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ABSTRACT: In this paper, we propose a hybridization of electromagnetism-like (EM) algorithm
and particle swarm optimization (PSO) method to design recurrent fuzzy neural systems for nonlinear
control. The hybrid algorithm (called modified EMPSO) combines the advantages of EM and PSO
algorithms to enhance the performance of optimization. The main modification from EM algorihtm
is the random neghborhood local search is replaced by PSO algorithm with an instant update strategy.
Each particle’s velocity is updated instantaneously and it provides the best information for other
particles. Thus, it enhances the convergence speed and the computational efficiency. Simulation
results of nonlinear systems control and two-degree-of-freedom helicopter system are shown to
illustrate the modified EMPSO has the ability of global optimization, faster convergence, and higher
accuracy.
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I. INTRODUCTION
Fuzzy systems and neural networks are being used successfully in many application areas
[4-8, 11, 12, 28-32]. Based on the approximation ability, many adaptive control techniques are
accompanied with them for approximation of system functions or controllers. A recurrent fuzzy
neural network (RFNN) system is proposed to identify and control nonlinear systems in literature
[6, 8]. For temporal problems, the RFNN system is more suitable than feed-forward (static) system.
Recently, some other recurrent fuzzy neural systems have been also proposed [4, 8-10, 29, 32, 33].
They have the ability of storing the past information of system. With the advantages, this study
develops a RFNN-based control scheme for nonlinear systems via the proposed hybrid algorithm.

Many literatures have been proposed to deal with the designing and training of fuzzy neural
systems [1-10]. For solving this problem, the gradient-descent method is widely used and it is a
powerful technique [1, 6, 8, 11, 12]. It may rapidly obtain a local minimum and cannot find the
global solution. Therefore, searching the global optimum of optimization problems and apply in
the training of fuzzy neural systems are important. Recently, a novel global optimization algorithm
that deduces from the electromagnetism theory in physics was presented, called electromagnetism-
like mechanism algorithm (EM) [13-15]. It simulated the electromagnetism theory by considering
each individuality (or candidate solution) to be an electrical charged. These charges move in the
direction by the Coulomb’s law and superposition principle, i.e., the force is directly proportional
to the product of their particles and in inversely propositional to the distance between the charges.
Thus, it has advantages of global optimization and multi-point searching [13-20]. However, the
convergent speed of EM algorithm is slow when the local search procedure is absent [13]. On the
other hand, the local search procedure can improve the convergence of EM. However, it is
coordinate by coordinate, stochastically, and very complex in computational consideration. Thus,
the highly computational complexity is the major drawback. Hence, a modified local search
procedure by modified particle swarm optimization (PSO) is adopted to enhance the performance.
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The PSO is easy to implement and has been empirically shown to perform well on many
applications [21-27]. Each particle has a fitness value and a velocity to adjust its moving direction
according to the best experiences of the swarm to search for the global optimum. Recently, a
method of updating velocity strategy for PSO was proposed to obtain a better performance [23,
24]. In order to enhance the performance of EM and to accelerate its convergent speed, a modified
update strategy in PSO is adopted for the recurrent fuzzy neural controller design.

This paper proposes a hybridization of EM algorithm and PSO, called modified EMPSO, to
design the RFNN controller for nonlinear systems control. The modified EMPSO algorithm
improves the optimization performance of EM and PSO algorithms. The major drawback of EM,
computational complexity, is solven by replacing the randomly neghiborhood local search using
PSO with an instant update strategy. Thus, the modified EMPSO combines the advantages of
multi-point search, global optimization, and faster convergence. In addition, the modified EMPSO
does not need any system gradient information. We use the modified EMPSO and RFNN to develop
the controller scheme for solving nonlinear system control problems and tracking of 2-degree-of-
freedom-helicopter system [34]. Simulation results show that the modified EMPSO has the ability
of global optimization, advantages of faster convergence and higher accuracy.

The paper is organized as follows. Section II introduces the recurrent fuzzy neural network
system. In Section III, the EM algorithm, PSO, and the proposed modified EMPSO algorithm are
introduced. Section IV shows the simulation and comparison results of nonlinear system control
and tracking control of 2-DOF-helicopter system. Simulations are shown and demonstrate the
performance of the modified EMPSO. Finally, the conclusion is given in Section V.

II. RECURRENT FUZZY NEURAL SYSTEM
Many results have been obtained by using fuzzy neural systems for system identification and
control [1, 5-8, 11]. These methods optimize the fuzzy neural systems by using learning algorithms
to adjust the systems’ parameters. However, their application fields are limited in static problems
due to the static property. Hence, a recurrent fuzzy neural network (RFNN) having dynamic
fuzzy reasoning is proposed for solving temporal problems [6, 8]. With dynamic fuzzy reasoning,
the RFNN is more effective than the conventional fuzzy neural systems [4, 7, 8, 24, 28-30].
Therefore, we here use the RFNN to develop a control scheme via the modified EMPSO for
nonlinear systems control.

Figure 1 shows the diagram of the RFNN system, where G represents the Gaussian
membership function. The RFNN has n input variables, m term nodes for each input variable, p
output nodes, and m×n rule nodes. Therefore, a RFNN system with m rules consists of
n+(n×m)+m+p nodes. The RFNN system is introduced briefly here. Layer 1 accepts input variables.
Its nodes represent input linguistic variables. The nodes in this layer only transmit input variables

to the next layer directly, i.e., 1 1
i iO u� . Layer 2 is used to calculate Gaussian membership value,

i.e., 
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linguistic variables. Nodes at layer 3 represent fuzzy rules. Layer 3 forms the fuzzy rule base.
Links before layer 3 represent the preconditions of the rules, and the links after layer 3 represent

the consequences of the rule nodes, i.e., 
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O O�� . Layer 4 is the output layer. Each node is for

actual output to be pumped out this system. The links between layer 3 and layer 4 are connected
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by the weighting value i
p� , i.e., 

4 3 4
m

j j ij i
i

y O O� � �� . As the previous statement, the RFNN has

adjustable parameters m, �, �, and �, which is denoted by W = [m, �, �, �]T.

To realize dynamic fuzzy rules, the RFNN system is inherently a recurrent multilayered
connectionist network. By adding feedback connections in the second layer of the RFNN system,
temporal relations are embedded in the network which is used to memorize past information.
For a RFNN system with n inputs x1, x2, …, xn and one output y, each dynamic fuzzy if-then rule
in RFNN is in the form of

Rule j: IF z1 is A1j and … zn is Anj, THEN y is �j (1)

where zj is � � � � � � � �2 11ij ij jO k O k� � � �  which includes the past information and the current input; A1j

is a fuzzy set and for inference output y, wj is the consequent part parameter.

As discussion of our previous result [6, 8], the RFNN has the ability of universal approximation,
i.e., the RFNN can be used to identify a nonlinear dynamic system from the system input and
output signals. In addition, the RFNN has a smaller network structure and a smaller number of
tuning parameters than that of the fuzzy neural systems [6, 8]. The RFNN has the ability of
storing system past information due to the present of feedback layer. It also increases the learning
speed of RFNN [6, 8].

III. HYBRIDIZATION OF ELECTROMAGNETISM-LIKE AND PARTICLE SWARM
OPTIMIZATION ALGORITHMS

This section introduces the proposed hybrid learning algorithm, modified EMPSO, for designing
the RFNN controller. The modified EMPSO combines the advantages of EM and PSO algorithms

Figure 1: Network Diagram of RFNN System [6, 8]
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to result faster convergence and higher accuracy. Figure 2 depicts the flow chart of the proposed
modified EMPSO algorithm. At first, the optimization problem should be defined, for design of
RFNN controller, the controller parameters W = [m, �, �, �]T is represented to be a particle. For
nonlinear systems control problem, the tracking error is the difference between the reference
trajectory and system actual output, i.e., e(t) = yr(t) – yp(t). The root-mean-square-error (RMSE)
of tracking error is adopted to be the objective function.

Figure 2: Description of the Modified EMPSO Algorithm
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The initial particles are randomly selected from the searching space and its initial position
and velocity should be set. After initialization, evaluation phase should be done. Each particle is
evaluated and ranked by the corresponding RMSE of tracking error. The particle having the
smallest RMSE value is selected to be gbest for PSO and xbest for EM. Each particle’s information
is updated by using the historical best information. In order to make better use of the beneficial
information and enhance the convergent speed, we use the instant update strategy that all charges
and particles are updating its velocity instantly. Each particle can update its individual
information one by one and produce new best particle. When the new particle is defined, it should
be determined whether it is better than the gbest or not. When the new gbest is produced, it is
used to provide the information for next particle. Every particle gets the newest information to
update the velocity by this strategy.

Subsequently, the EM-operation phase is used to optimize the RFNN system. By the technique
of instant update strategy, all particles are evaluated to determine whether gbest is replaced or
not. The particle with smallest RMSE value is defined to be xbest. If xbest is better than gbest, it
would become the new gbest. The procedure will be stopped until the stop criterion (maximum
generations) is satisfied. Detailed descriptions for the EM, PSO, and the modified EMPSO are
introduced as below.

(A) Optimization Problem Definition for EM
In EM algorithm, each candidate solution is viewed as a charged particle [13-16]. The EM for
optimization problems can be represented as

Minimize f(x)

subject to { , , , 1,..., }n
k k k k kx l x u l u k n�� � � �� �  (2)

where n is the problem dimension, f(x) is the objective function, and uk and lk are the corresponding
upper bound and lower bound of parameter xk. Each particle x represents a candidate solution
with charge. EM utilizes the mechanisms of attraction and repulsion to determine the searching
direction. The magnitude of force is calculated by the Coulomb’s law.

(B) Initialization
For many applications, the real-value coding technique is used to represent a solution. In this
study, each particle denotes a weighting vector [m, �, �, �]T shown in Fig. 3, and the modified
EMPSO is utilized to find the optimal value [m*, �*, �*, �*]T. At first, a proper population size is
selected and the initial particles are randomly chosen from the searching space. The feasible
region of RFNN parameters should be defined (i.e., uk and lk for m, �, � and w). Each pbest and
gbest are set to be null (denoted by [ ]) at first. In addition, the stop criterion- maximum
generations, is selected in this phase.

(C) Evaluation and Ranking
This phase is used to calculate the fitness values of entire particles. Each particle is evaluated by
the given RMSE of tracking error to decide its survival or extinction in the next generation. This
helps us to find superior particles, i.e., a particle having smaller RMSE value has a higher
probability of survival. Three steps are done in this phase: fitness values evaluation, ranking by

Figure 3: Particle Representation of RFNN
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fitness value, and best particle definition. To evaluate the performance of each particle in training
the RFNN system, we define the RMSE as

2

1

( ) ( ) /
T

k

f x e k T
�

� � (3)

where e denotes the tracking error and T denotes the data number. Subsequently, all particles
are ranked and indexed by their corresponding RMSE values. Finally, the particle having the
minimum RMSE is stored in gbest, i.e., gbest = {x| min RMSE of e}.

(D) Local Search for the Modified EMPSO Algorithm
The local search phase is used to gather the local information for each particle xj. Details of the
local search procedure for EM algorithm can be found in literature [13-17]. As description in
[17], for the case of RFNN controller design using EM algorithm, if M particles with N parameters
are chosen, the random search needs at least N×M times of RMSE evaluation in a local search
procedure. In order to reduce the computational complexity, we propose the modified EMPSO to
enhance the performance.

Figure 4 shows a flow chart of modified PSO with an instant update velocity strategy. After
evaluation phase, each particle updates its position and velocity in the local search procedure. In
every searching-iteration, there are four attributes for particles in the search space to present

their features: current position iX
�

, current velocity iV
�

, past best position pbesti, and global best
position gbest. Firstly, every particle updates its information by

1 1 2 2( 1) ( ( )) ( ( ) ( )) ( ( ) ( ))

( 1) ( ) ( 1).
i i i i i

i i i

V k V k C rand pbest k X k C rand gbest k X k
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� � � �

� � � �

� � � (4)

If current position iX
�

 has smaller RMSE value than the past best result pbesti, it should be

replaced. After replacing the pbesti, we have to confirm whether iX
�

 is better than the gbest or
not. Conventional method of updating the best group particle is executed in the last of every
generation while all particles have operated. Unlike this, the method of updating gbest here is
updated instantaneously one by one, not until all particles have operated in a generation. Detailed
flow chart of local search by PSO with an instant update strategy can be found in Fig. 4. Using
the above modifications, the comparison results between the modified EMPSO and other
algorithms (EMPSO, EM, PSO, and GA) are shown in Section IV.

(E) EM Operation - Total Force Calculation
As description of literature [13-16], there are three steps in the EM operation phase. They are
“local search,” “total force calculation”, and “movement”, respectively. As above description, the
local search is done by the PSO with an instant update strategy.

In this step, a charge is assigned to each particle of the population. The charge qi of particle xi

is determined by

1
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f x f x
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As in the electromagnetic theory, the force is inversely propositional to the distance between
two charges and directly proportional to the product of their charges. Hence, the total force on xi

computed by the superposition principle is

2
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After comparing the RMSE values, the direction of the forces between the particle and the
others is selected. The one with a better (smaller) RMSE value attracts the other particles and
the particle with larger RMSE repels others. Therefore, xbest (or gbest) plays the role of an attractor.

F. EM Operation - Movement
After determining Fi, particle xi moves in the direction by a random step length

( ) if 0
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Figure 4: Flow Description of Local Search for Modified EMPSO Algorithm with an Instant Update Particle’s Velocity
Strategy
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where � = random(0, 1) is the random step length.

Subsequently, all particles are evaluated and the particle with the smallest RMSE value is
defined as xbest. The gbest would be replaced again if xbest is better than gbest. Detailed procedure
can be viewed in Figure 2.

IV. SIMULATION RESULTS
To show the performance of the modified EMPSO, two illustrated examples for nonlinear control
systems using RFNN are presented. All simulation results were done by MATLAB in Intel Pentium
4 computer with clock rate of 3-GHz and 2G MB of main memory.

Example 1: Single-input-single-output system
Consider the tracking control of single-input-single-output nonlinear system [29]

2 2

( ) ( 1) ( ( ) 2.5)
( 1) .

1 ( ) ( 1)
p p p

p
p p

y k y k y k
y k u

y k y k

� � � �
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k k
� � ��

� � � � � � ��
(9)

Figure 5 shows the system control scheme using the modified EMPSO and RFNN.The RFNN
system is used to play the role of off-line controller. The inputs of RFNN controller are plant past
state variable yp(k-1) and the current reference trajectory yr(k), and the output is the current
control signal u(k) which generates a proper control force to derive the system to follow the
reference trajectory yr. Thus, the corresponding RMSE function of tracking error is defined

RMSE = 
1/ 2200

2

1

( ( 1) ( 1)) / 200p r
k

y k y k
�

� �� � �� �
� �
� . (10)

Figure 5: Dynamic System Control Configuration with RFNN Controller
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To show the efficiency and effectiveness of the modified EMPSO, we have the comparison
results with other multi-point algorithms, EM, PSO, EMPSO, and GA. Herein, we briefly introduce
these used multi-point algorithms. (a) EM algorithm: as the above introduced in Section III. The
local search is done coordinate by coordinate randomly [13-16]. (b) PSO algorithm: Each particle
updates its information by the past best information and group best information, i.e., equation
(4). (c) EMPSO algorithm [17]: hybrid algorithm of EM and PSO in which the local search operation
of EM is replaced by traditional PSO technique. (d) GA algorithm: the individual updates by
produce, cross, mutation operations. In this simulation, the stop criterion is chosen as the maximal
generations to be 50 and the population size is set to be 30. Other parameters setting for algorithms
are shown in Table 1. In addition, a RFNN system with 5 rules is chosen and the RFNN’s initial
parameters m, �, �, � are chosen randomly between [-1, 1]. Hence, the total parameters number
is 35.

Figures 6-7 and Table 2  show the simulation results of Example 1. Figure 6 shows the system
trajectory after 50 generations (solid line: desired trajectory; dashed line: system actual output).
It can be found that the RFNN controller performs well with less tracking error even the reference
trajectory (set-point) is discontinuous. The comparison results of RMSE between the modified
EMPSO and other algorithms as shown in Fig. 7 (solid green line: GA, solid pink line: PSO, solid
black line: EM, solid blue line: EMPSO [17], and dashed line: modified EMPSO). Obviously, the
modified EMPSO algorithm has better performance in RMSE value than others.

Table 1
Parameters Setting of Algorithms for Example 1

Algorithms Parameter

Modified EMPSO C1 = C2 = 2; uk = 1, lk = –1, c = 1

EMPSO C1 = C2 = 2; uk = 1, lk = –1, c = 1

EM uk = 1, lk = –1

PSO C1 = C2 = 2;

GA copulation rate: 0.8; mutation rate: 0.1

Table 2
Comparison Results of RMSE for Example 1

Algorithm Best RMSE Worst RMSE Mean RMSE

Modified EMPSO 0.1996 0.2572 0.2052

EMPSO 0.2398 0.3663 0.3021

EM 0.2844 0.3924 0.3366

PSO 0.3468 0.6156 0.4658

GA 0.7828 2.8918 1.8363

The comparison results of RMSE in independent 20 runs are shown in Table 2. From Table 2,
the modified EMPSO algorithm has the best control performance (Best RMSE: 0.1996). We can
also observe that the best, worst, and mean cases of the modified EMPSO are smaller than others.
Besides, the corresponding computational effort of EM and the modified EMPSO are 2582.235
and 67.341 seconds. The modified EMPSO does reduce the computational complexity of EM.
However, compared with PSO and GA, the function evaluation operation of each particle modified
EMPSO should be done twice in one generation. This means that the computational effort is
more complex than PSO and GA. From above, the effect of instant update strategy for optimization
can be observed. Consequently, we can conclude that the modified EMPSO reduces the
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Figure 6: System Trajectories after 50 Training Generations of Example 1: (Solid line: Desired Trajectory; Dashed
Line: System Actual Output)

Figure 7: Comparison Results of Tracking Error in RMSE for Example 1: (Solid Green Line: GA, Solid Pink Line:
PSO, Solid Black Line: EM, Solid Blue Line: EMPSO, and Dashed Line: Modified EMPSO)
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computational complexity of multi-point optimization and has the ability of global optimization,
advantages of faster convergence and higher accuracy.

Example 2: Tracking Control of 2-DOF-Helicopter System
To demonstrate the effectiveness of the proposed control scheme, consider the tracking control of
the 2-DOF-helicopter system. The helicopter model is equipped with two dc motors which actuate
two propellers directed in such way that the front (main) propeller controls the pitch motion,
while the tail propeller controls the yaw motion. The inputs of the plant are the voltages
u = [umain  utail]

T applied to the two motors. Also the pitch angle q1 and the yaw angle q2 are
measurable. The relationship between voltages applied to the motors and the generalized torques
produced along each axis of rotation is modeled by a static mapping of the form  = B(q) u.

The model of full-actuated Euler-Lagrange system is given by

( ) ( , ) ( )q q q q q q� � � �M C g�� � � (11)
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1 6 7
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Let x1 = q, 2x q� � , and q = [q1   q2]
T, the state-space representation is

1 2

1 1 1
2 1 1 2 2 1 1 1[ ( ) ] ( , ) [ ( ) ] ( ) [ ( ) ]x x x� � �

�
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x x
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where 1 1 2 2 1 2 1 2 1 2[  ] , [  ] , [  ] ,  ( ) ,   and [  ] .T T T Tq q q q u u d d� � � � � �x x u B q u D� � The control objective is
to design the control signals u such that the system output x1 track a bounded reference trajectory

yr(t) (yr = [yr1, yr2]) asymptotically. The desired trajectories are chosen as 1 sin( )
4ry t
�

� and

2 cos( )
4ry t
�

� . The sampling time is selected to be 0.01 second and the external disturbance is

0 5sin sin1 5 sin 2 sin 2
6 6

T
π π

. t . t t t -
� �� � � �� � � �� � � �� �� � � �� �

D . The initial conditions is chosen as

1 2 3 4[ (0),  (0),  (0),  (0)] ,  0,  ,  0
18 18

x x x x
� �� �� �� �� �

. The system parameters are chosen as previous

literature shown in Table 3 [34]. The RFNN-based control scheme is shown in Fig. 8, and there
are two RFNN controllers to generate proper signals umain (u1) and utail( u2). The inputs of the
RFNNs are the current tracking errors.

To evaluate the performance, we define the error function and the RMSE function as
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RMSE = 
1/ 2

2 2
1 2

1

( ) ( ) /
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k

e k e k T
�
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� . (13)

The following parameters for the modified EMPSO algorithm are chosen

– Maximum generation: 50

– Population size: 30

– Simulation time: 10 seconds

– Control constant: 1

– C1 = C2: 2

The RFNN’s initial parameters m, �, �, � are chosen randomly between [-1, 1] and the network
structure is

– Rule number of RFNNs: 5

– Network structure of RFNNs: 2-10-5-1

– Parameter number of RFNNs: 35

After 50 training generations, simulation results are shown in Figs. 9-10. Figure 9(a) shows
the reference trajectories and the actual system outputs of 2-DOF-helicopter system using the
RFNN-based control scheme via the modified EMPSO (solid line: desired trajectories yr1 and yr2;
dashed line: the system actual outputs pitch angle q1 and yaw angle q2). The corresponding control
effort for u1 and u2 are shown in Fig. 9(b). It can be observed that the RFNN-based control scheme
via the modified EMPSO achieves the tracking control problem such that the system outputs
follow the reference trajectories even the time varying external disturbance exists. Comparison
results of RMSE between the modified EMPSO and other algorithms are shown in Table 4 and
Fig. 10 (solid green line: GA, solid pink line: PSO, solid black line: EM, solid blue line: EMPSO
and dashed line: modified EMPSO). As shown in Fig 10, we can observe that the RFNN-based

Table 3
Plant Parameters of 2-DOF-helicopter System [34]

Parameter Value Units Parameter Value Units

�1 0.0826 kgm2 �6 0.0566 Nm/V

�2 0.0041 kgm2 �7 0.0054 Nm/V

�3 0.0349 kgm2 �8 0.0042 Nm/V

�4 0.1610 kgm2/s2 �9 0.0114 Nm/V

�5 0.4080 kgm2/s2

Table 4
Comparison Results of RMSE for Example 2

Algorithm Best RMSE Worst RMSE Mean RMSE

Modified EMPSO 0.0796 0.257 0.205

EMPSO 0.1361 0.366 0.302

EM 0.1646 0.392 0.336

PSO 0.2034 0.615 0.465

GA 2.945 4.891 3.918
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Figure 8: The Modified EMPSO-based RFNN Control Scheme for the two-DOF-helicopter System

(a)
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Figure 10:Tracking Error Comparison of Example 2: (Solid Green Line: GA, Solid Pink Line: PSO, Solid Black
Line: EM, Solid Blue Line EMPSO and Dashed Line: Modified EMPSO)

Figure 9: Tracking Results of the Modified EMPSO-based RFNN Control Scheme for Example 2, (a) System
Trajectories (Dotted Line: Desired Trajectories yr1 and yr2; Dashed Line: the System Actual Outputs Pitch
Angle q1 and yaw angle q2); (b) Control effort

(b)

control scheme via the modified EMPSO algorithm can converge faster than other algorithms
and tracks the reference trajectories accurately. In addition, from Table 4, the modified EMPSO
algorithm has the best control result (Best RMSE: 0.0796). It is obviously that the best, worst,
and mean cases of the modified EMPSO are smaller than EMPSO, EM, PSO, and GA.
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Furthermore, the proposed modified EMPSO algorithm does improve the control performance
and has higher accuracy that results smaller RMSE and has faster convergence than the other
algorithms.

V. CONCLUSION
In this paper, a hybrid learning algorithm- modified EMPSO with an instant update strategy
has been proposed for the RFNN-based controller design. The modified EMPSO combines the
advantages of EM and PSO algorithms to optain the properties of multipoint search, global
optimization, and faster convergence. The random neighborhood local search of EM algorithm is
replaced by PSO algorithm with an instant update strategy. Each particle’s velocity is updated
instantaneously and it provides the best information for other particles. Thus, it enhances the
convergence speed and the computational efficiency. In addition, the modified EMPSO was used
to design the RFNN controller parameters such that the nonlinear system output follows the
reference trajectory. Illustration examples including the nonlinear system control and tracking
of 2-DOF helicopter system were presented to show that the modified EMPSO has the ability of
global optimization and effectiveness of higher accuracy and faster convergence.
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