x (2n, +
1)). So, the computational cost of the bilinear matrix
(a(S T)) isconstant since only depends on the degree of the
B-splines.

Thismatrix iscomputed only onetime at the beginning
of the simulation process.

The mass and damping matrices are diagonal and
constant for all the control points; so, its associated
computational cost isconstant.

Taking into account the support of B-splines By, the
order of the computational cost of the vector L, with
components

.Lz VP(S(u,v) a:h (u,v)duadv,
iSO(N, x N,).
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Now we are going to analize the computational cost, in
time, of the simulation part of our linear algebraic system
(seeequation (13)),

G-P(t+At)=F-B-D,i=123, (14)
where G = 2M + AtC, F, = 2At L, B, = (2At°A — 4M) P (1)
and D, = (2M — AtC) P (t — At). In general, the product of a
vector by amatrix requieres O((N, x N,)?) time computing.
But, to compute B, weneed only O(N, x N,) time computing,
because M is diagonal and each row of the matrix A has
only O((2n, + 1) x (2n, + 1)) (constant) elements non zero.
On the other hand, the computational cost of thematrices D,
and F, is O(N, x N,) because we only make the product of
diagonal matrices by vectors.

Finally, to solvethethreediagona linear algebric sysem
(14), weonly require O(N, x N,) computational cost since
G is diagonal and the calculus of itsinverse G* and the
product of G* by F, — B, — D, are O(N, x N,).

Then, we can conclude that the explicit procedure to
integrate through time the ordinary differential equation
represented by equation (13) need only a O(N, x N,) time
computing. That is, we obtain alinear complexity depending
on the number of control pointsto deform.

7. THE INFLUENCE OF FIRST ORDER
PARAMETERS

In this section, we have studied how the simul ations of the
model can changeif thevalue of the parameters o, and o,
are changed.

Todothis, we have made several deformations changing
the value of the parameter o, first, and o, later. The other
parameters and the applied force remain constant throughout
thesimulation.

Let P° be the vector of control points of the initia
surface; that is, the vector of control points of the surface
before the deformation. The number of componentsof P°is
3x N, x N,, three spatial componentsfor each control point.

So, if R’,..R,y, are the initial control points, P° can be
written as;
Po= (Plf)ll Pl,oz’ ng.---. Pl\(l)lxNz,l' Pl\(l)lxNz,Z’ Pl\(l)lxNz,S)T

Using the same notation, we define Pf the vector of
control points of the deformed surface; that is, the vector of
control points of the surface after the deformation. So, P
can bewritten as:

f _(pf pf pf f f f T
P = (Pl,l’Pl,Z’P:L,B""’PleNz,l' PleNZ,Z’ PleNz,S) :

The influence of the parameters has been measured
using thefollowing norm:

3

f 0 N f 0\?
IPf-P ||=JZ 2 (Ri-RI)

(15

-1 j-1

7.1 Study for the Par ameter @,

With the purpose of study the influence of parameter o,
we have made several simulationswith differents values of

them. The values of the other parameters have been o, =
0.1, », =0.01, o, =0.01, , = 0.01. The applied force in
the simulations is zero over all surface except in a small
central squarewhose valueis 100.

In figure 8, we have shown a graphic where horizontal
axisisthe values of the parameter w,, and the vertical axis
isthe quadratic norm described above.

8 °
=6
a
|
24 .
[ J
2 °
(]
0
0 50 100 150 200
[O)

10

Figure 8: In this graphic are represented the norms (15) of the
simulations with the values of w,, = 0; 0.0001; 0.001;
0.01; 0.1; 0.3; 0.5, 1; 2; 5; 7; 10; 25; 50; 75; 100; 150
and 200. Also, it displays the linear approximation of
the values.

We can seein figure 8, as larger isthe parameter o, ,
smaller istheresistanceto thedeformation. Thereationship
between the increase of the parameter ,, and the decrease
of the resistance to the deformation (15) is linear. If one
compute the line of regression, one obtainsn = 0.4 + 0.038
o,, Where n is the norm (15) with regression coeffcient
0.9924.

The effects made by this parameter can beseen in figures
9 and 10. Thefigure 9 showsthe effect of this parameter on
adeformation made by a vertical force over acentral square
of surface 0.04u? and module 200. In the figure 10, we can
see the effect of this parameter over a deformation made by
an oblique and positive force in direction (10, 40, 10), in
thiscase, asweincreasethe parameter the length defomation
is increased, following the direction of the applied force.
So, we can conclude that the resistance to the length
deformation decreases as the value of parameter o,
increases.

7.2 Study for the Par ameter o

We have studied the behaviour of parameter w,, using the
same outline of the previous one. The values of the other
parameters have been ,,= 0.1, o, = 0.01, o, = 0.01, v, =
0.01. Theforce applied in the deformation is zero over all
surface except in asmall central square which valueis 100.
In figure 11, we show a graphic where horizontal axis
isthe valuesof the parameter w,, and thevertical axisisthe
guadratic norm described above (see (15)). We can also
observe, (seefigure 11), that as larger is the value of this
parameter, smaller istheresistance to the deformation.
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Figure 9: last iteration of deformation with At =0.1 andt = 1. Vertical Force (0,200,0)

w,, = 0.0 w,, =10.0 w,, = 100.0 w,, = 200.0

Figure 10: two points of view of the last iteration of deformation with Dt = 0.1 and t =1. Oblique force (10, 40, 10)
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Figure 11: In this graphic are represented the quadratic nor ms
of the simulations with the values of '01 = 0; 0.0001;
0.001; 0.01; 0.1; 0.3; 0.5, 1; 2; 5; 7; 10; 25; 50; 75; 100;
150 and 200. Also, the linear approximation of the
values, is displayed.
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We can conclude that the growth of the first order
parametersw,, and w,, makes adecreasing resistancetothe
length deformation of the surface. Moreover, if we represent
thefirst order parametersin front of the deformations of the
simulations, we obtain alinear curve. Theline of regression
is, in its case, n = 0.3924 + 0.0407w,_,, with regression
coefficient 0.9922.

Figure 11 shows as the surface deformation (15) is
modified by theinfluence of parameter w, . The effects made
by this parameter can beseenin figures 12 and 13. Thefigure
12 showsthe effect of this parameter on adeformation made
by avertical force over the central square of surface 0.04u?
and module 200. In the figure 13, we can see the effect of
this parameter over a deformation made by an oblique and
positive force in direction (10, 40, 10). We conclude that
we observe the same effect asin the parameter w, .

01’
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! H
e A 3
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=
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& =
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Hr=———

w,, =0.0 w,, =10.0

Figure 12: last iteration of deformation with t = 0.1 and t=1. Vertical Force (0,200,0)

SIS SR T AR08 o=

w,, = 100.0

w,, = 0.0

w,, =10.0

w,, = 100.0 w,, = 200.0

Figure 13: last iteration of deformation with t = 0.1 and t=1. Oblique force (10, 40, 10)

8. CONCLUSIONSAND FUTUREWORK

We have developed a variational formulation of amodel that
allows us the deformation of a surface. Moreover, we have
shown how to solve the variational equations numerically
in aefficient way using B-splines as finite elements. More
explicitly, since only a certain number of control pointsis
evolved, the numerical scheme obtained isvery efficient.

Also, we have obtained a low computational cost to
sol vethe equations.

The study of behaviour of first order parameters shows
that the growth of these makes a decreasing resistance of
the surface.

If wewant to obtain a smooth deformation, the external
force module must be small or the first order parameters
must be smaller than 1.

Now, we are working in the stability of the model and
the behaviour of second order parameters w,, w,, and w,.
Once we have studied all the previous topics of the model,
wewill work with other functionalsin order toimprove the
deformation of thesurface. Asafuturework, gravity forces,
spring viscosity forces and collision forces will be applied.
Moreover, we will apply our model to deform second order
surfaces as cones, elipsoids, spheresand so on.

Theimplementation of thismodel hasbeen made using
C* and Coin3D, a 3D modelling toolkit which ssimplifies
visualization and scene composition tasks.
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