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ABSTRACT: We investigate the fitness of stochastic mechanisms of cellular phenotypic
determination in fluctuating bistable environments. We model cell populations at the single cell
level and compare the fitness of stochastic versus deterministic choice of phenotype, for varying
rates of fluctuation of the environment and biases in the choice of environmental state. We find that
only when the stochastic choice of phenotype is biased by information on the state of the environment
is the stochasticity selectively advantageous. Next, we model mutations that affect the rate of
stochastic phenotypic switching and subject the cells to selection. The evolved phenotypic switching
frequency is found to depend on the environment conditions. The results give insights on the conditions
under which stochastic mechanisms to face environmental fluctuations are advantageous.
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1. INTRODUCTION

The phenotypic diversity of a cell population
emerges from the genotypic diversity of the
cells, e.g. due to mutations, from the
stochasticity of the cellular functioning, and
from the stochasticity in the interactions
between cells and the environment [13,14].
Physiologic noise is present in most biological
processes such as gene expression [19],
interactions between proteins, between cells,
and between organisms and the environment
[5]. These interactions affect even the most
complex phenotypic traits [2], and evidence
suggests that some phenotypes are only
expressed in certain conditions [15].

B. subtilis has probabilistic and transient
differentiation, dependent on the environment
[15]. Noise in ComK expression can cause cells
to become competent for uptaking DNA, each
choice being independent of previous events.
Reduction of this noise decreases the number
of competent cells [7] suggesting that noise-
driven mechanisms can evolve [15]. Reversible
differentiation between two phenotypes was
also observed in �CI8B7 [8]. This transition is
both spontaneous and affected by the

environment (temperature), and is an example
of a transmissible ability of physiological change
without genetic change.

Stochasticity in gene expression is known
to be useful in generating phenotypic diversity
in microbial populations, improving their
adaptability to sudden environmental changes
[3, 17]. Evidence exists that bacteria possess
mechanisms that allow transient increases in
heterogeneity under stress conditions, e.g. by
enhancing the fluctuations in the levels of some
proteins [3].

One common strategy of bacteria for coping
with unpredictable environmental conditions
appears to be based on genetic circuits that have
two or more stable regimes. Since several
environmental conditions can be considered
“bistable”, for example, temperature can be
within or outside normal ranges, a toxic can be
present or absent, nutrients can be abundant
or scarce, etc, it is no surprise that many of such
genetic circuits are bistable [18]. Bistability is
sufficient to trigger a specific defense strategy
(e.g. halting cell division), depending on
whether the environmental conditions require
it.
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These bistable circuits, in some cases, allow
stochastic switching between two phenotypes,
giving rise to bimodal phenotypic distributions
[7, 13], as in the case of Mycobacterium
tuberculosis, where persistence is determined
by a bistable genetic circuit based on a positive
feedback mechanism [16].

Studies of stochastic models of gene
regulatory networks (GRN) have shown that
they possess “noisy attractors”, i.e., confined
regions of the state space where the system
tends to remain once reaching it [11]. These
models also have “ergodic sets”, i.e., sets of noisy
attractors from which, once reached, the system
does leave due to internal fluctuations, unless
externally perturbed [11].

We investigate the fitness value of inherent
phenotypic variability and of the ability to
switch between phenotypes to cope with
environmental changes. For that, we model cells
with one ergodic set with two noisy attractors.
Noise in protein levels can induce transitions
between the attractors, each assumed to express
a phenotype better fit to one of the two possible
environmental states. Environmental state
transitions are also modeled as being stochastic.
The cells are given the ability to mutate the rate
constants controlling state transitions between
the noisy attractors.

We address the following questions: is there
any advantage in switching between
phenotypes in a stochastic bistable environment
without any information on the environment
state? Provided that information, how does the
bias in being in one environmental state and
the frequency of switching between
environmental states affect the advantage of
stochastic versus deterministic phenotype
determination? Finally, we study the
evolvability of this mechanism of phenotypic
determination in a biased bistable environment
to determine how this genetic system adapts to
environmental biases.

2. MODELS AND SIMULATION

We aim to model cells, each with a genetic
circuit with two noisy attractors [11]. Each noisy
attractor corresponds to a specific phenotype.
Noise in gene expression causes probabilistic

transitions between the two attractors. One
example of a delayed stochastic model of a
bistable genetic circuit can be found in [9]. Here,
we aim to model only the bistability and its
transient and probabilistic nature, rather than
the specific circuit that exhibits this dynamics.
Due to that, our model regulating in which noisy
attractor a cell is in is a simplified version of
that in [9]. Namely, the genes, RNA and
proteins are not explicitly modeled. Instead,
only the phenotypic states and the mechanisms
of phenotypic switching are modeled explicitly.

The environment is also bistable, for
simplicity, and aims at modeling, as described
before, environmental conditions that are well
approximated by two states. Environmental
state transitions are intended to be (and thus
modeled as) stochastic events. Our model of
bistable environment is similar to the one
recently proposed in [10]. Finally, in one of the
models, cells possess a mechanism that detects
the environment state and biases the switching
between the noisy attractors so as to increase
the probability of switching to, and then remain
in, the appropriate noisy attractor. This
mechanism is also modeled as proposed in
[10], and based on the studies by Kussel and
Leibler [6].

In general, the models here proposed aim
solely to capture the stochastic nature of
phenotype switching in the cells, the stochastic
nature of switching between two environment
states, and the stochastic nature of cellular
mechanisms of sensing the environment state.
Since we aim to simulate events that are
inherently probabilistic in nature, the dynamics
of the simulations follows the Stochastic
Simulation algorithm (SSA) [4] and is
implemented in SGNSim [12]. From the
biological point of view, this aims at mimicking
the stochastic nature of phenotype
determination, and the detection and response
to environmental changes, found to occur in
bacteria [6, 17].

Each cell is independent of the others,
interacting only with the environment. In each
simulation, multiple generations of cells are
simulated, each of which with N cells. In each
generation, the fitness of each cell is measured.
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The best 50% are duplicated and their
daughters simulated in the next generation. The
others are eliminated.

In model 1, we simulate two distinct cell
types (reactions 1 to 8). Generation 1 (G1)
consists of N identical cells, each with equal
chances of being of type 1 or 2. Daughters
inherit the type from the mother. Cells of type
2 cannot switch between its two possible states.
The phenotypic variability of its population is
created at G1 alone. Cells of type 1 can
stochastically switch between its two
phenotypes at any moment of their life. In model
1, none of the cell types are able to regulate its
internal state as a function of environment
state.

,���� ����init init
A BW W W W (1)

,���� ����A BCW CW
A B B AW W W W (2)

init initS , S���� ����init init
a bSi Si (3)

( )
aSi �����flip i

bSi (4)

a A*Si +*W ���r
ifit (5)

b B*Si +*W ���r
ifit (6)

b A*Si +*W (min :1)� ����p
ifit (7)

a B*Si +*W (min :1)� ����p
ifit (8)

Reactions (1) initialize the environment
state (which can be either WA or WB). Reactions
(2) allow environmental state transitions, i.e.,
switching between WA and WB. Reactions (3)
initialize the state of the cells of G1. Index i
indicates the cell type (1 or 2). Reactions (4)
allow cells to switch their phenotype between
Sa and Sb (a fixed phenotype is attained by
setting these reactions rate constants to zero).

The fitness of a cell equals its number of fiti
units at the end of its simulation, computed by
reactions (5) to (8). Reactions (5) and (6) allow
gaining fitness units, when cell and
environment states are both either “A” or “B”.
If environment and cell are in opposite states,
fitness is lost via reactions (7) or (8). The
number of fit units does not affect the
penalization for being in an “incorrect” state,

since the propensity of reactions 7 and 8 does
not depend on the number of fiti. The *X
notation means that the substance X is not
consumed in the reaction. The X(min:1) notation
means that if X is absent the reaction does not
occur, and if present (regardless of the amount)
the reaction occurs but X does not contribute to
the calculation of the propensity.

When a cell divides, all substances are
duplicated and equally shared by the daughter
cells, including fiti. The weak dependence of a
cell’s fitness on the initial conditions is meant
to mimic the fact that fitter mother cells ought
to provide a small initial advantage to their
daughters. The cell lifetime is set to sufficiently
long so that the initial state is not critical to
the survival of the cell, which depends mostly
on the ability to cope with the environment
during its lifetime.

In model 2, the state transitions of the cells,
when occurring, depend on the environment
state. Besides reactions (1-3) and (5-8), we add
reactions (9-13) Signaling molecules, sigi, are
generated via (9), and model cell sensors
informing about the environment state. These
molecules decay via reactions (10). Signaling
molecules carrying information contrary to the
environment state (due to a change in the
environment state posterior to their creation)
are further degraded by (11). Reactions (12) and
(13) allow the signals to regulate state
transitions (replacing reaction (4) in model 1):

A B*W , *W���� ����sig sig
A Bsig sig (9)

,����� �����dsig dsig
A Bsig sig (10)

* *� ���� � ����D D
B A A BW sig W sig (11)

( )
aSi *� �����flip i ab

b bsig Si (12)

( )
bSi *� �����flip i ba

a asig Si (13)

In model 3, the cell can regulate its state
transitions as in model 2. A mutation
mechanism affecting the value of the rate
constants of reactions (12) and (13) is introduced
in cell type 1. As the fitter cells are chosen, these
rates ought to acquire local optimum values. To
mutate the rate constants at run-time we
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introduce “virtual” substances (Adw,z), two for
each rate constant such that: if Adab,up quantity
increases, flipab increases linearly. If Adab,down
quantity increases, flipab decreases linearly.
Creation (15) and decay (14) reactions of these
substances are introduced, both independent of
the substance quantities at any moment in time.
Let Adw,z be such that w is either ab or ba, and
z is either up or down.

,* �����downk
w zAd (14)

,����upk
w zAd (15)

Finally, in model 3, the propensity P of (12)
and (13) are calculated according to:

4a a( ) .[Si ].[ ].[Ad(ab,up)]
P  = 

[Ad(ab,down)]
ab bflip i sig

(16)

4b b( ) .[Si ].[ ].[Ad(ba,up)]
P  = 

[Ad(ba,down)]
ba aflip i sig

(17)

As the quantities of the virtual substances
change, via reactions (14) and (15), so will the
propensity of reactions (12) and (13). As the
fitter cells are selected at each generation, one
can observe which values of

( ) .[Ad(ab,up)]
[Ad(ab,down)]

abflip i
 and 

( ) .[Ad(ba,up)]
[Ad(ba,down)]

baflip i

locally optimize the fitness in a given
environment.

We note that we do not focus on the
underlying GRN required to express the
phenotypes. Thus, no evolution is possible on
how well a phenotype is adapted to the
environment. Only the probability of the
choice of each phenotype changes with the
mutations.

3. RESULTS

We simulate 1000 cells per generation. Cell
lifetime is 1000 seconds. Unless stated
otherwise, the rate constants (units in s-1) are:
init = 109, CWa = CWb = 0.01, flipab(1) = flipba(1)
= 0.01, flipab(2) = flipba(2) = 0, r = 1, p = 0.1. The
rate constant init is set to a large number for
technical reasons. Optimally, it would be
infinite so that the initialization of the state of
the environment would be instantaneous.

The values of the rates CWa and CWb
determine the frequency of switches between
environmental states from A to B, and B to A,
respectively. We set these rates so that this
frequency is of the same order of magnitude of
the frequency of phenotypic switching in the
cells where this is possible, determined by
flipab(1) and flipba(1). This has been found to
maximize the fitness under such conditions [1].
If one would, e.g., multiply these four rates
constants by the same amount, qualitatively
there would be no changes in comparison to the
results and conclusions presented here. The
value chosen (0.01) was set empirically, taking
in account the cell’s lifetime. On average, this
value allows 10 state transitions per cell
lifetime. This was found to be sufficient so that
most cells of the population would be subject to
at least one switching in the environment
during its lifetime (thus allowing comparison
between the fitness of the various cell models).

Finally, the rates r and p determine,
respectively, how fast a cell gains fitness when
in a phenotypic state adapted to the
environment, and how fast it loses fitness
otherwise, respectively. Again, multiplying
these two rates by a constant will not alter the
results qualitatively. However, as explained
below, the same is not true concerning the ratio
between these two variables.

We first compare the fitness of types 1 and
2, using model 1, where cells have no
information on the environment. Type 2 (fixed
phenotype) almost always wins. In biased
environments (e.g., 75% of the time as WA), it is
even more likely that type 2 wins. Thus, we
conclude that in this case, the ability to
stochastically change phenotype is not
advantageous without knowing the
environmental state as previously found in [6].
While both cell types have, on average, 50% of
its cells adapted to the environment state at any
time, any small disadvantage (such as due to
stochastic fluctuations of the phenotype in cell
type 1) is sufficient to unbalance the unstable
equilibrium, since one is simulating finite
populations for finite times. This result depends
on how fast a cell gains fitness when in the
“appropriate” state, and how fast it loses fitness
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otherwise. If these two processes are identical
in speed as in our model, random switching is
not advantageous (at the population level) since
during the time that the transitions need to be
completed once initiated there is no increase (or,
at best, slower increase) in fitness.

Fig. 1A shows a time series of model 2 in an
unbiased bistable environment. The stochastic
phenotypic transitions are advantageous since
they follow the environment switches.

We now analyze the dynamics in biased
environments. To model a biased environment
we set CWa and CWb to different values. The
ratio between them determines the expected
time in each state. Fig. 1B shows the outcomes
in various biased environments. Cell type 2
(fixed state) wins for highly biased
environments since in these the environment
is in one state most of the time, thus, the cells
that randomly picked the correct state at the
beginning have an advantageous over any cells
that have a non-null probability of switching
state at any moment.

The rate at which the environment state
changes also affects the outcome. We simulated
model 2, for varying values of CWa = CWb (Fig.
1C). The value of CWa above which cell type 1
wins is 0.001, i.e., on average the environment
only changes state once per cell lifetime. Below
this value, on average, a cell will face the same
environment during its entire lifetime, making
unnecessary for survival the ability to switch
phenotype. Therefore, a cell with fixed
phenotype, initially well adapted, will most
likely remain well adapted throughout its life.

Using model 3, where cells have mutations
that alter the values of the rate constants of the
reactions responsible for phenotypic state
transitions (12) and (13), we observe the
evolutionary pathway of cells of type 1 when
facing a biased environment. We compare two
cell populations (simulated separately). In one
there are mutations (adaptive), while in the
other there are not (non-adaptive). In cells of
G1, reactions (12) and (13) have the same
propensity.

We set CWb = 5 CWa so that, on average, the
environment is in state A 85% of the time.

Interestingly, in the population of cells able to
mutate, the variance of the fitness of the cells
decreases over time (Fig. 2A), while their mean
fitness increases as the propensity to go from
state Sb to Sa becomes, by selection, much higher
than the opposite, allowing the cells to remain
in Sa most of the time (Fig. 2B).

Fig. 2C shows the average fraction of time
the cells able and unable to mutate spent in
state Sa. Interestingly, in the cells able to
mutate, this quantity stabilizes at ~95%, while
the environment state is Wa only ~85% of the
time. The solution adopted by these cells was
to, in general, ignore the transient environment
changes. However, a small degree of
stochasticity in phenotypic determination is
maintained, rather than being completely
nullified.

4. CONCLUSIONS

We investigated selective advantages of
stochastic phenotypic determination in
fluctuating environments. While using a
simplistic model, where the genetic circuit
determining the phenotype is not explicitly
modeled, the results agree with experimental
observations. Namely, probabilistic phenotypic
determination provides selective advantages if
the transitions between the phenotypes is
biased by environmental conditions [6]. This is
the case in B. subtilis differentiation [15] (a
memoryless process), or lactose usage in E. coli
[14] (where transitions depend on previous
states).

In the absence of a sensing mechanism that
provides the cell information about the
environment state, we found the stochastic
selection of phenotype to be disadvantageous.
Moreover, when the environmental switching
rate is very slow or one of the states of the
environment is strongly preferred then the
stochastic switching of phenotypes is also
disadvantageous. Only for near-unbiased
environmental switches (highly unpredictable)
and provided a mechanism for sensing the
environment state was the stochastic switching
found to be a good strategy. Finally, we found
that, in highly biased worlds, the cells able to
switch phenotype and to mutate evolved
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towards becoming almost non-reactive to
transient environmental changes.

Finally, we note that the improvement of the
mean fitness of the cells due to selection is not
trivial in this model, in that the optimal rates
of phenotype switching of the cells do not equal
the switching rate of the environment, due to a
multitude of factors, including the speed at
which the signals cause the cells to change state.
Nevertheless, the results show that adaptation
is possible by mutation. Importantly, we verified
that stochasticity in the phenotype
determination provides robustness to
environmental changes in highly unpredictable
environments.
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