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In this work the implementation of a large mammographic database is described. The digitized images were collected since
1999 by a community of physicists in collaboration with radiologists in several Italian hospitals, as a first step to implement
a Computer Aided Detection (CAD) system. The mammograms were collected from 967 patients; they were classified according
to the type and the morphology of the lesions, the type of the breast tissue and the type of pathologies. Moreover we present
a classification system for an automatic detection of masses in digitized mammographic images. The system consists in
three main processing levels: (a) image segmentation for the localization of regions of interest (ROIs); (b) ROI characterization
by means of textural features computed from the Gray Tone Spatial Dependence Matrix (GTSDM), containing second order
spatial statistics information on the pixel grey level intensity; (c) ROI classification by means of a neural network, with
supervision provided by the radiologist’s diagnosis. The CAD system was developed and evaluated using a database of
N

I
 = 3369 mammographic images: the breakdown of the cases was N

In
 = 2307 negative images, and N

Ip
 = 1062 pathological

(or positive) images, containing at least one confirmed mass, as diagnosed by an expert radiologist. To examine the
performance of the overall CAD system, receiver operating characteristic (ROC) and free-response ROC (FROC) analysis
were employed. The area under the ROC curve was found to be A

z
 = 0.78 ± 0.008 for ROI-based classification. When

evaluating the accuracy of the CAD against the radiologist-drawn boundaries, 4.23 false positive per image (FPpI) are
found at 80% mass sensitivity.

1. INTRODUCTION

The analysis of medical images is receiving, in the last years,
a growing interest from the scientific community working
at the crossover point among physics, engineering and
medicine. The main purpose of this activity is to develop
CAD systems for an automated search for pathologies, which
could be of great help for the physicians’ diagnosis.

A typical example is the analysis of mammographic
images which are widely recognized as the only imaging
modality for an early detection of breast neoplasia [1; 2].
Breast cancer is reported as the leading cause of woman
cancer deaths in both United States and Europe. At present,
screening programs are the best known method for an early
diagnosis in asymptomatic women, thus allowing a reduction
of the mortality [3, 4]. Screening programs are based on a
double visual inspection of the mammographic images, as
double reading was shown to increase diagnostic accuracy
[5]. From this point of view, the use of a CAD system could
provide valuable assistance to the radiologist.

In the present paper, a CAD system for mass detection
will be described. The masses are often clear marks of a
breast neoplasia. Masses are rather large (d � 1 cm of
diameter) objects with variable shapes, showing up with faint
contrast. These textural characteristics can be exploited in
both the definition of a ROI hunter procedure and the choice
of the proper features to discriminate positive regions of the
mammogram from negative ones.

This work fits in the more general framework of the
MAGIC-5 Project (Medical Application on a Grid
Infrastructure Connection) [7]. The image collection in a
screening program intrinsically creates a distributed
database, as it involves many hospitals and/or screening
centers in different locations. The amount of data generated
by such periodical examinations would be so large that it
would not be efficient to concentrate them in a single
computing center. As an example, let us consider a
mammographic screening program to be carried out in Italy:
it should check a target sample of about 6.8 millions women
in the 49-69 age range at least once every two years, thus
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implying a data flux of 3.4 millions mammographic exams/
year. For an average data size of 50 MB/exam (4 images),
the amount of raw data would be in the order of 160 TB/
year. In addition, the amount of data linearly increases with
time and a full transfer over the network from the collection
centers to a central site would be large enough to saturate
the available connections. On the other hand, making the
whole database available to authorized users, regardless of
the data distribution, would provide several advantages. This
framework requires huge distributed computing efforts as
for the case of the HEP (High Energy Physics) experiments,
e.g. the CERN/LHC (Large Hadron Collider) collaborations.
The best way to tackle these demands is to use the GRID
technologies to manage distributed databases and to allow
real time remote diagnosis. This approach would provide
access to the full database from everywhere, thus making
possible large-scale screening programs. The MAGIC-5
Project fits in this framework, as it aims at developing
Computer Aided Detection (CAD) software for Medical
Applications on distributed databases by means of a GRID
Infrastructure Connection.

2. THE IMAGE DATABASE

A medical images dataset is considered the starting point
for important studies such as a comparison of algorithms
for training and testing of CAD systems. The mammograms
used in this study were collected in a network of hospitals
belonging to the MAGIC-5 collaboration [9,10]. Images
were acquired using different mammographic screen/film
systems and settings (all with molybdenum anode) and in
the framework of different applications, including both
clinical routine carried out on symptomatic women, and
screening programs addressed to asymptomatic women. A
workstation, composed of a PC running the Linux operating
system and a film scanner, was installed at each site involved
in the program. All the mammograms of the database were
digitized using the same digitizer model and under the same
conditions in order to avoid artificial features caused by
variations in the digitization step. All the images were
digitized with a CCD scanner at a pixel size of 85µm × 85
µm with 12 bits gray level resolution (4096 grey levels tones)
[11]. The typical scan time is 20s. The acquisition software
provided with the scanner was modified to scan and save
images in a special format consisting of a long vector of
numbers corresponding to the pixel intensities and two other
numbers representing the image dimension. These numbers
are used to transform the vector in a matrix: each pixel of
the image can be represented by a triplet (x, y, I), where x is
the row number, y is the column number and I is the intensity
of the pixel, ranging from 0 (black) to 4095 (white). Each
image has a standard size of about 8 Mbytes. In sites where
clinical studies were performed, the PC was connected to a
high resolution and high luminosity B/W LCD monitor.

The database is composed of N
I
 = 3369 mammographic

images, each including data and clinical information. Images

were collected from n
s
 = 967 patients, whose age ranges

from 22 to 84. The age distribution is reported in figure 1.
Each patient has from one to six views (central, lateral,

oblique), according to the distribution shown in figure 2.
Different views from the same subject and are treated as
different case samples in the analysis.

The pie diagrams reported in figure 3 shows the
repartition of the database in left/right breast images (left)
and craniocaudal/oblique/lateral views (right). The image
size is 2067×2657 pixels.

Figure 1: Age groups of the analyzed subjects

Figure 2: Number of cases with 1-6 images

All the mammographic images with other information
related to the patient (follow up, age of patients and
interesting cases) were collected in the Italian hospitals
involved in the MAGIC5 collaboration. The geographic
provenience of the images is shown in figure 4.

All the images of the database containing one (or more)
lesions were characterized according to the kind of lesions
(massive or microcalcification), its grade of malignancy, the
kind of texture of the breast, etc. In this study there are the
images from 306 patients who were defined normal when
proven by three years of radiological follow up, or, generally,
when there was no evidence of any lesion. The remaining
images proceed from 661 “abnormal” patients: when a
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suspicious lesion was found in these images, it was classified
as suspicious; when more diagnostic procedures were carried
out on the patient, the feature was identified as benign or
malignant, according to the cytological or histological
results.

We consider positive images the ones which contain at
least one mass, as diagnosed by an expert radiologist and
confirmed by biopsy; images with no mass at the first exam
and after a follow up of at least three years are considered
as negative, even if they contain some other pathology (e.g.
microcalcifications). The breakdown of the cases is displayed
in figure 5 for both the images (positive/negative) and the
analyzed subjects (pathological/healthy).

The classification of breast background is based only
on the appearance of the breast parenchyma. No
consideration was given to the skin, vascularity, presence or
absence of masses, calcifications, lymph nodes, nor to parity,
history of breast disease, age, family history.

3. METHODS

It should be stressed that no kind of normalization is applied
to the images.

The CAD system consists of three main steps:
segmentation, feature extraction and classification. The goal
of the segmentation step is to locate, within the images, those
suspicious regions, or ROIs, which are more likely to contain
a mass. All the detected ROIs will be characterized by a proper
set of features providing a second-order spatial statistics
information on the pixel intensity. It should be stressed that,
in general, a number of ROIs can be detected with different
degrees of superimposition on the same mass, though being
not overlapped among them. In few words, ROI-to-mass is
not a one-to-one mapping. A tagging criterion, relying on the
superimposition with the radiologist-drawn boundary, is
adopted to define the true positive (TP) ROIs. This procedure
is necessary to train the neural network with a ground truth
based on the radiologist’s diagnosis. Results are provided in
terms of both ROC curve, displaying the neural network
pattern (i.e. ROIs) classification and FROC curve, describing
the overall CAD system (segmentation + feature extraction +
neural network) mass detection performance.

In the following sections each of the above mentioned
processing steps are reviewed.

3.1 Segmentation Methods

Prior to be processed, the images are made anonymous and
the borders of the breast are extracted by means of a threshold
algorithm whose accuracy has been visually verified case
by case. In this way, non-interesting portions of the
mammogram reporting information about right/left breast,
examination date and so on has been cut off.

Figure 3: Database partition; left: number of left/right breast
images; right: number of cranio-caudal/oblique/lateral
views

Figure 4: Geographic  provenience of the images within
MAGIC-5 database analyzed subjects (pathological/
healthy)
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Figure 5: Database composition: images (left) and subjects
(right)

positive image
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In the database there are 1062 images containing at least
one Region Of Interest (ROI) with a massive lesion and 304
images containing at least one ROI with microcalcifications.
In total there are 1296 images containing at least one lesion,
and 70 images contain both massive and microcalcification
lesion.

Figure 6: Different kinds of masses present in the database.
Legend: IRO = Irregular Roundish Opacity; SO =
Spiculated Opacity;  RRO = Regular  Roundish
Opacity; PS = Parenchymal Distorsion; BRO = Blurred
Roundish Opacity; OTHERS include a combination of
the above mentioned kinds
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A segmentation algorithm has been implemented to
select the suspicious regions of the mammogram. A detailed
description of the ROI hunter, including the parameter
selection, is given in [6]. Here we briefly provide the main
points the algorithm is based on:

• the mammogram is divided into square cells of
200×200 pixels and a relative grey level maximum
I

M
 (initial center for the candidate lesion) is

searched in each cell;
• an iso-intensity contour, defining a ROI with area

A
R
 which includes the relative maximum intensity

pixel, is drawn for a certain initial threshold value
I

th
 = I

M
/2;

• the threshold is increased/decreased provided that
the ROI area A

R
 is greater/smaller than a limit area

A
L
; the iteration is stopped when the difference

between two consecutive thresholds is less than 4
grey levels;

• the ROI is removed and stored for feature extraction
and classification;

• the processing is repeated for the following square
cell.

Figure 7 shows an example of the ROIs selected with
the segmentation algorithm (right), together with the original
image (left).

masses, with respect to 1236 radiologist-drawn boundaries.
Moreover, 6.27 FPpI are obtained at this level, and the
average area of the selected ROIs is 15% of the total area of
the image. Table 1 reports the breakdown of the selected
ROIs.

Table 1
Breakdown of the selected ROIs

TP FP negative total

1207 7642 13473 22322

3.2 Feature Extraction

Texture analysis can be used either to segment the image
into areas indicating the mass, or to measure textural features
to classify possible pathological sites. This approach has
been used in [12] to experiment lung cancer nodule detection
by means of textural features and neural network
classification. This led us to follow a similar approach for
the detection of the masses in mammography. The focus of
the analysis is the computation of the Grey Level Co-
occurrence Matrix (GLCM) [13], also known as Spatial Grey
Level Dependence (SGLD) [14]. To this purpose, we
consider the minimal rectangular portion of the image which
fully includes the ROI. As the name suggests, the GLCM is
constructed from the image by estimating the pairwise
statistics of pixel intensity, thus relying on the assumption
that the texture content information of an image is contained
in overall or average spatial relationship between pairs of
pixel intensities [13]. A co-occurrence matrix � is a G × G
matrix, whose rows and columns are indexed by the image
grey levels i = 1,..., G, where G = 2n for an n-bit image.
Each element p

ij
 represents an estimate of the probability

that two pixels with a specified polar separation (d, �) have
grey levels i and j. Coordinates d and � are, respectively,
the distance and the angle between the two pixels i and j. In
their seminal paper [13], Haralick et al. considered only
displacements d = 1 at quantized angles ��= k�/4, with
k = 0, 1, 2, 3, thus having �

d,�(j, i) = �
d,�+�(i, j). Symmetry

is achieved by averaging the GLCM with its transpose, thus
leading to invariance under �-rotations too. Textural features
can be derived from the GLCM and used in texture
classification in place of the single GLCM elements. In [13],
14 features are introduced, related to a textural property of
the image such as homogeneity, contrast, presence of
organized structure, complexity and nature of grey tone
transitions. The values of these features are sensitive to the
choice of the direction �, given that the parameter d is fixed
to 1 (greater values are rarely used). Invariance under
rotation should be restored in order to avoid describing two
images, one obtained by rotating the other, with different
feature sets. This is achieved by considering mean and range
of each feature values over the � angles, thus obtaining a
number of 28 textural variables, even if only few of them
are used as inputs to a classifier [14, 15, 16].

Figure 7: Left: the original image; right: the segmented image

The number of ROIs detected from each image is not
set a priori, rather it is related also to the texture properties
of the mammogram. All the ROIs extracted from negative
images are tagged as negatives, while the ROIs from positive
images can be labeled as true positive (TP) or false positive
(FP), depending if they meet or not of the radiologist-drawn
boundary.

We point out that for the following classification step
only TP and negative ROIs are used for both training and
testing the neural network, according to the cross-validation
technique (see section 8), while the FP ones are used for
validation purpose only.

The efficiency of the ROI hunter, computed as the
percentage of masses correctly detected among those found
by the radiologist, is 83.1%, corresponding to 1027 detected
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As the texture is grey tone independent, either the image
must be normalized or one should choose features which
are invariant under monotonic grey level transformation. We
select, among all GLCM features, the following features
which are grey tone independent:
1. angular second moment:

2
1 ij

ij

f p� �� (1)

2. entropy:

2 ln( )ij ij
ij

f p p� � �� (2)

3. information measures of correlation:

2 1
3

max{ }x y

f H
f

H H

�
� �

� (3)

1 2
4 2 2(1 exp{ 2( )})f H f �� � � � � (4)

where

( )x ij
j

P i p� � (5)

( )y ij
i

P j p�� (6)

1 ln{ ( ) ( )}ij x y
ij

H p P i P j� �� (7)

2 ( ) ( ) ln{ ( ) ( )}x y x y
ij

H P i P j P i P j� �� (8)

( ) ln{ ( )}x x x
i

H P i P i� �� (9)

( ) ln{ ( )}y y y
j

H P j P j� �� (10)

For each of the above mentioned features {f
i
},

(i = 1,.. . , 4), mean and range are computed over
� = k�/4 angles, with k = 0, 1, 2, 3, thus obtaining a
number of eight textural features. For illustrative
purpose, let us focus on the f

1
 variable to show the

effectiveness of this variable to discriminate positive from
negative ROIs. The angular second moment (ASM) is a
measure of the grey tone homogeneity. In  a quite
homogeneous window (see fig. 8 (a) displaying not a
suspicious region) there is a large number of few dominant
grey tone transitions, giving few entries of great probabilities
in �, corresponding to high ASM values. On the other case
(see fig. 8 (b) which refers to a mass), there is a larger number
of transitions with low statistics, hence many entries with
small probabilities in the co-occurrence matrix: this implies
small ASM values for inhomogeneous windows. For the
cases shown in fig. 8, both the mean and the range of the
angular second moment are one order of magnitude different:
�f

1
� = 0.0014, range (f

1
) = 10–4 for the negative ROI,

(fig. 8a), �f
1
� = 0.0001, range (f

1
) = 10–5 for the positive ROI

(fig. 8b).

3.3 Classification

We used a supervised two-layered feed-forward neural
network, trained with gradient descent learning rule [17] for
the ROI pattern classification.

The network architecture consisted of n
i
 = 8 input

neurons and one output neuron. The size of the hidden layer
was tuned in the range [n

i
 – 1, 2n

i
 + 1 to optimize the

classification performance.
All the TP ROIs (N

TP
 = 1207) and as many negative

ones were used to train the neural network. To make sure
that the negative training patterns were representative, they
were selected with a probability given by the distribution of
the whole negative ROI set, in the eight-dimensional feature
space. With a random procedure we build up two sets
(A and B), each one made of 1207 patterns, which are used,
in turn, for both training and test, according to the cross
validation technique [19]: first, the network is trained with
set A and tested with set B, then the two sets are reversed.
All the other patterns (negative ROIs not selected for the
training stage and FP) are used for validation only. The
results presented in the following section (see ROC curves
in section 2) refer to the classification of all the patterns at
our hand. The breakdown of the patterns for the cross
validation is reported in table 2.

Table 2
Breakdown of the Patterns for the Cross Validation: First

Set A is used for Training and set B for Testing, then Viceversa

set A set B validation

TP ROI 603 604 /

negative ROI 604 603 13473

FPROI / / 7642

total 1207 1207 21115

In all run set A and set B contains a balanced number of
both the considered type of masses and the different kinds
of tissue.

4. RESULTS AND DISCUSSION

The performance of the neural stage is provided in terms of
ROC curve [20] analysis. The ROC curve is particularly

Figure 8: (a): negative ROI; (b): positive ROI
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suitable when testing a binary hypothesis: it is obtained by
plotting the sensitivity (s, positive cases correctly
recognized) against the false positive rate (FPR: fraction of
misclassified negative patterns), at different values of the
decision threshold.

In each case the classifications parameter (hidden
neurons number, �) were changed so as the optimum
performance was achieved.

Figure 9 displays a typical ROC curve obtained for the
pattern classification. The area under the curve (AUC) is
A

z
 = 0.783 ± 0.008, where the error is computed as reported

in Hanley et al. [21]. The results are quite insensitive to the
number N

h
 of the hidden neurons and � parameter.

tested on the above described database. The first level is a
segmentation-based procedure to extract ROIs. This routine
consists in a dynamical threshold algorithm which allows to
select iso-intensity contours around grey level maxima of
the mammogram. The second level performs the feature
extraction, based on the use of eight grey tone independent
textural features measured from the GTSD matrix: these
features carry second order spatial statistics information on
the pixel intensity of the suspicious regions. The third level
does the final classification by means of a two-layered feed-
forward supervised neural network.

Figure 9: ROC curve for ROI-based classification. The area
under the curve (AUC) is Az = 0.783 ± 0.008
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As said in section 3, a number of ROIs can be
superimposed to the same mass though not overlapping
among them. For this reason, it should be more useful to
provide the results in terms of the mass sensitivity, defined
as the fraction of masses correctly detected by the CAD with
respect to the total number of radiologist-drawn boundaries.
In this way, the accuracy of the overall CAD system can be
assessed against the radiologist’s diagnosis. To this purpose,
the following prescription is adopted: a mass is correctly
detected by the CAD system if at least one ROI, among the
ones superimposed to that mass, is classified as positive by
the neural network.

A free-response ROC (FROC) curve can be drawn (see
figure 10), which reports the mass sensitivity of the overall
system against the number of false positive per image (FPpI):
80% of mass sensitivity is achieved with 4.23 FPpI.

5. CONCLUSIONS

The database collected represents a useful archive of
digitized mammographic images. It can be a valuable tool
to the scientific community for different tasks such as training
and testing of Neural Network based classification tools
[22, 23, 24, 25]. A three-level classifier was developed and

Figure 10:CAD FROC curve for mass-based classification
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The results are provided in terms of ROC curve for the
ROI-based neural classification, and FROC curve for the
mass-based CAD classification.

Our scheme was developed and evaluated on a large
database of mammographic images collected in the hospitals
belonging to the MAGIC-5 Collaboration. The breast masses
contained in the database span a wide range of shapes, sizes,
and contrasts.

Like in a screening program, data are collected from
geographically remote sites. The growth of the database and
the distributed nature of the collaboration raises a problem,
since images are generally not replicated between remote
sites. The approach used to solve the problem of remote
access was to use techniques developed for GRID computing
[26,27].
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