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This paper presents new methods to segment thin tree structures, which areforexamplepresent inmicrogliaextensionsand
cardiacorneuronal blood vessels. The Fast Marching method allows the segmentation of tree structures from a single point
chosen by the user when a priori information is available about the length of the tree. However, in general, there is no way
to stop the propagation automatically. In our case, no a priori information about the length of the microglia extensions is
available. We propose here to use Harris points to deûne a criterion to stop the propagation. The tree structure is deûned as
the set of minimal paths, relatively to the weighted distanceby a costpotential, extractedfrom a sourcepoint(root of the tree)
to allHarrispoints.Thesepoints canbe used alsototrack thetree structure in image sequences. Numerical results from synthetic
and microscopic images are presented.
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1. INTRODUCTION

In this paper we present novel methods for the
segmentation of tree structures. These methods are based
on minimal paths with a metric designed from the images
and can be applied to the segmentation of numerous
structures, such as: microglia extensions; neurovascular
structures; blood vessel; pulmonary tree. Following our
main motivation, we will present applications of our
methods to microglia extensions.

Recent developments in imaging such as fluorescent
probes and reporters combined to two photon microscopy
brought new field of investigation in neuroscience. It now
allows researchers to follow in vivo dynamic movements
of cells in 3D. Such approaches revealed that microglia,
a subtype of glial cells, are particularly motile in the
Central Nervous System (CNS). Besides their highly
mobile processes, microglia are the major inflammatory
eector cells of the brain and consequently are involved
in most of CNS diseases. Understanding the logic of
microglia motility might at term provide an ecient tool
to detect early symptoms of diseases such as Alzheimer
or multiple lateral sclerosis. Although much work is
devoted to the segmentation of vascular trees in medical
images, few attempts have been made to extract microglia
extensions and were restricted to the main branches ([9],
[39]). Since the microglia extensions are very thin, the
centerlines of the extensions are enough to characterize
the structure and the motion of the microglia. From our
experience with vascular trees we can tell that microglia
segmentation can be much more difficult, due to very
thin branches and noise.

While there are few studies dedicated to the
segmentation of microglia structures, there is a large
number of studies dedicated to the extraction of the
vascular or airway trees. For a review of methods used
to extract these structures, see [18, 19, 25, 1, 4, 21].
Among the methods used to segment these tree structures
we consider the three following models, classified
according to the method used to extract the tubular aspect
of the tree: centerline based models; surface models; and
4D curve models. The first category focuses on directly
extracting the centerlines of the tubular tree [22, 35].
However, after extracting the centerlines a second process
can allow to segment the lumen of the tree, see [3]. The
second category extracts directly the surface of the vessel.
This approach includes explicit and implicit surface
models. The former approach uses a parametric
representation of the tubular structure [14]. These models
are not adapted to the segmentation of complex tree
structures while implicit methods can evolve the surface
to complex shape changes and handle changes in
topology [23, 40]. However, initializations must be
performed carefully to get an accurate segmentation.

Minimal paths techniques were extensively used for
centerlines extraction of tubular tree structures. These
approaches are more robust than the region growing
methods, particularly in the presence of local
perturbations due to the presence of stenosed branches
of the tree or imaging artefacts where the image
information might be insucient to guide the growing
process. Several minimal path techniques have been
proposed to deal with this problem [2, 38, 10]. These
techniques consist in designing a metric from the image
in such a way that the tubular structures correspond to
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geodesic paths according to this metric [7]. Solving the
problem from the practical point of view consists of a
front propagation from a source point within a vessel,
which is faster on the branches of the vascular tree. These
methods required the definition by the user of a starting
point (propagation source) and end points. Each end point
allows to extract a minimal path from this point to the
source point, the points located on the minimal path are
very likely located on the vessel of interest. Few works
have been devoted to reduce the interaction of the user
in the segmentation of tree structure to the initialization
of the propagation from a single point. Authors of [15]
defined a stopping criterion from a medialness measure,
the propagation is stopped when the medialness drops
below a given threshold. This method might suer from
the same problem as the growing region, the medialness
might drop below the given threshold in the presence of
pathology of imaging artefacts. Wink et al. [37] proposed
to stop the propagation when the geodesic distance
reaches a certain value. However, this method is limited
to the segmentation of a single vessel and the definition
of the threshold of the geodesic distance is not
straightforward. Cohen et al. [6] proposed to stop the
propagation following a criterion based on some
geometric properties of the region covered by the front.
In [11], assuming the total length of the tree structure to
be visited is given, the stopping criterion is based on the
Euclidean length of the minimal path.

Li et al. [20] proposed a 4D curve model with a key
point searching scheme to extract multi-branch tubular
structures. The vascular tree is a set of 4D minimal paths,
giving 3D centerlines and width. While this method has
the advantage to segment vessel centerlines and surfaces
simultaneously, it requires the definition of eight
parameters. One point inside the tubular structure and
the radius are used to initialize the Fast marching
propagation, three parameters are used to set the Fast
Marching potential and three distance parameters limit
the propagation to the inside of the tubular structure to
avoid leakage outside the tree. These last three parameters
required an important intervention of the user since they
are crucial to extract the whole structure. If these distance
parameters are not suitable, parts of the tree structure may
be missed during the propagation.

Recently, the Geodesic Voting method [27–29] was
proposed to extract tree structures without using any a
priori information and based on the user providing only
a single point on the tree structure. It consists in
computing geodesics from a given source point to a set
of end points scattered in the image. The target structure
corresponds to image points with a high geodesic density.
The geodesic density is defined at each pixel of the image
as the number of geodesics that pass over this pixel. Since
the potential takes low values on the tree structure,

geodesics will locate preferably on this structure and thus
the geodesic density should be high.

Here, we present methods to extract tree structures
without using any a priori information and based on the
user providing only a single point on the tree structure.
The proposed method is less time consuming than the
geodesic voting method, only few minimal paths are
needed to segment the target tree. In contrast, the geodesic
voting method requires the extraction of a large number
of geodesics to define an accurate geodesic density.
However, the proposed method is based on the
assumption that the extremities of the tree are included
in the set of corner points in the images. This assumption
is met in many applications such as the microglia
extensions, which are the main focus of this paper. The
geodesic voting method has a broader application since
it does not rely on this assumption.

Some of the main results of the paper were presented
in the conference paper [30], we improved here the
presentation of the method and evaluate it on a larger
data set. We propose to use geometric characteristic of
the tree as criterion to stop the propagation: extremities
and junctions of the tree. We detect these points as corners
by the Harris detector [16]. The tree structure is
approximated by the set of minimal paths, relatively to
the weighted distance by a cost potential, from the Harris
points to the root of the tree. The root point corresponds
to the propagation source and is the only information
given by the user. Since the potential takes low values
on the tree structure, geodesics will locate preferably on
this structure. The method was applied to segment
Microglia extensions from confocal microscope.

The paper is organized as follows: in Section 2 we
give tools needed to present our segmentation method in
Section 3; in Section 4 we apply our method to segment
microglia extensions from two photon images; in Section
5, we give a conclusion and discuss possible
improvements of the method.

2. BACKGROUND

2.1. Minimal Paths

The minimal path theory for the extraction of contours
from the image was inspired by the Fermat principle in
geometrical optics: the light trajectory y(s) minimizes the
optical distance between x

0
 = y(0) and x

1
 = y(L), where s

is the arclength and L is the length of the trajectory which
follows the curve y(s) that minimizes the travel time �:

0 1 0
( , )

( ( ))
� � �

L ds
x x

c y s (1)

where propagation speed c is a function depending on
the medium of the propagation. In homogeneous media
the function c is a constant, the trajectories correspond
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to lines. In a medium with two regions, the function c
takes two values: c

1
 in the first region and c

2
 in the second

region. The trajectory, in this case, corresponds usually
to two joint segments, each segment belonging to one
region (satisfying Snell law). We are interested here in
the case of a medium with a continuous velocity c, see
[7].

In the context of image segmentation Cohen and
Kimmel proposed, in [7], a deformable model based on
the optical distance (1). The model is formulated as
finding a geodesic for a weighted distance:

0
min ( ( ( ))) ,��

L

y
w P y s ds (2)

the minimum is considered over all curves y(s) traced on
the image domain � that link the two end points, that is,
y(0) = x

0
 and y(L) = x

1
. The constant w imposes regularity

on the curve. P > 0 is a potential cost function computed
from the image, it takes lower values near the edges or
the features. For instance P(y(s)) = I(y(s)) leads to darker
lines while P(y(s)) = g(||�I||) leads to edges, where I is
the image and g is a decreasing function.

To compute the solution associated to the source x
0

of this problem, [7] proposed a Hamiltonian approach:
Find the geodesic weighted distance U to x

0
 that solves

the eikonal equation

||�U(x)|| = w + P(x) �x � � (3)

The ray y is subsequently computed by back-
propagation from x

1
 by solving the ordinary differential

equation (ODE)

y�(s) = –�U(y). (4)

Fig. 1 shows a simple example of minimal path on a
synthetic image.

The only stable schemes that solve the eikonal
equation compute the viscosity solution [8]. The first
work that uses the viscosity solution for this kind of
problems is from Vidale [36]. An iterative numerical
scheme to solve eikonal equation was proposed in [31,
12]. In such iterative scheme, at least complexity O(mn2)
is needed, where n is the total number of grid points and
m is the number of iterations that permit an estimation of
the solution. In the next section, we present the Fast
Marching algorithm introduced in [33] to solve this
problem in complexity O(n log(n). Some other schemes
based on different tricks can lead to O(n).

2.2. Fast Marching Method

The idea behind the Fast Marching algorithm is to
propagate the wave in only one diffrection, starting with
the smallest values of the action map U and progressing
to the largest values using the upwind property of the
scheme. Therefore, the Fast Marching method permits

only one pass on the image starting from the sources
(where U = 0) in the upwind direction. We briefly recall
the principle of the Fast Marching method, for details
see [33, 34, 5]. The grid points are partitioned into three
dynamic sets: trial points, alive points and far points.
Alive points are the grid points for which a value U has
been computed and will not be changed any more, while
Far points are those for which there is no possible estimate
of U yet. Trial points are points that are not alive, and
that have at least one neighbor that is alive, in order to
get an estimate of U from the discrete version of Equation
(3). The trial points correspond to a dynamic boundary
that separates far points and alive points. At each step,
the trial point with the minimum value of the action map
U is moved to the set of alive points. To reduce the
computing time, the trial points are stocked in a data
structure referred to as min-heap (the construction of this
data structure is described in [33, 34]). The complexity
to change the value of one element of the min-heap is
O(log(n). Hence, the total complexity for Fast Marching
to reach the n grid points as alive is O(n log(n). The
Dijkstra algorithm, which is also used to find a minimal
cost path on a graph, has the same complexity as the Fast
Marching algorithm. However, the Dijkstra algorithm
leads to metrication error and is not consistent, contrary
to the Fast Marching algorithm which converges toward
the unique viscosity solution (see [5]). Fig. 1 shows an
example of distance map computed with the Fast
Marching on a synthetic image.

2.3. Detection of Points of Interest

Characteristic points have been proven successful in
solving many vision problems for a long time such as
tracking [17] or reconstruction [13], and are more
efficient in some applications than other geometric
primitives such as edges or segments. One of the most
popular detector of corner points is the Harris detector,
which is better or equivalent to the other detectors [32].
This comparison is achieved in terms of repeatability: is
the point detected in the first image also accurately
detected in the second image. Detectors with a good
repeatability rate may be useful to understand the motility
of the microglia extensions over time. In this work, we
focus on the use of such points to segment the microglia
extensions.

The Harris detector [16] is based on the Moravec
detector [24], which determines the average changes of
image intensity that result from shifting a local window
in the image by small variations in various directions.
The intensity change E produced by the shift (p, q) is :

2
,

,

( , ) | ( , ) ( , ) |� � � �� i j
i j

E p q w I i p j q I i j (5)

where w specifies the image window. We consider here
a smooth Gaussian circular window.
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The Moravec detector of corners looks for local
maxima of E. The Harris detector computes and compares
the eigenvalues of the Taylor expansion of E. By using
the Taylor formula with small shift, the variation E can
be written as:

E(p, q) = (p, q)M(p, q)� (6)

where M is defined by

� �
� �
� �

A C
M

C B ,

and

22

, , ,
� �� � � �� �� � � � � �� �� �� � � �� � � �

I I I I
A w B w and C w

x y x y

where � denotes the discrete convolution.

The eigenvalues �
1
 and �

2
 of M correspond to the

principal curvatures of E. The corners are characterized
by two large eigenvalues �

1
 and �

2
. Note that it is not

necessary to compute �
1
 and �

2
, indeed

Tr(M) = �
1
 + �

2
 = A + B (7)

Det (M) = �
1
 �

2
 = AB – C2 (8)

The corner measure is defined by

R = Det(M) – kTr2(M), (9)

and it is positive in the corner region, negative at the
edges and small in the homogenous regions, the
parameter k is selected empirically between 0.04 and 0.06.
Fig. 1 shows an example of the corner measure R.

3. EXTRACTION OF TREE STRUCTURES BY
FAST MARCHING AND CHARACTERISTIC
POINTS

The Fast Marching method allows us to extract the
minimal path between two points. Here, the aim is to
extract a tree with minimal intervention by the user. When
a priori information about the geometry or the length of
the contour to be extracted is available, Cohen and al.
proposed in [6] a method to extract a tree structure from
one point selected by the user. In the following sections,
methods are proposed for the segmentation of tree
structures from only one given point without any other a
priori information. The method is based on corner points,
which are computed by the Harris detector described in
section 2.3. A pyramidal approach is used to reduce
erroneous detection.

Table 1
Algorithm for the Propagation from the Root wtih

Harris Points

Notations:

– x
0
 is a starting point located at the root of the tree structure;

– U is the action map.

Initialization:
– detect the Harris points h

i
 present in the image and choose the root

x
0
 among them;

– initialize the front propagation, by setting U(x
0
) = 0.

Loop: proceed according to the Fast Marching algorithm 2.2, updating
action maps and min-heap data.

Segmentation: Extract the paths between each Harris point and the

root.

Within the image, a set of Harris points are detected.
We defined the root of the tree as a point selected by the
user from the Harris points. This point can be also defined
as the nearest point in the tree to the center of mass of all
Harris points. From the root, a front is propagated with
the Fast Marching method. For each Harris point that is
not the root, a path to the root is extracted by back-
propagation. The algorithm is given in the Table 1.
Fig. 2 shows that the algorithm is able to extract a tree
structure correctly from a noisy synthetic image. This
synthetic image is created by using an additive Gaussian
noise with zero mean and 0.1 variance to a binary image
of a tree structure.

Since there may be Harris points detected that may
be due to noise, or to small isolated parts in the image,
we have to filter the set of paths and remove some paths
that do not correspond to tubular shape. A simple way to
do that is to estimate if the potential function is small
enough along all paths. In the second step, for all minimal
paths extracted from the selected Harris points to the
source point using the algorithm given in Table 1, we
compute the following measurement:

Figure 1: Illustration: Minimal paths and Harris points. First
panel: the synthetic image, the red cross corresponds
to the source point. Second panel: the distance map
computed with the Fast Marching method. Third
panel: the corner measure matrix R (given by Equation
(9)). Fourth panel: zoom on the region indicated by
the head-arrow in the third panel. Fifth panel: in green
the Harris points detected, the Harris point on the
bottom corresponds also to the source point used for
the Fast  Marching propagation. The red line
corresponds to the minimal path between the Harris
point on the top and the source point
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1
( ) ( ( ))

( )
� � � �

� � P s ds
Le (10)

where P is the potential computed from the image; Le(�)
is the euclidean length of the path �. We keep only the
minimal paths that have a measure � inferior to a given
threshold.

4. SEGMENTATION OF MICROGLIA
EXTENSIONS FROM CONFOCAL
MICROSCOPE IMAGES

The confocal images were composed of a set of 4D
(3D+time) image sequences. For each time point, a series
of 23 images perpendicular to the z axis was acquired,
thereby covering the three dimensions of the cell. In this
study, segmentation was restricted to static 2D images,
e.g. only one time point and only one image from the
image series acquired at this time was considered. The
microglia images contained much noise. Therefore, we
have added two postprocessing steps to get an optimal
segmentation: (1) Harris point improvement and (2)
minimal path selection. In the first step, a pyramidal
approach was used to detect the Harris points in the
image. Only the Harris points that appeared in both the
first pyramid (original image, see Fig. 3, center panel)
and in the second pyramid (see Fig. 3, right panel, half
the resolution of the original image) were used. Some of
the erroneous detections were eliminated in this way. In
the second step, for all minimal paths extracted from the
selected Harris points to the source point, we keep only
the minimal paths that have a measure � (given by the
equation (10)) inferior to a given threshold. Here we
choose the potential P = I7, where I is the intensity value
of the acquired image.

Fig. 4 and Fig. 5, center column, show the
segmentation results with the algorithm given in Table
1. Fig. 4 and Fig. 5, right column, show in green the
segmentation results obtained by selecting the minimal
paths that have the measure � inferior to a fixed threshold.
Note that a small threshold may lead to the detection of

false branches and a large threshold leads to missing
branches of the tree. Here, the threshold was defined from
the first and the second images and were used to segment
a data set of 24 image acquired at different times, see
Table 2. The manual correction of the segmentation was
performed by a biologist with expertise in microglia
motility using the (3D + time) data to tract each extension
across slices and time. The center of the cell, which
corresponds to the root of the propagation, was chosen
manually in the first image. The segmentation results are
satisfying. Note that some parts of the tree were not

Figure 2: Segmentation results obtained with algorithm 1. Left
: the action map from the root seed point; right : the
extracted tree, the green circles correspond to the
Harris points and the red lines trace the paths from
the Harris points to the root of the tree (indicated by
the head-arrow)

Figure 3: Confocal microscope images of a microglia. Left panel:
a projection of 23 slices.  The green structures
correspond to the microglia and neuronal extensions
are red. Center panel: a single image from a series of
images perpendicular to the z axis, showing the
microglia. Right panel: a second stage of the pyramid
of the image shown in the center panel (half of the
resolution of the original image). This image was used
to compute the Harris points

Table 2
Comparison of Our Segmentations (Algorithm) with the

Manual Segmentations on 24 Microglia Images

Microglia Manual Algorithm Undetected False detection

Image #01 33 29 06 02

Image #02 35 34 04 03

Image #03 31 30 03 02

Image #04 26 24 06 04

Image #05 31 31 04 04

Image #06 32 29 05 02

Image #07 24 22 07 05

Image #08 30 24 07 01

Image #09 28 27 04 03

Image #10 20 20 03 03

Image #11 21 17 04 00

Image #12 28 24 07 03

Image #13 19 17 03 01

Image #14 26 21 05 00

Image #15 20 18 03 01

Image #16 21 17 04 00

Image #17 20 18 03 01

Image #18 22 16 06 00

Image #19 23 18 07 02

Image #20 26 18 08 00

Image #21 25 21 06 02

Image #22 18 18 03 03

Image #23 22 20 03 01

Image #24 25 21 06 02

Mean 25.25 22.25 04.88 01.88

Std 04.87 05.21 01.65 01.42
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present in the studied image, but could be found in the
other 22 images of the image series. Hence, some
segments of the tree extracted in the 2D segmentation
do not correspond to a real contour present (which was
corrected manually by the expert in red, see Fig. 4 and
Fig. 5, right column). An extension of the proposed
methods to the 3D segmentation should solve this
problem. Temporal constraints may help to improve
partially the segmentation since the microglia motility is
still not fully understood and undergoing active research
in the biology community. In Fig. 6 we compare our
approach with the level set method. This figure illustrates
the limitation of the level set method to segment thin tree
structure from noisy data as the microglia extensions.

5. DISCUSSION AND CONCLUSION

In this paper, methods for the segmentation of tree
structures were proposed, only the selection of one point
by the user is required. The main contribution is the use
of Harris points to guide the segmentation process. We
evaluated our method on 24 datasets, the results are very
satisfying in terms of rapidity of analysis and coherence
with the manual segmentation of the microglia
extensions.

Figure 4: Segmentation of a microglia from confocal microscope
images. Left column: microglia images (1 image / 90
seconds); center column: extracted tree structure, the
green circles are the Harris points, the red lines trace
the paths from the Harris point to the root. The root
corresponds to the cell center. Right column: in green
the extracted tree structure using the measure (10),
red paths show missing branches added by the expert,
red ellipses show false detections corrected by the
expert.

Figure 5: Segmentation of a microglia from confocal microscope
images. Left column: microglia images (1 image / 90
seconds); center column: extracted tree structure, the
green circles are the Harris points, the red lines trace
the paths from the Harris point to the root. The root
corresponds to the cell center. Right column: in green
the extracted tree structure using the measure (10), red
paths show missing branches added by the expert, red
ellipses show false detections corrected by the expert

Figure 6: Comparison of the level set method with our approach.
Left panel: microglia image; center panel: in red the
segmentation result obtained with the level set method.
The root corresponds to the cell center. Right panel:
in green the extracted tree structure using the measure
(10), red paths show missing branches added by the
expert, red ellipses show false detections corrected by
the expert

In the following we present some extensions and
improvements of the proposed method. The microglia is
a 3D tree structure and some extensions of the microglia
can appear in dierent slices as mentioned in the previous
section. The segmentation of the microglia in 3D will
allow to track the microglia extensions in dierent slices
and therefore allow to extract accurately all the extensions
of the microglia. However, the 3D implementation of the
method should take into account the anisotropy of the
data -e.g-high resolution in the plane of the slice and
lower resolution in the perpendicular direction. In this
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paper we limit the segmentation to segment only one cell
by giving a source on the body of the cell. The acquisition
of the images was performed in such a way that the image
includes only one cell. The biologists we collaborated
with were interested in having to give only one source
point for each cell. They thus suggested us to work on a
region that includes only one tree structure. However, an
extension of the proposed method to segment microglia
extensions on images with several microglia cells is
desirable. When a direct separation of all tree structure
is not obvious manually, the method may be adapted to
segment images that contain several disconnected trees
by using the appropriate source point for each tree
structure present in the image. The user would provide a
source point for each tree structure (cell) present in the
image. Then, a set of Harris points would be aected to
the correspondent source point. Each set of Harris points
with the associated source point would allow to segment
one cell. The association between a set of Harris points
and a source point could be done by using a geodesic
distance as criterion to make this partition. The last
improvement would be to introduce temporal constraints
in the tracking of the microglia extensions over time. The
tracking process presented in this paper is realized by
successive segmentations at each time point: there are
no temporal constraints between the localization of the
microglia extensions at dierent acquisition time points.
Temporal constraints taking into account the localization
of the microglia extensions at previous time may help to
constraint the segmentation of the microglia extensions
in the following images. For example we can correlate
the Harris points detected at dierent time points by using
a Kalman filter [26]. This will allow a global consistency
between the extracted extensions of the microglia and
therefore decrease the number of false detections and
undetected extensions.
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