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Hierarchical 3D Segmentation Using Connected Face Structure
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This paper describes a new approach for watershed segmentation on triangular mesh. Common watershed approaches use
descending or flooding processes on a connected vertex structure. Watershed transformation is not related to a structure in
particular: it only requires connected elements and a height function. This method is widely used on 2D, 3D images as well
as on 3D meshes. Here, a connected face structure is implemented and adapted to the segmentation process. A connected
face structure offers a different kind of curvature information and neighborhood. The waterfall algorithm based on the
minimum spanning tree is used to compute the merging. Several segmentation schemes are built from the waterfall and they
can easily be browsed by the user.
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1. INTRODUCTION

Polygonal meshes offer an efficient representation of 3D
surfaces, in particular triangular meshes, which are used in
many applications. In this paper, we deal with triangular
meshes; yet, our method can be adapted to other types of
polygonal meshes. Mesh segmentation has applications for
major  problems in visualization and modeling,
metamorphosis, compression, 3D shape retrieval, collision
detection, texture mapping, etc. The shape of the models is
significant and can lead to different segmentation approaches
depending on whether the problem concerns natural shapes
or mechanical parts. Mesh segmentation methods are mainly
classified into two groups, the patch-type and the part-type,
the former being related to the creation of patches that are
uniform with respect to some properties (e.g., curvature,
distance to a fitting primitive, size or convexity, etc.) [7, 10,
36] and the latter aiming at identifying parts that correspond
to relevant features of the shape [22, 15, 47].

In the following, we propose a patch-type segmentation
based on watershed transformation. Our approach is bottom-
up oriented and flooding is performed from the face
curvature. In 2D images, most watershed algorithms are
concerned with the structure of connected pixels and gray
levels (or gradient magnitude) as a height function. On 3D
meshes, the structure of connected vertices and vertex
curvature are generally used to compute the watershed
transformation [25, 33, 43, 1, 6]. The proposed approaches
use a connected face structure (not the dual graph of the
mesh, see figure 2) and the face curvature to create the first
partition of the mesh. The watershed transformation produces
an over-segmentation; techniques such as filtering, using
markers or hierarchical processes, are usually used so as to
avoid this problem. Here, we propose two hierarchical
processes to merge regions of the watershed partition. The
former involves successive merging according to the
watershed depth order; the latter uses the waterfall scheme

to create several segmentation levels. The remainder of the
paper proceeds as follows: the next section deals with related
works about the patch-type segmentation.

Section 3 addresses the curvature calculation from
connected vertex and connected face structures. Section 4
presents the watershed transformation algorithm. Section 5
explains the methods to limit over-segmentation. Finally,
results and discussions are presented in section 6.

2. RELATED WORK

A formulation of boundary mesh segmentation has been
presented by Shamir in [38]. The mesh segmentation can be
seen as an optimization problem where a three dimensional
mesh is defined as a tuple {V, E, F} of vertices V, edges E
and faces F. Mesh segmentation algorithms partition the
faces, the vertices or the edges of the mesh. Segmentation
methods generally fall into two classes: region-based and
boundary-based approaches. The latter use special features
of local properties as candidate locations for boundaries;
regions are deduced from these located boundaries. Region
based approaches look for areas with similar properties that
define the regions; the boundaries are deduced from them.
The possible approximate solutions for patch-type
segmentation are region growing [42, 46, 45, 28, 20, 29],
watershed approaches [25, 43, 34, 31, 6], hierarchical [10,
36, 39, 2], iterative [40, 37, 16, 7, 32, 18, 17] or spectral
clustering [22, 44]. Some methods are manual or semi-
manual.

They involve techniques such as graph cut [13], shortest
path algorithms [9], simplification [24] or snakes [14, 21,
23].

In this paper, we focus on hierarchical approaches which
make it possible to incrementally build and merge the regions
until all regions have been merged or when a threshold has
been reached. Hierarchical clustering can start when each
face is its own cluster or when a primary partition has been
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built from a pre-processing step such as region growing or
watershed transformation. The dual graph of the partition
(see Fig. 1) can be used to represent the region’s connectivity
and neighborhood. Each edge of the dual graph is assigned
a cost for merging. Garland et al. [10] proposed a hierarchical
face clustering using L

2
 distance and orientation norms from

representative planes as a planarity measurement. This
measurement is formulated using the quadric error metric.
The regions’ shape can be controlled by adding a
compactness heuristic which improves the regularity of the
clusters. A similar segmentation scheme is proposed in [36]
but additional tests are performed before merging two
clusters to incorporate topology constraints, like the fact that,
for example, each clustered patch must be homeomorphic
to a disk. In the post processing step, smooth boundaries
between the charts are created by calculating the shortest
constrained path. Sheffer [39] worked on the dual graph of
the mesh and contracted edges in respect to topological costs
including size, shape, curvature and more. Attene et al. [2]
proposed a hierarchical segmentation based on fitting
primitives such as a plane, a sphere and a cylinder.

advantages and drawbacks of using the minima rule, that is
to say using negative curvature minima to define boundaries.
The drawbacks, which appear as an ambiguity in the minima
rule theory, are discussed in [41].

Most of the 3D mesh watershed algorithms derive from
2D methods. The main algorithms are described in [35]. The
initial partition computed by watershed transformation can
be considered as the first step of a hierarchical process such
as the dynamics [30] or the waterfall [4]. The waterfall
appears as a powerful tool to merge regions and to create
several segmentation levels. Marcotegui and Beucher [26]
proposed an implementation of waterfalls based on graphs.
This process helps to create several segmentation levels
quickly. The user can easily browse the different levels in
order to choose the most suitable one for his application.

In this paper, we deal with watershed transformation
and hierarchical segmentation processes on 3D meshes. The
first hierarchical process provides a solution based on edge
contraction of the dual graph in order to merge regions built
from the watershed transformation. The second process
corresponds to the waterfall algorithm on 3D meshes adapted
from [26, 8]. Section 5 analyses the advantages and
drawbacks of the two methods.

3. CURVATURE CALCULATION

To perform the watershed transformation, a structure
associating a neighborhood and a criterion to each element
is needed. In 2D images, a pixel has 8 neighbor pixels. In
the case of polygonal meshes, vertex and faces may have a
variable connectivity, as it is shown in Figure 2.

For 2D images, the criterion can correspond to a gray
level, a gradient magnitude or a distance function relative
to boundaries in an image based on brightness, color and
texture cues [11]. For polygonal meshes, we associate this
criterion to the vertex or face curvature. Several methods
are proposed to calculate the vertex characteristics. Mangan
and Whitaker have pointed out the covariance matrix
efficiency in [25] to compute the curvature. Gaussian, mean
and principal curvatures have been detailed in [27] and a
recent approach [19] has been proposed to estimate local

Figure 1: Dual graph of the mesh (a), dual graph of the partition
(b)

The hierarchical segmentation involves an initial
partition composed by faces or regions (built from a pre-
process). The partitioning of 3D surface meshes has been
explored by Mangan and Whitaker [25] who merge adjacent
regions according to the watershed depth. Page et al. [31]
developed a fast watershed algorithm using the minima rule
[12] to compute the curvature and compared their approach
to Mangan and Whitaker’s method. They showed the

Figure 2: Neighborhood relationships for (a) pixels, (b) vertices, (c) triangles and (d) dual graph
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characteristics of the surface by means of integral quantities.
In order to compare the vertex and face connection
approaches, we use the covariance matrix, which offers
relevant curvature information. This method is less sensitive
to noise than approaches using dihedral angle measurement
only.

The covariance matrix is given by the variance and
covariance in all three directions:
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In the case of a connected face structure, there are more
neighbors than in the case of a connected vertex structure;
this allows us to easily differentiate the significant curvature,
with a view to reducing noise. Neighbor triangles do not
have the same type of connection; some are connected to
the face by one of the edges while others are connected by
one of the vertex as it is shown in Figure 2. Keeping all
triangles connected gives the best curvature information and
watershed computation while keeping a maximum of three
triangles connected by one of the edges only, ensures the
best time calculation but a less accurate curvature and
watershed.

4. WATERSHED TRANSFORMATION

This section describes the approach used in this watershed
algorithm and the features of the implementation. The
bottom-up approach of watershed transformation is a
segmentation technique which simulates water rising on the
image relief from the local minima. Several kinds of height
function can be used (height function considering gray level
intensity is shown in figure 3).

The flooding starts from local minima and incrementally
fills the basins until they connect to its neighbors. A
watershed is generated where basin collision occurs
(Figure 4).

Figure 4: A one dimensional example of watershed transformation. The different levels of flooding. Flooding start from minima;
basin collisions generate a watershed

Figure 3: Lena image map generated from its gray level intensities
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The use of hierarchical queues is one of the best
solutions to build a watershed on 2D images quickly. The
hierarchical queue [5] is made up of several FIFO queues
and each queue corresponds to a level (gray level or gradient
magnitude on 2D images, curvature or  roughness
measurement on 3D meshes, etc.). Queues are sorted per
level and a queue can be unstacked only when the previous
queues have been emptied (Figure 5).

The result of the watershed is used as an input partition
of the hierarchical segmentation algorithm. This partition is
composed of regions separated by watersheds (see figure
1b). Our algorithms are based on the contraction of dual
graph edges: two neighbor catchment basins are considered
as an edge with a depth value (Figure 7). Depth P of the
watershed saddle point S between regions a and b
corresponds to the difference between the saddle
point curvature and the minimum curvature of the regions
a and b:
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The edges are composed of the element (vertex or face)
list of the watershed. Each region contains its element list,
its minimum curvature and its watershed list. A tree node is
used to represent the region merging. For each region, a node
is created from the region information. The merging can now
be computed.

5.1 Successive Merging

The first algorithm corresponds to the successive
contractions of the dual graph edges in respect to edge value
order. The value of each edge corresponds to the watershed
depth. The region merging from the watershed depth has
been introduced by Mangan and Whitaker in [25]; here we
propose a new formulation based on the minimum spanning
tree (MST). In order to allow a quick browsing of the
different segmentation levels, each node created by an edge
contraction receives the following information:

• the node child list

• a new label

• the external edge watershed list

• the internal edge watershed list
Each merging involves the watershed depth calculation

of the new region and a new sorting of watershed depth list.
When nodes are merged, their shared watersheds are
removed, however, they must be stored in the node as internal

Figure 5: Watershed transformation based on hierarchical queue

The process uses the following steps. First, the minima
are stacked into their corresponding queue. Each minimum
(element or plateau) obtains a label. The first element of the
first queue is unstacked, then its non conflicting neighbors
are stacked in their corresponding queues and receive their
root element label. The conflicting elements are labelled as
watershed. In figure 6, the results are obtained by calculating
the hierarchical queue watershed algorithm of 3D models
with the two approaches. Section 6 offers a comparison of
these methods.

5. HIERARCHICAL SEGMENTATION

As it can be seen in figure 6, the output of watershed
transformation quite badly suffers from over-segmentation.
To avoid this problem, two methods are used: forcing
specific regions with markers and hierarchical segmentation.
The former is very accurate but supposes that the
characteristics of the object are known, the latter offers the
choice between several levels of segmentation. The general
case is considered in this article and two hierarchical
segmentation algorithms are proposed in the following.

Figure 6: Hierarchical queue watershed transformation on
connected vertex structure on the left and on connected
face structure on the right

Figure 7: Watershed depth



Hierarchical 3D Segmentation using Connected Face Structure 231

watershed because they exist at an inferior level of the tree
(an internal watershed belongs to a single node only); then
label attribution is quickly carried out. Figure 8 shows the
partition computed from the watershed transformation and
the minimum spanning tree built from the successive dual
graph edge contractions. Figure 10 provides the region
minima value and the saddle point curvature of the
watersheds on the left and the corresponding dual graph of
the partition on the right. The connectivity of the eight
regions is represented by the dual graph. Merging can be
done considering only one or several dual edge contractions
at the same time. If two minimum edges have the same value,
the one whose the saddle point curvature is the lowest can
be chosen first. In this example, we allow multiple
contractions when several minimum edges are detected.

minimum spanning tree is built from the successive edge
contractions (see figure 8b) and cannot be obtained directly
as it can be seen by comparing edge values on the MST and
the initial partition. New partitions are obtained by
contracting all MST edges whose values are below a
threshold. The MST appears as a very condensed way to
store the information and allows very efficient
implementation of hierarchical segmentation approaches.

Figure 8: Partition created by the watershed transformation (a)
and minimum spanning tree built from the successive
region merging (b)

Figure 9: Regions merging tree. Node information corresponds
to edge values and to the merging order from node {2

 R9}.

Our method involves the dynamic construction of the
minimum spanning tree. At the first iteration, edge with a
value of 2 are contracted which allows the merging of regions
{R

1
, R

2
} in R

9
 and regions {R

7
, R

8
} in R

10
. These edges are

the lowest and the first ones to be contracted. The creation
of new regions requires the computation of new minima and
edge value. Region R

9
’s minimum corresponds to min(R

1
,

R
2
). The old value (10 – 3 = 7) becomes (10 – 2 = 8). One

or several dual graph edges can be removed during the
creation of a region. At the second iteration, the edge with a
value of 4 is contracted.

Region R
11

 is created and the values (13 – 4 = 9) and
(10 – 4 = 6) become (13 – 2 = 11) and (10 – 2 = 8)
respectively. The process stops when only one region
remains. Figure 9 shows the different steps of the merging.
Flooding always follows the minimum height path. The

Figure 10:The successive contractions of the dual graph edges.
Region minima and saddle point curvatures on the left,
value (watershed depth) of the dual graph edges on
the right.

5.2 The Waterfall

The Waterfall has been introduced by Beucher in [4] and
corresponds to a hierarchical approach selecting among all
the contours of the watersheds those which are completely
surrounded by higher contours. A simplified partition is
obtained by removing these contours. The process may be
iterated until a single region covers the whole mesh. The
Waterfall algorithm presented in [26] uses the minimum
spanning tree of the partition. All local minimum edges of
the MST obtain a different label. Other MST edges are
browsed in the increasing order and are labeled according
to the label of the lowest neighbor edge. An edge is not
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labelised if more than one neighbor edge is assigned to a
different label. Figure 11 shows the first waterfall iteration.
The MST edges with values of 2 and 4 are considered as
local minima and obtain a different label; thereby, the
partition of the first waterfall iteration possesses three
regions. Two other MST edges can be contracted at this
iteration. At the second iteration, only one local minimum
is found. This involves the merging of all remaining regions.
The Waterfall technique helps to extract the main regions at
each iteration which considerably reduces the search for the
best segmentation level as it is shown in figure 12.

The waterfall process finds only one segmentation level
in this example whereas the successive merging process
builds three levels at least. The successive merging process
is interesting in the case of low resolution models but is not
appropriate for high resolution models. The main advantage
of the waterfall process is to create some partitions
containing the main regions at different levels. Only few
segmentation levels are proposed which eases the search for
the best one. The waterfall process can merge too many
regions between two iterations but additional function can
be used to browse intermediary merging between two
waterfall iterations.

6. DISCUSSION AND RESULTS

We have presented two ways to characterize the mesh surface
by calculating the vertex curvature and the face curvature.
The same watershed process is used to compute the flooding
on a connected vertex structure or a connected face structure.
We provide two merging methods relative to the tradeoff
flexibility / efficiency. Most of the segmentation methods
are sensitive to the shape of the 3D model. Some methods

Figure 11: Minimum spanning tree (a) and the first waterfall
iteration (b)

Figure 12:Regions merging tree built by the waterfall process. Node information corresponds to local minimum edge values and to
the region number.

are adapted to mechanical parts whereas others help
segmenting smooth patches on natural shapes. The faces
curvature provides a good surface characterization in either
case and avoids focusing on the n-neighborhood of vertices.
Figure 13 shows several models segmented at the best
segmentation level and a comparison of waterfall
segmentation carried out on connected face structure and
on connected vertex structure.

Faces are nearly twice as many as vertices and they
have a larger neighborhood; then, connected face structure
gives a proportionately important computation time. In a
noise filtering way, a greater number of faces makes it
possible to easily differentiate the significant curvature.
Connected face structures lead to longer watershed
computation but also to a lower number of regions and a
better characterization of the different segmentation levels
as shown in figure 13 and table 1. Each model’s

segmentation feature appears on table 1. All models have
been segmented by the waterfall process which each time
gave the best segmentation results. Pre-processing and post-
processing are not addressed here; they constitute
complementary approaches to improve segmentation. Attene
et al. [3] recently proposed a comparative study of the latest
mesh segmentation methods; they defined several criteria
in order to compare the five methods they dealt with. In the
following, we describe these criteria and discuss the
efficiency of our method.

Type of segmentation: the models presented here often
appear in the mesh segmentation literature. They are used
by the two main segmentation families which are the part-
type segmentation and the patch-type segmentation. Among
the different kinds of segmentation, our approach focuses
on patch-type segmentation of 3D meshes from curvature
information.
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Extracting the correct patches: as explained in [3],
defining the correct component of a given model is
impossible. The right segmentation depends on the
application, the viewer’s perspective and the knowledge of
the world.  In most papers,  the correctness of the
segmentation is only obtained by looking at the images
themselves. Our method uses the watershed transformation
and local minima in order to create patches. The boundaries
and patch minima are used to compute the watershed depth
of each boundary. The minimum spanning tree of the
partition can be built from successive contraction of dual
graph edges as explained in section 5.1. The waterfall
algorithm based on the MST helps to generate several
segmentation schemes and find the most suitable
segmentation level of the application very quickly.

Boundaries quality: the boundaries are made in
respect to the scheme of the watershed process and regions
meet at their highest curvature area. Our merging process
successively removes some boundaries at  each
segmentation level. Additional process could be used to
control some geometric properties such as boundary
smoothness, boundary length and its location along concave
features, etc.

Hierarchical segmentation: some methods open the
possibility of browsing several segmentation levels. In [2],
the iterative clustering is computed several times depending
on the maximum number of clusters or on a threshold error.
The user may interactively move a slider which sets the
desired number of clusters (or the threshold error). We
propose here a slider which makes it possible to select the
different partitions computed from the waterfall.

Sensitivity to the pose: in the case of part-type methods,
the sensitivity to the pose is important. A retrieval method
can involve a segmentation process which must decompose
the same parts whatever the pose of the 3D model [15]. In
the case of patch-type methods, the geometric properties of
the model can be very different depending on the pose. This
criterion, defined in [3], is not concerned directly with the
patch-type segmentation.

Calculation time: all performance measurements for
the segmentation algorithm were made on a 2.8 Ghz Intel
Pentium IV system. The running time of the watershed
transformation and the merging process vary between 1 ms
for model Mushroom and 72.4 s for model Shark. This time
span strongly depends on the number of vertices and faces.
Table 1 shows the number of regions created by the
watershed transformation and the reduction obtained with
the chosen level of segmentation. We estimate the best level
of segmentation in terms of patch-segmentation and we can
see that this level can easily be found because of the low
number of levels to browse. Table 1 shows the number of
regions for each model and each type of structure after the
watershed transformation; it gives the last number level
(where all regions are merged) and the chosen segmentation
level.

Figure 13:Comparison of the two approaches (connected vertex
structure on the left, connected face structure on the
right)
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Control parameter: a slider is provided to set the
segmentation level rather than a threshold. All segmentation
schemes can be stored efficiently in the merging tree
presented in figure 12.

7. CONCLUSIONS

Our approach uses the face curvature information to compute
the 3D segmentation. We have presented a comparison of
segmentations with different structures and showed that
connected face structure entailed the best segmentation. We
use the watershed transformation and the waterfall algorithm
based on the minimum spanning tree to create several
partition schemes and open the possibility to browse the
different segmentation levels quickly. Future studies will
involve the adaptation of our method to specific applications.
We are studying the efficiency of different criteria such as
the distance to crest line, vertex and face curvature,
roughness measurement, etc. in order to build a more specific
height function for the watershed transformation and the
waterfall.
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