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In this paper, we present a new method for real-time disparity map computation based on the neural network and DSI
(Disparity Space Image) data structure from a pair of stereo images. Our approach divides the disparity map computing
into two main steps. The first one deals with computing the initial disparity map, using a combination of the neuronal
network and the DSI structure. Whereas, the second one presents a simple and fast method to refine the initial disparity
map.Three contributions are introduced so that an accurate and fast result will be reached. The first one concerns the
proposition of a new strategy in order to optimize the computation time of the initial disparity map. In the second one, a
specific treatment is proposed in order to obtain more accurate disparity for the neighbouring pixels to boundaries. The
third one concerns the pixel similarity measure for matching score computation which consists to use in addition to the
traditional pixel intensities, the magnitude and orientation of the gradients providing more accuracy. Previous methods
reported on the literature are mainly restricted to implement the SAD algorithm (Sum of Absolute Differences) on FPGA
(Field programmable gate Arrays). Although, the implementation presents a relative high execution time, it is known for its
semi-dense disparity map. To enable both accuracy and fast real-time stereo vision embedded system, we propose a hardware
parallel-pipelined implementation of our method aimed at maximizing the speed-accuracy trade-off. Experimental results
using several Middlebury data sets were conducted for evaluating the proposed method.
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1. INTRODUCTION

Stereo matching is one of the most complex tasks in
machine vision. It consists in finding for each point in
the left image, its corresponding in the right one. The
difference between horizontal distances of these points
is the disparity. A disparity map consists of all the possible
disparity values in an image. Such a map is basically a
representation of the depth of the perceived scene.
Therefore, the disparity maps have been used to address
efficiently problems such as 3D reconstruction,
positioning, mobile robot navigation, obstacle avoidance.
Therefore, their fast and accurate computation is still an
active and incessant research topic. A great number of
approaches for disparity map estimation have been
proposed in the literature, including local methods [5, 6,
8, 18, 19, 21, 28] and global methods [4, 16, 17, 36, 38,
41]. A survey of the different approaches can be found
in [26, 33]. Local algorithms which are based on a
correlation criterion can have very efficient
implementations that are suitable for real-time
applications. One of the principal factors which
influences the success of local methods is the proper
selection of window shape and size. The windows must
be large enough to capture intensity variation for reliable
matching but small enough to avoid the effects of
projective distortions at the same time. An appropriate
window selection should improve matching accuracy but
require an optimized balance between the above opposite

criteria [14]. Global approaches minimize an overall cost
function that involves all the pixels of the image. In these
methods, calculating the disparity field is led to minimize
the objective function of energy. Several optimization
methods have been proposed such as dynamic
programming [16], graph cuts [17], directed anisotropic
diffusion [4], belief propagation [36], [41] and neural
network based approaches [38]. The global methods can
generate high-quality disparity maps. However, these
methods are often computationally expensive and involve
difficult parameter adjustment procedures that require a
lot of effort to find the optimal ones, making them
unsuitable for most interactive applications. Also, there
are many other methods that are not strictly included in
any of these two broad classes. A survey for the different
approaches can be found in [26], [33].

Real-time requirements of most robot applications
complicate the realization of such vision systems. The
key to succeed in realizing a reliable embedded real-time-
capable stereo vision system is the careful design of the
core algorithm. The trade-off between execution time and
quality of the matching is a difficult task and must be
handled with care.

However, for extracting dense and reliable 3D
information from the observed scene, stereo matching
algorithms are computationally intensive. The real-time
required for such application means that a task has to be
finished within an a priori defined time frame. To enable
both accurate and fast real-time stereo vision in embedded
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systems, we propose a novel method for computing a
dense disparity map based on the combination of Artificial
Neural Network and the DSI data structure. The goal is
to combine the advantages of the neural network and the
DSI structure. Our approach divides the matching process
into two steps: initial disparity map and refinement of
the initial disparity map. Initial disparity map is first
approximated by neuronal-DSI method so called (Neural-
DSI). Then a refinement method is applied to the initial
disparity so that an accurate result can be achieved.

Due to the computational complexity of many stereo
algorithms, a number of attempts have been made to
implement such systems using reconfigurable hardware
in the form of FPGAs (Field programmable gate Arrays
[1, 20, 23]. These devices consist of programmable logic
gates and routing which can be re-configured to
implement practically any hardware function. On the one
hand, hardware implementations allow the application
of the parallelism that is common in image processing
and vision algorithms, and on the other hand the building
of systems to perform specific calculations quickly
compared to software implementations [12]. The use of
FPGAs is now the most suitable and practical choice for
hardware development. They are cheap and perform
extremely well [26]. The variety of available tools make
the prototyping times very short. Another advantage is
that the resulting hardware implementation is open for
further upgrades. Thus, FPGA implementations are very
flexible and fault tolerant. The ASIC (Application
Specific Integrated Circuit) implementation is an option
as well, but it is more expensive, except the case of
massive production. The prototyping times are
considerable longer and the result is highly process-
dependent. Any further changes would be difficult and
can cause additionally time and money consumption
increase. Their performance supremacy does in most
cases not justify the choice of the ASICs. All these reasons
make FPGA implementations more attractive.

Many publications [1, 9, 15, 27, 40, 43] about
computing disparity maps on FPGA reported on literature
use the Sum of Absolute Differences (SAD) algorithm.
This choice was made to increase speed. Indeed, the SAD
can be directly and easily implemented in hardware
due to its simplicity. Moreover, it must be noted that the
SAD algorithm results to semi-dense disparity map
estimation.

The main contributions of this work are:

– The proposition of a robust matching cost based
on the combination of the neural network and
the DSI structure,

– The extension of matching primitives from pixel
intensity to intensity, gradient magnitude and
orientation of gradient vector of pixel,

– A specific treatment is proposed in order to
obtain more accurate disparity for the
neighbouring pixels to boundaries as will
described in section 2.2.2.

– A proposition of hardware implementation of our
method on FPGAs: field programmable gate
array.

This paper is organized as follows: section
2 presents the stages followed to compute the
disparity map. Section 3 presents the FPGA
implementation of our approach. Experimental results
obtained on real images are presented and discussed in
section 4. Finally, section 5 concludes the paper with
some remarks.

2. PROPOSED APPROACH

In our work, we assume that the images pairs are
rectified. Thus the search for correspondences in the
images can be limited to one dimension, ensuring a fast
implementation of the stereo matching algorithm. We
propose in this section the steps al lowing the
computation of the initial disparity map using the
combination of neural network and disparity space
image (DSI).

2.1. Initial Disparity Map Estimation: Neural-DSI

2.1.1. DSI Computation

Disparity Space Image (DSI) is an explicit representation
of the matching space introduced by Bobik and Intille
[6]. It plays an essential role in the development of the
overall matching algorithm which uses the occlusion
constraints. Thus, it has the advantage of improving
disparities in occluded areas.

Assuming that images pairs are rectified, the search
for correspondence of each feature in one image will be
done in the same horizontal line of the other image. Thus
the disparity computation concerns two matched points
which have the same ordinate. For each pixel p

l
(x

l
 , y

l
) in

the left image (reference image), the disparity
computation will concern all pixels of a window W

l

centred on p
l
 where its size was experimentally chosen

to be 7x7. At each pixel p
i
(x

i
, y

i
) of the W

l
, the matched

pixel p
j
(x

j
, y

j
) will appertain to the window Wd

r 
of the

right image centred on p
r
(x

r
, y

r
) (see figure 1). The

position of Wd
r
 depends on the disparity d associated to

the pair (p
l
, p

r
) which varies from zero to d

max
, where d

max

represents the highest disparity value of the stereoscopic
images (disparity range). We have thus: x

j 
= x
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+s

*
d, y
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=
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i
, where s = {+1,-1} is a sign chosen so that all disparities

are positives. To determine the disparity of a given pixel
p
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), we calculate for each disparity d the score

DSId(p
i
) of all pixels p

i
 of the windows W

l
.
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Twardowski et al. have presented in [37] a survey of
the gradient comparison measures reported in the
literature given by the following equations:
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, means a coordinate of gradient vector b.
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Where |w
a
| is the module of vector a and � is the

weight parameter.

They also proposed a new matching measure using
two coordinates (m, x) of the gradient vectors expressed
in the following form:

E = |m
r
 – cos(x
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- x
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Where m
r
, m

l 
are modules of right and left gradient

vectors, x
r
, x

l
 are angles of right and left gradient vectors

and � is a weight parameter. Twardowski et al. have
compared these measures [37], the disadvantage of the
measure (4) is the computation complexity relative to
other measures.

In our work, to compute the matching score between
two pixels p

l
(x

l
, y

l
) and p

r
(x

r
, y

r
), three attributes of pixel

are used in the comparison: intensity, module and
orientation of the gradient. Rather than to use only
intensity, these additional attributes increase the
robustness to the matching measure.

To make the algorithm more suitable for hardware-
based implementations, the 3x3 Sobel [11] operator is
used to compute the gradient values in x and y directions
by applying the following two masks for each pixel:
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The module is defined as:

|G| = |G
x
| + |G

y
| (6)

The orientation O(x, y) of the gradient vector is:

O = tang–1 (G
x
/G

x
) (7)

For a given disparity d, the score DSId(p
i
) score is

computed as the sum of absolute difference of three
attributes (intensity, gradient magnitude and gradient
orientation) as follow:
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Where (I
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, I

r
), (G
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 ,G
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), (O
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) are respectively the

intensities, gradient magnitudes, gradient orientations
values of the pixels on the left and right images, n

1
,n

2

are the input weights of the neural network, they will be
computed in the step of learning of the neural network
as will be presented in subsection 3.3.

To determine the disparity of a given pixel p
l
(x

l
,y

l
),

we calculate for all pixels p
i
 of the windows W

l
 the score

DSId(p
i
) for different values of d from zero until d

max
.

The initial disparity of the pixel p
l 
is chosen as the

disparity d* with the minimal cost DSId*(p
i
) among the

various costs of neighbouring pixels to p
l 
of the window

W
l
 and will be noted d* (p

l
).

As the implementation of this method for DSI
computation is time consuming, we propose in the next
section neural network architecture in order to parallelize
the calculation of various costs.

2.1.2. Neural Network Architecture

The ANN (Artificial Neural Network) is a network of
neurons that is trained to provide the right output for some
given inputs. The neurons have some weighted inputs
and are responsible for simple operations, but the whole
network can make parallel calculations due to its wide
parallel structure. The neural network derives its
computing power from its massive parallel distributed
structure and from its ability to learn and, then to
generalize. The generalization refers to the production
by the network of reasonable outputs for inputs not
encountered during training.

In our previous work [3], we proposed a multilayer
feed forward perceptron model, trained with the
supervised back propagation learning algorithm [31] to
compute disparities. However, the results obtained are
satisfactory in terms of accuracy, but they are not suitable
for real time applications because the processing time
needed for standard image sets is very high (see figure
15). In the present study, a multilayer feed forward model
based on simple supervised learning procedure was
adopted in order to improve the processing time. A
detailed of this procedure can be found in section 2.1.3

The proposed neural network is composed of four
layers (see figure 2). Each layer is responsible for
different task (input, score computation, decision and

Figure 1: Different Windows used for DSI Computation
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output). Since the neurons perform simple operations,
their input weights and transfer functions are adjusted as
follows:

The input layer associated to a windows W
l 
(7x7=49

pixels) has 147 neurons of (49 neurons intensities, 49
neurons gradient magnitudes and 49 neurons
orientations). This layer has the function to compute the
scores DSId

I 
of intensities, DSId

G
 of gradient magnitudes

and DSId
O
 of orientations for each one pixel of the

window W
l
 as given in equations 8, 9 and 10. The transfer

function is f(x) = abs(x) and the input weights are the
same and equal to n

1
. We obtain then for each value of

the disparity d (d = 0..d
max

) three (7x7) matrices of scores.

To compute the final DSId, the second layer adds the
three correlation scores for each one pixel of the window
(see equation 11). We obtain d

max
 + 1 matrices of 7x7

scores. The transfer function is linear and the input
weights are identical and equal to n

2
. In the third layer,

for each value of d, all scores of the W
l
 pixels are added

and constitutes the score SumDSId of the central pixel.
Then, to the central pixel of the window is associated a
vector of costs (Aggregation cost) AC =
(SumDSI0,SumDSI1,…, SumDSIdmax). The input weights
are the same and equal to 1 and the transfer function is
linear. In the fourth layer, the minimum cost amount of
the d

max
+ 1 costs is chosen as the best score and defines

the disparity d* of the central pixel of the window. The
input weights are the same and equal to 1 and the transfer
function is linear f(x)= Min (x). Figure 3 illustrates how
we compute the disparity d*.

2.1.3. Learning Procedure

The neural correlation network must be trained with a
supervised learning procedure before computing the
minimum of SumDSId values (best score) for each pixel.
In general, neural supervised learning is based on the

presentation to the network of a set of training examples
having the structure [(features); (expected value)]. In our
context, the feature designates a given training example
of matching pixels (p

l
, p

r
). The expected value is the

correlation score of (p
l
, p

r
). The first goal of learning

procedure can be formulated as the search for the
appropriate weights.

To prepare the training data, some points of interest
are extracted from the stereoscopic pair of images and
their attributes (gradients magnitude and orientations) are
computed. These points are selected depending on their
high values of intensity, gradient magnitude and
orientation of the gradient vector. The matching of these
points is done by using the normalized correlation ZNCC
[2] considering the left image to the right image and vice
versa. A valid match is considered only for those points
that yield the best correlation score. These pixels are
selected to train offline the network. During training, the
differences of intensities, gradient magnitudes and
orientations between two local windows (one for the left
image, the other for the right) are fed to the network.
Our method is based on exhaustive search of the best
weights, in such manner to minimize the error of the
matched pixels and to maximize the difference between
the error of the matched and unmatched pixels. In our
case, we defined two input weights: n

1
 used in the first

layer and n
2 
used in the second layer. After the training,

the network should have the ability to differentiate the
matched pairs from unmatched ones.

In our experiment, we have trained our NN with
number of epochs =100 which controls the number ofFigure 2: The Neural-DSI network architecture

Figure 3: Disparity calculation d*
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iterative presentation of examples. Experiments were
conducted demonstrating that the increase of the number
of epochs over the value 100 don’t give better
performances. Learning rate and momentum were set at
0.5 and 0.7 respectively.

2.2. Disparity Map Refinement

The resulting disparity map described above is not the
optimal one because it still contains some noise and
errors. We propose in the following our disparity map
refinement method. Even if there exist more accurate
techniques for the sub-pixel refinement in the literature
[30], [34], they are computationally too expensive for
real-time stereo vision.

2.2.1. Refinement Method

In the refinement method, we propose to use all scores
obtained in the previous step. Instead of selecting in the
window W

l 
only one disparity having the best score, we

propose to select for each pixel n disparities
corresponding to the best scores DSId. We assume that
initial disparities of all pixels of the left image are
computed. For each pixel p

l
 of the left image, we first

verify if the disparity is dominant in the window W
l
. If it

is the case, this disparity will be considered as the final
disparity and does not necessitate any refinement.
Otherwise, we do a refinement which consists of selecting
in W

l
 window three best scores for each pixel (see figure

4). Three best disparities are then associated to the pixel
p

l 
instead of one disparity. The proposed process consists

of applying a vote in order to choose the dominant
disparity in the associated W

l
 using the three disparities

of the central pixel p
l
 and its 48 neighboring pixels.

Figure 4 illustrates how we compute the new disparity
using the three best disparities for each pixel when we
apply the vote process. The disparity that will obtain the
highest number of points will be considered as the new
disparity.

For the definition of the parameter n, we decided to
use an experimental evaluation of over existing stereo
datasets [32]. The number n = 3 corresponding to the
three best disparities values has been selected. If we take
n greater than 3 it did not lead to an increase in accuracy
but an increase in processing time (figure 5). For n = 4
the accuracy increases just 0,029% while the processing
time increases of 0,07s. This is the main reason why
increasing the n value beyond a certain value does not
improve accuracy any further.

Figure 4: Disparity computing with our refinement method

Figure 5: Processing time (second) obtained by the refinement
method with different values of n

2.2.2. Processing of Region Boundaries Problem

The region boundaries problem occurs when the pixels
of the same window belong to two different regions
(different objects see figure 6). Indeed, the pixels of the
two sides of the contour usually have different disparities.
Consequently, only the pixels belonging to the same
region (object) must be taken into account in the
computation of the new disparity (final disparity).

To solve this problem, instead of using all pixels of
the window W

l
, in the vote process described above, we

add a criterion which eliminates from the vote process
all pixels of the window W

l 
located in the second region

detected using
 
the gradient magnitude informations.

With this improvement, the disparity map is more
accurate because only pixels of the window belonging
to the same region (object) are involved in the calculation
of the new disparity. Figure 6 illustrates how we compute

Figure 6: Example of region boundaries problem: (a): The
reference image, (b): Case where the window Wl

contains pixels of two regions, (c): The blue color
represents the pixels of the same region of the window
Wl involved in the computation of the new disparity

The window Wl
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the new disparity in the case where the window W
l
 is

positioned on two regions (objects).

2.2.3. Disparity Map Smoothing

Finally, in order to keep the good trade-off between
accuracy and processing time, a simple median filter is
applied for smoothing the disparity map. The median filter
is a robust method, often used to remove the impulsive
noise known for its salt and pepper noise from an image.
The median is calculated by first sorting all the pixel
values from the surrounding neighbourhood into
numerical order and then replacing the pixel being
considered with the middle pixel.

3. FPGA IMPLEMENTATION

In order to reduce the computing time, we propose to
implement algorithms of disparity map computation on
FPGA: Field Programmable Gate Array. Indeed the
FPGAs capability has attracted researchers in computer
vision. The use of FPGAs is now the most suitable and
practical choice for hardware implementation. They are
cheap and perform extremely well [26].

3.1. Related Work

Various examples of stereo vision algorithms
implemented on FPGAs have been reported in the
literature. Yi [43] proposed a stereo vision system based
on a Xilinx Virtex II, which uses the SAD algorithm.
The system can process images with a size of 270x270
at a frame rate of 30 frames per second. But the maximum
disparity is 34 pixels. In Miyajima [24], an FPGA-based
system achieves 19 frames per second for 640x480 image
pair resolution with 80 levels of disparity. Han[12] have
proposed a system that can process images with a
resolution of 640x480 at a frame rate of 60 frames per
second and a maximum disparity of 128 pixels for the
use in a household mobile robot. In Khaleghi [15] an
FPGA-based module reaches 10 frames per second for
640x480 pixels resolution image with a disparity range
of 30 levels. He implemented the SAD method using
three levels of recursion developed by [9]. In Woodill
[40], a 3D-vision system implemented for tracking
people, reaches 30 frames per second for 512x480 pixel
resolution image pair with 52 levels of disparity. The
system described by Murphy [23] proposes an
implementation of the census transform algorithm on
Spartan-3 FPGA. It can process 320x240 images at 150
frames per second, but only with a disparity range of 20
pixels. In Ambrosch [1], a performance of 600 frames
per second is reported for 450 x375 pixel resolution image
pair with a disparity range of 100 pixels. He implemented
the SAD algorithm using Altera Quartus II family. The
disparity range is split into n partitions and the SAD
matching costs are calculated for each partition. The

system proposed by Georgoulas [9] achieves 768 frames
per second for 640 x480 pixel resolution image pair with
a disparity range of 80 pixels. He implemented the color
SAD window based algorithm on the Stratix IV family.

Other works use a graphics processing unit (GPU)
for the stereo matching. Yang [42] proposed a system using
the GPU achieving 50-70 M disparity evaluations per
second, using a multiresolutions approach. When using a
resolution of 512x512 for the input images and the resulting
disparity map, the system reaches a frame rate of 4.8 frames
per second at a disparity range of 100 pixels. Another GPU-
based stereo vision system was proposed by Prehn [29].
He used a GeForce 8800 GTS graphics card reaching 18
frames per second at an image size of 450x375 when using
a block size of 7x7 for the SAD algorithm and a disparity
range of 59 pixels. (Gong, 2007) proposed a system using
GPU achieving 178 ms at disparity range of 16 pixels for
Tsukuba pair. Another GPU-based system was proposed
by Boufarguine [7]. He used CUDA API reaching 27
frames per second at a Tsukuba image using belief
propagation algorithm and disparity rang of 16 pixels.

Finally, it must be noted that most methods reported
previously use the simple algorithm SAD by proposing
different architectures which generally result to semi-
dense disparity estimation. They are designed to perform
better in real-time speeds term and to present a poor
quality in disparity map.

3.2. Proposed Architecture

The architecture corresponding to our method is split into
three major pipeline stages: pre-processing, calculation
and post-processing stages. The interfaces between them
are formed by internal memory.

The first stage is the input stage which supplies the
image data for the computation. The system uses two on
chip buffers, which hold the part of the image which is
being searched (one buffer for the left image and one for
the right image). The size of the buffers depends on the
correlation window size and the disparity range. In our
case the window size used is 7x7 and the disparity range
is 50. At this stage, the Sobel operator is used to compute
the image gradient. It is applied in parallel to both images
in x and y direction.

The calculation stage concerns the Neural-DSI
algorithm which computes the initial disparity map. The
calculation stage decomposes the disparity range into
r separate partitions where each partition contains
d

r 
= d

max
 / r disparity levels. This way, the calculation

stage can compute each partition in a separate calculation
round. The time required for the computations of each
image lines is now defined by the number of separately
calculated partitions r and the logic consumption can be
scaled by the number of pixels d

r
 in each partition.
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Finally, the initial disparity map is refined in the post-
processing stage. For this, we propose architecture for
the median filter. All three steps are fully implemented
in hardware based on FPGA devices of Virtex-II family
using hardware description language VHDL. For this,
we have proposed architectures for:

• The Sobel operator: used to calculate the image
gradient.

• Neural-DSI: used for the computing the initial
disparity map.

• The Median filter: used for the refinement of the
initial disparity map.

3.2.1. Sobel Operator Architecture

In our work, we used Sobel operator for the gradient
magnitude computation which is given by the following
equation:

|G (i, j)| = |G
x
 (i, j)| + |G

y
 (i, j)| (12)

In order to compute G
x 
and G

y
 for each pixel in the

left and right images, we applied the 3x3 mask for each
pixel such as:
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G I i j I i j
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The general architecture of the Sobel operator is
illustrated by the figure 7. The circuit input is 8 bits per
pixel from a bus of eight bytes and 8 bits for the threshold
value. The output circuit is an 8 bits value equal to 255 if
the pixel belongs to an outline and 0 otherwise.

The Sobel operator involves convolution of the input
image over two convolution masks; the masks hold data
values between -2 and 2; thus the overall convolution
does not need to involve a multiplier. A set of additions
and subtractions, depending on the mask value (i.e. one
addition for a value of +1, two additions for a value of
+2, and so on) was used. By avoiding the costly
multiplication operation, a higher frequency as well as
fewer clock cycles could be obtained, at the cost of quality
however.

The various units of this architecture are shown in
figure 7.

Figure 8 shows the detailed architecture of the
processing unit

The above circuitry is a highly parallel structure
requiring 6 clock cycles, 9 adders, 4 shifters, 2

substractors, 1 comparator and 1 decoder. The running
time for one iteration is 18,204 ns.

The proposed architecture has been implemented
using the FPGA circuits (Xilinix Virtex-II XC2V40). It
has been then simulated to prove its functionality. The
analytical specifications of the target device are shown
in table 1.

Table 1
Device Utilization Summary (Estimated Values)

Used  Available Utilization

Number of Slices 140 256 54%

Number of Slice Flip Flops 136 512 26%

Number of 4 input LUTs 136 512 26%

Number of bonded IOs 81 88 92%

Number of GCLKs 4 16 25%

3.2.2. Neural-DSI Architecture

In order to optimize the processing time of the disparity
map calculation method, we have implemented the most
time consuming part of our architecture on Xilinix FPGA
circuits (Virtex-II XC2V80).

For each pixel p
l
(x

l
 ,y

l
) in the left image, the disparity

computation will concern all pixels of a window W
l

centered on p
l 
(section 2.1.2) . In our case, we used a

Figure 8: Processing unit architecture

Figure 7: Proposed architecture of Sobel operator
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shiftable window of 7 x7 size (Line x column). To
increase the processing speed of the neural-DSI method
and more parallelism, when we compute the disparity of
p (i, j +1), we perform the operations shown in Fig. 9 (a).
Thus, we compute the disparity for one column at a time
rather than the entire window. The same principle is used
to calculate the disparity of the pixel p(i+1,j). We do the
computation for only one line at a time rather than the
entire window (see figure 9(b)). By using these
operations, the redundancy in computation is completely
removed.

Figure 9: Illustration of computing operations used in Neural-
DSI method

In this work, we address the computing of the
disparity map problem by using the highly parallel
structure shown in figure 10. It is composed of three parts:

• Memory Unit (storage): composed of two blocks
of RAM 128x40 and one block RAM 16x80.
Where each block RAM 128x40 is composed
of 5 RAM 128x8 and the block RAM 16x80 is
composed of 5 RAM 16x16.

• Computing Unit: composed of 5 adders and 5
subtractors.

• Control Logic (state machine): composed of 4
comparators.

Table 2 shows the percentage of consumed resources
of the FPGA device by the modules of the proposed
architecture of Neural-DSI method.

Table 2
Device Utilization Summary (Estimated Values)

Used Available Utilization

Number of Slices 410 512 80%
Number of Flip Flops 219 1024 21%
Number of 4 input LUTs 816 1024 79%
Number of bonded IOs 81 92 88%
Number of GCLKs 4 16 25

The running time of the disparity calculation
corresponding to one iteration is about 91,05 ns. The
proposed architecture has been implemented using the
FPGA circuits (Xilinix Virtex-II XC2V80) and then it
has been simulated to prove its functionality using the
ISE simulator of Xilinx Virtex-II Family. The figure 11
shows an example of the hardware simulation result of
the Neural–DSI architecture.

Figure 10:Proposed architecture of Neural-DSI method

Figure 11: Hardware simulation of the Neural-DSI architecture

3.2.3. Median filter

Median filter is a robust method to remove the impulsive
noise from an image. It is a compute intensive operation,
so it is hard to implement it in real time. Different
approaches have been proposed in the literature for the
median filter implementation with FPGAs [22, 25, 35].
In our case we implemented the one proposed by Vega-
Rodriguez [25] since it needs a very lower number of
basic nodes (19 instead of 27).

In our case we used 3x3 mask of the median filter.
The circuit input is 8 bits per pixel from a bus of 9 bytes.
The circuit output is an 8 bits value equal to the median
value. Figure 12 shows the filter median architecture
sorting 9 pixels and selecting the median.

Figure 12:Proposed architecture of Median Filter
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Figure 13 shows the detailed architecture of the basic
node of the median filter.

In order to compare the results of different
algorithms, we adopt a method similar to that of
Scharstein and Szeliski, [33]. Parameters ALL and NOCC
are defined according to the Middlebury website. ALL is
the error computed on the whole image and NOCC is
the error computed on the whole image excluding the
occluded region. Among the quality measures proposed
by Scharstein and Szeliski [33] in their paper we adopted
the percentage of bad matching pixels between the
computed disparity map d

C 
(x, y) and the ground truth

map d
T
(x, y):

PBP = (1/N �(|d
C
(x, y) – d

T
 (x, y)| > �

d
)) (15)

Where �
d 
is the error disparity deviating from the ground

truth more than 1 pixel. Table 4 shows the results in term
of accuracy obtained by our method on some images
available in the Middlebury website.

Table 4
Accuracy According to the Methodology Defined by

the Middlebury Web site

Cone Teddy Tsukuba Venus Aver-Accur-
age bad acy
Percent

ALL NOCC ALL NOCC ALL NOCC ALL NOCC

15.2 7.97 21.3 14.3 5.69 3.78 3.84 2.6 9.3 90.07

In order to study the efficiency of the combination
of the neural network and DSI concept, two other
approaches were implemented: The neuronal method [3]

Figure 13:Basic node architecture

Table 3 shows the percentage of consumed resources
of the FPGA device by the modules of the proposed
architecture of the median filter using FPGA circuits
(Xilinix Virtex-II XC2V80).

Table 3
Device Utilization Summary (Estimated Values)

Used Available Utilization

Number of Slices 220 512 42%

Number of Flip Flops 236 1024 23%

Number of 4 input LUTs 408 1024 39%

Number of bonded IOs 81 92 88%

Number of GCLKs 6 16 37%

So, the running time for one iteration is 21.285 ns.

4. EXPERIMENTS RESULTS

In this section, we describe the experiments conducted
to evaluate the performance of the proposed method. Our
aim is to obtain an accurate disparity map and a fast
runtime which is the requirement of any obstacle
detection system of autonomous mobile robot navigation.
To this purpose, an extensive performance evaluation and
comparison between different methods is proposed. The
two criteria used for the evaluation are then accuracy and
computation cost.

Several parameters have been mentioned and
discussed in the next. Qualitative tests through disparity
map observation were carried out with four stereo couples
[32] to find the influence and appropriate values of those
parameters.

Figure 14 illustrates the results of the disparity map
obtained. From left to right: the first column images are
the reference images, the second column images are
the Ground truths, the third column images are the
initial disparity maps obtained and the four column are
the final disparity maps obtained after the refinement
step.

Figure 14:Disparity map obtained with our method, From left to
right:  Images reference,  Ground truths,  initial
disparity maps, and final disparity maps
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called (Neural) and the DSI method described in [5]
called (DSI). We applied these methods on four images
(Cones, Barn2, Sawtooth, Teddy) of standard data sets
available on the Middlebury stereo evaluation website
[32].

Similarly to the evaluation of accuracy, figure 15
illustrates the results of the processing time (second)
obtained for three selected methods. The three selected
methods were implemented using the C++ language and
the timing tests were performed on a Personal computer
PC, 2.5 GHZ. We can clearly see (figure 15) that our
approach (Neural-DSI) is relatively the fastest among DSI
and neural methods.

the window. Greater the size of the window W, better the
computed map disparity is. Nerveless, the computation
time is also very high when the size of W

 
is large. Figure

17 illustrates the variation of time processing for three
methods Neural, DSI and our method (Neural-DSI).

Figure 15:Processing Time (seconds) of Neural-DSI, Neural and
DSI methods on the five image pairs

We studied also the influence of window size on the
accuracy of the proposed method. Figure 16 shows the
disparity map obtained after applying our refinement
method for the Barn1 image pair for different sizes of

Figure 16:Application of the refinement method on Barn1 image
for different window sizes

Figure 17:Processing time (seconds) of the Neural, DSI and
Neural-DSI methods for different window sizes

Experiments are conducted in order to study the
influence of d

max 
values on the performance of the Neural-

DSI method. We used different values of this parameter
for map disparity estimation of four stereo images pairs
with 1x7 window. Figure 18 illustrates the processing
times obtained for the Map image and show that the
Neural-DSI method is the fastest. Indeed, the processing
time obtained is less than 0, 2 seconds.

Figure 18:Processing time(s) of disparity map computing of
Neural- DSI with different values of dmax on four images
pairs with 1x7 window

To demonstrate the importance of the use of FPGA
circuits, table 5 illustrates the processing time obtained
for each component in traditional implementation (Soft)
with 7 x7 window where:

– Pair1, Pair2, pair3 are respectively Barn1
(432x381), Teddy (450x375), Tsukuba
(384x288).

– Methods 1, 2, 3 correspond respectively to
Gradient (Sobel), Neural- DSI, and Median
Filter.
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Table 5
Processing time (ms) for Software

Implementation

Method 1 2 3

Pair1 147 730 468

Pair2 163 780 470

Pair3 107 490 312.5

Table 6 illustrates the processing time obtained for
each component using FPGA implementation. Not
surprisingly the running times obtained with the use the
FPGA are better. The processing time for a Tsukuba
image pair was 490ms. It seems obvious that even with
the algorithmic and software optimizations, the processor-
based system cannot outperform the FPGA-based
solution. All the reasons make FPGA implementation
preferable.

Table 6
Processing Time (ms) for FPGA Implementation

Method 1 2 3

Pair1 2.99 14.99 3.46

Pair2 3.07 15.36 3.55

Pair3 2.01 10.07 2.32

4.1. Discussion and Comparison

This section presents a comparison between the proposed
method (Neural-DSI) and other state-of-art methods. The
results obtained by our algorithm are better than some
methods reported in the literature [1][26]. Table 7 shows
a comparison of stereo vision implementation reported
in the literature in terms of computation time. The
description of the systems introduced here is restricted
to the basic matching strategy, the image size, the
disparity range search (d

max
) and the processing time

achieved. All performance data are taken from the
authors’ papers.

Compared to other FPGA-based approaches, the
obtained results are better than some methods reported
in literature as shown in table 7. We can also see that the
results of Ambrosch [1], Georgoulas [9] are faster but
their disparity maps are less accurate than our disparity
map as shown in figure 19.

Since the used stereo vision algorithms are very
different and don’t used the quality metrics described in
the Middlebury website, we could not make direct
comparisons quality images obtained by each method.
Except for [1] who obtained an accuracy of 62.36%. In
our case, with our algorithm for the same image and the
same window size we obtained 90.6%.

5. CONCLUSION

The stereo correspondence problem remains an active
area for research. In this paper, we proposed a hardware
implementation for a new real-time stereo vision method
using FPGA for the calculation of disparity map based
on the combination of the neural network and DSI data
structure. As seen in the experiments results, we proposed
architectures based on fully parallel-pipelined blocks in
order to achieve maximum processing time with accurate
disparity map. Overall, the proposed approach showed
the capabilities to improve the accuracy and can be
regarded as an interesting trade-off between accuracy and
speed. The three architectures of our method have been
tested. Thus, in the future work, and in order to achieve

Table 7
Comparison of Stereo Vision Implementations

Author Time (ms) Algorithm Image Size d
max

Miyajima et al. [24] 52,63 ms SAD 640 x 480 80

Niitsuma et al. [27] 33,34 ms SAD 640 x 480 27

Han et al. [12] 16,67 ms SAD 640 x 480 128

Yi et al. [43] 33,34 ms SAD 270 x 270 34

Woodill et al. [40] 33,34 ms SAD 512 x 480 52

Georgoulas et al. [9] 1,3 ms SAD 640 x 480 80

Ambrosch et al., [1] 1,67 ms SAD 450 x 375 150

Khaleghi, et al. [15] 100 ms SAD 640 x 480 30

Yang et all. [41] 62,5 ms Belief Propag. 320 x240 16

Proposed impl. 10 ms Neural-DSI 384 x 288 50

Murphy et al. [23] 6.67 ms Census. Transf. 320 x240 20

Masrani et all [20] 33,34 ms LW Phase Corr. 640 x 480 Dyn.

Figure 19:Disparity maps obtained by our method, Ambrosch [1]
and Georgoulas [9] methods
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maximum processing time we will implement the three
parts of our method on single FPGA circuit XC2V1000
which is more powerful.
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