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ABSTRACT: In this paper, a Takagi-Sugeno-Kang (TSK)-type recurrent fuzzy neural network
(TRFNN) with asymmetric Gaussian membership functions is studied. The asymmetric Gaussian
membership function is constituted by a center, a left-sided spread and a right-sided spread. Since
the weight of output layer uses a functional-type form in TRFNN, the TRFNN provides a powerful
representation. In addition, this paper proposes an adaptive TSK-type recurrent fuzzy neural control
(ATRFNC) system for the synchronization of coupled neurons. The proposed ATRFNC system is
composed of a neural controller and a robust compensator. The neural controller uses a TRFNN to
online mimic an ideal controller and the robust compensator is designed to dispel the approximation
error between the ideal controller and neural controller. All the controller parameters of the proposed
ATRFNC system are tuned in the sense of Lyapunov theorem, thus the stability of the closed-loop
system can be guaranteed. Moreover, a proportional-integral type learning algorithm is derived to
speed up the convergence of the tracking error. Finally, some simulation results verify that the
proposed ATRFNC system can achieve a favorable synchronization performance without occurring
chattering phenomena.

Keywords: Recurrent neural network, adaptive control, neural control, coupled nonlinear chaotic
system, synchronization.

I. INTRODUCTION
Taking the advantage of neural networks in learning from processes, this is an active research
topic in the area of fuzzy neural networks (FNNs) (Juang and Lo, 2008; Lin and Lee, 1996; Nauck
et al., 1997). For a controller design, since parameterized FNNs can approximate an unknown
system dynamics or an ideal controller, the FNN-based adaptive neural control approaches have
grown rapidly in many previous published papers (Chen et al., 2008; Chen and Chen, 2009; Hsu,
2007; Lin, 2008; Miguel and Yu, 2009). It is important that the basic issue of the FNN-based
adaptive neural controllers is to provide online learning algorithms that do not require preliminary
off-line training. Generally, FNNs can be divided into two types, which are Mamdani-type FNN
and Takagi-Sugeno-Kang (TSK)-type FNN. The output weights are equipped with a singleton-
type form in a Mamdani-type FNN but with a functional-type form in a TSK-type FNN. Thus, a
TSK-type FNN provides more powerful representation than a Mamdani-type FNN (Wai and
Chen, 2004). As known, the existing TSK-type FNNs are classified as feedforward neural networks
which are static mapping. Without the aid of tapped delays, they are unable to represent a dynamic
mapping. To deal with dynamic problems, a TSK-type recurrent FNN (TRFNN) is developed to
capture the dynamical response (Chen, 2010; Juang, 2002).

Since the number of neurons in TRFNN is finite for real-time practical applications, the
approximation errors cannot be evitable. To ensure the stability of the TRFNN-based adaptive
neural control systems, a switching compensator should be designed. The most used switching
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compensator is liked as a sliding-mode control which requires the bound of the approximation
error. However, the switching compensator causes the chattering phenomena in the control effort
to wear the bearing mechanism (Lin and Hsu, 2003). To confront this problem, a continuous
saturation function with a boundary layer thickness was used to replace the switching sign
function (Lin and Hsu, 2003). However, there is a trade-off problem between chattering phenomena
and control accuracy arises.

To reduce the chattering phenomena, some researchers combined the robust control approach
to attenuate the influence of the approximation error (Tseng, 2008; Yang and Zhou, 2005). The
better tracking performance can be achieved as specified attenuation level is chosen smaller;
however, the control effort may lead to a large control signal. Shahnazi and Akbarzadeh-T (2008)
proposed a proportional-integral structure compensator which does not require the bound of the
approximation error. The proportional-integral structure compensator made the computation
loading heavy so it is not suitable for the online practical applications. A supervisory
compensator combining the sliding-mode control and the adaptive control by using a modulation
function is proposed to deal with the approximation error (Chen and Chen, 2009). However, the
proposed approximation error bound estimation law will make the estimation error bound go to
infinity.

Chaotic system is a nonlinear deterministic system that displays complex, noisy-like
and unpredictable behavior, so how to synchronize chaotic system become a great deal in
engineering community (Chen, 2002; Chen et al., 2010; Lin et al., 2010). Generally, there
are two ways to synchronize the system from the synchronization point of view. The first one
is self-synchronization which is related with natural coupling. The second one is related
with artificial coupling which uses a controller as the feedback between neurons (Wang
et al., 2004). For the natural coupling without control, identical coupled neurons can
eventually synchronize only when the coupling strength is above certain critical value which
may be beyond the physiological condition. Therefore, artificial coupling is of much significance
and necessity to synchronize the neuronal system (Wang et al., 2004; Wang et al., 2006; Zhang
et al., 2007).

In this paper, the synchronization control of two coupled chaotic FitzHugh-Nagumo neurons
under electrical stimulation is investigated. If the exact model of the two coupled neurons is
known, there exists an ideal controller to achieve a favorable control performance by possible
canceling all the system dynamics (Slotine and Li, 1991). A tradeoff between the stability and
accuracy is necessary for the performance of ideal controller. To attack this problem, an adaptive
TSK-type recurrent fuzzy neural control (ATRFNC) system with a proportional-integral (PI)-
type learning algorithm is proposed. The proposed ATRFNC system is composed of a neural
controller and a robust compensator. All the parameters of the proposed ATRFNC system are
tuned in the sense of Lyapunov theorem, thus the stability of the closed-loop system can be
guaranteed. Finally, some simulation results validate that the favorable synchronization
performance can be achieved by using the proposed ATRFNC system.

II. TWO NEURONS COUPLED WITH A GAP JUNCTION
In neural systems, a gap junction is an electrical synapse that is a mechanical and electrically
conductive link between two adjacent neurons. Through gap junctions, neurons can communicate
with each other, and the synaptic current is proportional to the difference of membrane potentials
between a neuron and its neighbors. This paper considers a model of the two coupled chaotic
FitzHugh-Nagumo neurons with a gap junction as shown in Fig. 1 which can be described as
(Wang et al., 2004).

Master system:
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where Xi and Yi(i = 1,2) are rescaled membrane voltage and recovery variable of two neurons,

respectively, g is the coupling strength of gap junction, � �
�

cos
A

I t is the external electrical

stimulation with A and � = 2�f are the amplitude and frequency, respectively, and u is the control
effort. The parameters of the two neurons coupled chaotic systems are selected as A = 0.1,
b = 1, r = 10 and f = 0.1271. For observing the chaotic unpredictable behavior, the open-loop
system behavior with u = 0 was simulated with a initial condition (X1, X2, Y1, Y2) = (1, 0, 1, 0). To
synchronize the two coupled chaotic FitzHugh-Nagumo neurons, define tracking errors
e1 = X1 – X2 and e2 = Y1 – Y2. The time responses of the uncontrolled coupled neurons for g = 0.01
and g = 1.0 are shown in Figs. 2 and 3, respectively. The phase portraits on plan of X1 – Y1 are
shown in Figs. 2(a) and 3(a), the phase portraits on plan of X2 – Y2 are shown in Figs. 2(b) and
3(b), the phase portraits on plan of X1 – X2 are shown in Figs. 2(c) and 3(c), the phase portraits on
plan of Y1 – Y2 are shown in Figs. 2(d) and 3(d), the time responses of error e1 are shown in Figs.
2(e) and 3(e), and the time responses of error e2 are shown in Figs. 2(f) and 3(f). According to the
simulation results, the synchronization occurs only when the coupling strength of gap junction
satisfies some condition.

The chaos synchronization problem has the following features: the trajectories of a slave system
can track the trajectories of a master system, thus an error dynamical system can be expressed
as

� � � � � � � � �
�

�

�
1 1 1 1 2 2 2 1 2

2 1

( 1)(1 ) ( 1)(1 ) 2e X X rX X X rX ge e u
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Then, the error dynamic can be rewritten in a vector form as

� � �� [ ( ) ]z ue Ae b x (4)

Figure 1: The Circuit Diagram of Two Coupled Neurons
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Figure 2: The Portraits on Different Planes without Control for g = 0.01
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Figure 3: The Portraits on Different Planes without Control for g = 1.0
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where x = [X1, X2]
T is the state vector, e = [e2, e1]

T is the state error vector, 
� �

� � �� �� �

0
1 2

b
g

A ,

b = [0,1]T, and z(x) = X1(X1 – 1) (1–rX1) – X2(X2 – 1) (1–rX2) is the system dynamics. Assume all the
parameters in (4) are known, there exists an ideal controller as (Slotine and Li, 1991)

u* = z(x) + ke (5)
where k = [k1, k2] is the feedback gain vector. Substituting (5) into (4), the error dynamic becomes
to

� � � �� ( )e A bk e e (6)
where  = A – bk. Suppose the feedback gain vector k is chosen to correspond with the coefficients

of a Hurwitz polynomial, it implies that 
��

�lim 0
t

e  for any starting initial conditions. Since the

system dynamics z(x) may be unknown or perturbed, the ideal controller (5) cannot be precisely
obtained.

III.ATRFNC SYSTEM DESIGN
To solve this problem of system dynamics determination, this paper proposes an ATRFNC system
as shown in Fig. 4 which is composed of a neural controller and a robust compensator, i.e.

� �ˆarfn nc rcu u u . (7)

The neural controller ˆncu utilizes a TRFNN to mimic the ideal controller in (5) and the robust
compensator urc is used to compensate for the difference introduced by the neural controller.

Figure 4: Block Diagram of the ATRFNC for the Two Neurons Coupled Chaotic Systems
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(A)TRFNN
The configuration of TRFNN as shown in Fig. 5 is composed of the input, the membership, the
rule, the TSK and the output layers (Cheng et al., 2007). The recurrent feedback is embedded in
the network by adding feedback connections in the membership layer. The used asymmetric
Gaussian membership function is constituted by a center, a left-side variance, and a right-side
variance. The signal propagation and the basic function in each layer are as follows:

Figure 5: TRFNN with Asymmetric Gaussian Membership Functions

Layer 1 - Input layer: No function is performed in this layer. The node only transmits input
values to layer 2.

Layer 2 - Membership layer: In this layer, each node performs a membership function and
acts as a unit of memory. The asymmetric Gaussian function is adopted as the membership
function. For the jth node (Cheng et al., 2007; Velayutham and Kumar, 2005)
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where cij is the mean, �l
ij ,�r

ij  and �ij are the left-side variance, right-side variance and feedback
gain of the Gaussian function in the jth term of the ith input linguistic variable ei, respectively,
and m is the total number of the linguistic variables with respect to the input nodes. It is clear

that the feedback gain contains the memory terms � p
ij which denotes the output signal of layer 2

in the previous time.

Layer 3 - Rule layer: According to the fuzzy AND operation by the algebraic product, the
firing strength of the kth rule is calculated by (Lin and Lee, 1996)

�
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2

1

( , , , )k k k k k ik
i

l rc , k = 1, 2,..., m (9)

where T
kkk cc ][ 21�c , Tl

k
l
kk ][ 21 ���lσ , Tr

k
r
kk ][ 21 ���rσ  and T

kkk ][ 21 ���θ .

Layer 4 - TSK layer: The TSK layer represents the linear combination function in the
consequent part of the fuzzy system. Each node in this layer is denoted by (Juang and Lo, 2008)

� � � � � � � � �0 1 1 2 2
T

k k k k ku e e (10)

where T
kkkk ],,[ 210 ����α  is the parameter vector designed by the designer and Tee ],,1[ 21�ξ .

Layer 5 - Output layer: The output node together with links connected it act as a defuzzifier.
The single node computes the overall output as the summation of all incoming signals. The output
of TRFNN can be represented as

�
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1

( , , , )
m

nc k k k k k k
k

u u l rc . (11)

Then, the output of TRFNN can be represents in a vector form as

),,,( θσσcΦα rl
T

ncu � (12)

where TT
m

T ],...,[ 1 ααα � , TT
m

T ],...,[ 1 ξξΦ ��� , TT
m

T ],...,[ 1 ccc � , TT
m

T
i ],...,[ ll

l σσσ � , TT
m

T
i ],...,[ rr

r σσσ �

and TT
m

T ],...,[ 1 θθθ � .

In this paper, the TRFNN is used to online mimic an ideal controller. By the approximation
property, an ideal TRFNN can be obtained as (Cheng et al., 2007)

������ ******** ),,,( ΦαθσσcΦα rl
TTu (13)

where � is the approximation error, * and * are the optimal parameter vectors of  and ,

respectively, and c*, *
l , *

r  and * are the optimal parameter vectors of c, 1, r and , respectively.
In fact, the optimal parameter vectors that are needed to best approximation cannot be determined.
An estimation TRFNN is defined as

ΦαθσσcΦα rl
ˆˆ)ˆ,ˆ,ˆ,ˆ(ˆˆ TT

ncu �� (14)

where α̂  and Φ̂  are the estimated parameter vectors of  and , respectively, and ĉ , lσ̂ , rσ̂  and

θ̂  are the estimated parameter vectors of c, 1, r and , respectively. To speed up the convergence,
the optimal parameter vector *α  is decomposed into two parts as (Golea et al., 2002; Hsu et al.,
2009)
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*
I

*
P IP ααα �� ��* (15)

where *
Pα  and *

Iα  are the proportional and integral terms of *, respectively, �P and �I are positive

coefficients, and ��
t

d
0

** �PI αα . Similarly, the estimation parameter vector α̂  is decomposed into
two parts as (Golea et al., 2002; Hsu et al., 2009)

IP ααα ˆˆˆ IP �� �� (16)

where Pα̂  and Iα̂  are the proportional and integral terms of α̂ , respectively, and ��
t

d
0
ˆˆ �PI αα .

Thus, ααα ˆ~ * ��  can be expressed as

*
PPI PPI αααα ��� ��� ˆ~~ (17)

where 
III ααα ˆ~ �� * . Then, the estimation error is obtained as
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where ααα ˆ~ * ��  and ΦΦΦ ˆ~ * �� . The Taylor expansion linearization technique is employed to
transform the nonlinear function into a partially linear form, i.e. (Cheng et al., 2007)
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where αΦccΦα cc ˆ~~ˆ TTT � , αΦσσΦα llll ˆ~~ˆ TTT � , αΦσσΦα rrrr ˆ~~ˆ TTT �  and αΦθθΦα θθ ˆ
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ˆ TTT �  are used since

they are scalars and ����� ΦαhαΦα T
P

~~ˆˆ T*T
P��  denotes the lump of approximation error and

is assumed to be bounded by E�� .

(B)Design of the ATRFNC System
Substituting (7) into (4), the error dynamic equation can be obtained as

]ˆ)([ rcnc uuz ���� xbAee� . (21)
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Substituting (5) into (21) and using approximation error equation (20), (21) can be rewritten as

)ˆ()( *
rcnc uuu ����� bebkAe�

)ˆ
~

ˆ~ˆ~ˆ~ˆˆˆ~( rc
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In this paper, the robust compensator is designed as

PbeT
rc Ku �� �̂ (23)

where �̂  denotes the estimated value of the approximation error and K is a small positive constant.
Substituting (23) into (22) yields
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where ��� ˆ~ �� . To guarantee the stability of the proposed ATRFNC system, a Lyapunov function
is defined as
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where �c, �I, �r, �� and �� are the positive learning rates and P is a symmetric positive definite
matrix that satisfies the equation

�TP + P  = –Q (26)
in which Q is a positive definite matrix. Taking the derivative of Lyapunov function in (25) and
using (24) yield
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If the adaptation laws are chosen as

ΦPbeαP ˆˆ T� (28)

ΦPbeαα II
ˆ~ˆ T��� �� (29)

54



Synchronization of Coupled Neurons using a TSK-Type Recurrent Fuzzy Neural Network... 39

αPbΦecc c ˆ
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then (27) can be rewritten as
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That is, e(t) � 0 as t ��� (Slotine and Li, 1991). As a result, the stability of the proposed
ATRFNC system can be guaranteed.

IV. SIMULATION RESULTS
It should be emphasized that the development of the ATRFNC system doesn’t need to know the
system dynamics of the controlled plant. The controller parameters of the ATRFNC system can
be online tuned by the proposed adaptive laws. To investigate the effectiveness of the proposed
ATRFNC system, a comparison among the supervisory recurrent fuzzy neural network control
(Lin and Hsu, 2004), the adaptive recurrent-neural-network control (Lin et al., 2006) and the
proposed ATRFNC system is made.

First, the supervisory recurrent fuzzy neural network control (Lin and Hsu, 2004) is applied
to the coupled neurons. The simulation results of the supervisory recurrent fuzzy neural network
control system are shown in Figs. 6 and 7 for g = 0.01 and g = 1.0, respectively. The phase portraits
on plan of X1 – Y1 are shown in Figs. 6(a) and 7(a), the phase portraits on plan of X2 – Y2 are
shown in Figs. 6(b) and 7(b), the phase portraits on plan of X1 – X2 are shown in Figs. 6(c) and
7(c), and the phase portraits on plan of Y1–Y2 are shown in Figs. 6(d) and 7(d), the time responses
of error e1 are shown in Figs. 6(e) and 7(e), the time responses of error e2 are shown in Figs. 6(f)
and 7(f), and the associated control effort are shown in Figs. 6(g) and 7(g). The simulation results
show that the synchronization can be obtained by the supervisory recurrent fuzzy neural network
control system. Unfortunately, to guarantee the system stability, a switching compensator should
be used, but the undesirable chattering phenomenon occurs as shown in Figs. 5(g) and 6(g).

Then, the adaptive recurrent-neural-network control (Lin et al., 2006) is applied to the
coupled neurons again. The simulation results of the adaptive recurrent-neural-network control
system are shown in Figs. 8 and 9 for g = 0.01 and g = 1.0, respectively. The phase portraits on
plan of X1–Y1 are shown in Figs. 8(a) and 9(a), the phase portraits on plan of X2 – Y2 are shown
in Figs. 8(b) and 9(b), the phase portraits on plan of X1–X2 are shown in Figs. 8(c) and 9(c), and
the phase portraits on plan of Y1 – Y2 are shown in Figs. 8(d) and 9(d), the time responses of
error e1 are shown in Figs. 8(e) and 9(e), the time responses of error e2 are shown in Figs. 8(f)
and 9(f), and the associated control effort are shown in Figs. 8(g) and 9(g). The simulation
results show that the synchronization can be obtained by the adaptive recurrent-neural-network
control. Since the adaptation laws of the adaptive recurrent-neural-network control system
are designed in an integral-type learning form, the convergence speed of the synchronization
error is slow.
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Figure 6: The Simulation Results of the Supervisory Recurrent Fuzzy Neural Network Control System for g = 0.01
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Figure 7: The Simulation Results of the Supervisory Recurrent Fuzzy Neural Network Control System for g = 1.0
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Figure 8: The Simulation Results of the ATRFNC System with Integral-type Learning Algorithm for g = 0.01
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Figure 9: The Simulation Results of the ATRFNC System with Integral-type Learning Algorithm for g = 1.0
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Finally, the proposed ATRFNC system is applied to the coupled neurons again. The parameters
of the ATRFNC system are selected as 10�� IP �� , 1���� ����� rlc  and 1.0��� . All the
parameters are chosen through some trials to achieve a good transient control performance in
the simulation considering the requirement of stability. The simulation results of the ATRFNC
system are shown in Figs. 10 and 11 for g = 0.01 and g = 1.0, respectively. The phase portraits on
plan of X1–Y1 are shown in Figs. 10(a) and 11(a), the phase portraits on plan of X2 – Y2 are shown
in Figs. 10(b) and 11(b), the phase portraits on plan of X1–X2 are shown in Figs. 10(c) and 11(c),
and the phase portraits on plan of Y1–Y2 are shown in Figs. 10(d) and 11(d), the time responses of
error e1 are shown in Figs. 10(e) and 11(e), the time responses of error e2 are shown in Figs. 10(f)
and 11(f), and the associated control effort are shown in Figs. 10(g) and 11(g). The simulation
results show that the synchronization can be obtained by the proposed ATRFNC system and the
synchronization errors converge quickly by using the proposed PI-type learning algorithm.

In addition, the performance measures of various control schemes are summarized in Table
1. The performance measures are shown in Tables 1(a) and 1(b) for g = 0.01 and g = 1.0,
respectively. It shows that the proposed ATRFNC system possesses the most accurate
synchronization performance and the synchronization errors converge quickly by using the
proposed PI-type learning algorithm.

Table 1
Performance Measures

(a)

Error average standard deviation
Methods

supervisory recurrent fuzzy neural network control 0.0177 0.1689
ATRFNC system with integral-type learning algorithm 0.0160 0.1646
ATRFNC system with PI-type learning algorithm 0.0148 0.1276

(b)
Error average standard deviation

Methods

supervisory recurrent fuzzy neural network control 0.0208 0.1576
ATRFNC system with integral-type learning algorithm 0.0194 0.1527
ATRFNC system with PI-type learning algorithm 0.0175 0.1361

V. CONCLUSIONS
The weights of the output layer in the TSK-type recurrent fuzzy neural network (TRFNN) use a
functional-type form, so the proposed TRFNN provides powerful representation, good
generalization capability and dynamic mapping. Then, this paper has successfully developed an
adaptive TSK-type recurrent fuzzy network control (ATRFNC) system with a proportional-integral
(PI)-type learning algorithm. The proposed ATRFNC system is composed of a neural controller
and a robust compensator. The neural controller utilizes a TRFNN to online mimic an ideal
controller and the robust compensator is designed to dispel the approximation error introduced
by the neural controller without occurring chattering phenomena. All the controller parameters
of the proposed ATRFNC system are online tuned based on the Lyapunov stability theorem, thus
the stability of the closed-loop control system can be guaranteed. Finally, a comparison among
the supervisory recurrent fuzzy neural network control (Lin and Hsu, 2004), the adaptive
recurrent-neural-network control (Lin et al., 2006) and the proposed ATRFNC system is made.
The simulation results show that the convergences of the synchronization error can be speeded
up by using the developed PI-type learning algorithm.
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Figure 10:The Simulation Results of the ATRFNC System with PI-type Learning Algorithm for g = 0.01
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Figure 11:The Simulation Results of the ATRFNC System with PI -type Learning Algorithm for g = 1.0
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