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ABSTRACT: Biologists have known that gene regulatory networks (GRNs) are robust against
mutations and the interactions between genes maybe the major mechanism that contributes to
compensating the phenotypic effects of mutations. However, biologists do not know how to measure
the robustness quantitatively. Therefore, it is needed to develop a quantitative robustness measure
for GRNs. In this study, the dynamics of a GRN is described by a set of nonlinear coupled differential
equations in power-law formalism. Based on this mathematical representation, a quantitative
robustness measure for GRNs is proposed. Using the proposed robustness measure, one can
quantitatively compute how the steady state of a GRN is affected by small changes of the interactions
between genes due to mutations or diseases. Moreover, the proposed robustness measure could be
used to quantitatively compare the robustness of different GRN topologies, which has very important
applications in studying the evolution of the robustness of GRNs. In addition, the proposed robustness
measure is useful for designing a robust GRN, which has very important applications in synthetic
biology.
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INTRODUCTION

Robustness is the invariance of phenotypes in
the face of perturbation [1, 2]. It is a ubiquitous
property of biological systems and has been
found to be present in living organisms at all
levels of organizational complexity ranging from
the signal molecular level such as RNA
secondary structure [3] and protein structure
[4] to the level of genome-scale networks such
as gene regulatory networks (GRNs) [5, 6, 7],
biochemical networks [8, 9] and metabolic
networks [10, 11]. To better understand
robustness is of paramount importance for
understanding organismal evolution [12, 13].

Several GRNs have been represented by
mathematical models and shown to be robust
to parameter variations by computer
simulations. von Dassow et al. [5] modeled the
Drosophila segment polarity network using
nonlinear differential equations and showed
that this network is resistant to variations in
the kinetic constants that govern its behavior.

Eldar et al. [6] modeled the Drosophila dorsal
patterning network using reaction-diffusion
equations and showed that the bone morphogenic
protein (BMP) activation gradient is robust to
changes in gene dosage. Li et al. [7] modeled the
yeast cell-cycle network using Boolean network
and showed that the cell-cycle network is
robustly designed to against small perturbations.

Although the above studies all successfully
demonstrated in computer simulations that the
specific GRN is robust to parameter variations,
these authors did not propose any quantitative
robustness measure for GRNs. Therefore, they
can not quantitatively measure how robust a
GRN is and can not quantitatively compare the
robustness of different GRN topologies. Having
a quantitative robustness measure for GRNs is
very important especially for the studying the
evolution the robustness [14, 15] and for
designing robust gene circuits in synthetic
biology [16, 17]. The aim of this study is to
propose a quantitative robustness measure for
GRNSs.
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In this paper, a GRN is represented as a
dynamical system. Its dynamics is described by
a set of nonlinear coupled differential equations
in power-law formalism [18]. This model is very
general and is capable of capturing virtually any
complicated phenomenon of a dynamical
system, including complex oscillations and even
chaos [18]. Moreover, the regular structure of
this model makes theoretically analyses of the
nonlinear dynamical system possible and
relatively simple [18]. For example, using this
model one can analytically compute the steady
state of a GRN, which is a formidable task when
using other kinds of mathematical models such
as Boolean networks [7], dynamic Bayesian
networks [19], neural networks [20] or other
general classes of nonlinear differential
equations like Michael-Menten kinetics [21] or
Hill functions [21]. In addition, using this model
all the regulatory interactions between genes
in the GRN can be explicitly represented by the
parameters ks, where k; denotes the
regulatory effect of gene product J on the
synthesis of gene product i, and the small
changes of the interactions between genes due
to mutations or diseases can be represented by
Ak,'s (see Methods for details).

Given this mathematical representation, the
robustness of the steady state of a GRN in
response to small changes of the interactions
between genes due to mutations or diseases can
be studied. In this paper, a quantitative
robustness measure R for GRNs is proposed.
Using the proposed robustness measure, one
can analytically compute how the steady state
of a GRN is affected by small changes of the
interactions between genes due to mutations or
diseases. Moreover, the robustness of different
GRNs can be quantitatively compared using the
proposed robustness measure. For example, the
first gene regulatory network (GRN1) is said to
be more robust against mutations or diseases
than the second gene regulatory network
(GRN2) if R ., > R .\, In addition, the
proposed robustness measure R is useful for
designing a robust GRN, which has very
important applications in synthetic biology [16,
17]. Given a desired robustness value R , if the
original GRN does not have an enough

b ’
robustness value, i.e. R, <R, some Akij s can

be introduced to change the regulatory
interactions between genes in the original GRN
so that the modified GRN has a robustness
value B, > R, A GRN of four genes will be
used as an example to demonstrate how the
robust GRN design procedure could be done.

METHODS

Mathematical Notations

For convenience, some mathematical notations
are given here. The length of a vector

Ez[bl,-..,bn]T is defined as HEHQ =\Jbl +-+0b]

The size of a matrix A is defined as

|A], = max 45| /]3]

1 It could be shown

|A], = maxo,(A), where o(A) is the i-th

singular value of matrix A [22].

A Dynamic System Model of GRNs

A GRN of n genes is represented by a dynamical
system, with state vector

Xt =(X,@®), -, X,®)" the
concentration of each gene product at time ¢.

containing

The dynamics of X(¢) is modelled by a set of

nonlinear coupled differential equations in
power-law formalism [18]

dX,t)/dt=o,[[ X/ () -BX,®)i=1,n (1)
j=1
where o, (or ) represents the rate constant of
the synthesis (or degradation) of gene product
i, k, represents the regulatory effect of gene
product j on the synthesis of gene product i. The
magnitude of k2, quantifies the regulatory
capability and the sign of % reflects the
regulatory mode. Gene product j is said to
stimulate (or inhibit) the synthesis of gene
product ¢ if £, > 0 (or k£; < 0) and have no
regulatory effect if 2, = 0. The biological
meaning of Eq. (1) is that the change in the
concentration of gene product i over time, i.e.
dX (t)/dt, results from the difference of its

= kij .
synthesis rate O%HX ;'@ and degradation
j=1
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rate B X (¢). The synthesis rate depends on
those gene products that have regulatory
effects (stimulation or inhibition) on
the synthesis of gene product i, and the
degradation rate is a first-order process that
only depends on the concentration of gene
product i itself.

The regulatory interactions within a GRN
can be represented by the following regulatory

kll k12 kln
K= k21 k22 k2n

matrix : R All the
knl kn2 knn

regulators of gene i can be known by looking at
the nonzero terms in the i-throw [k, 2, &, ]
of the regulatory matrix. All the target genes
that are regulated by gene product j can be
known by looking at the nonzero terms in the
J-th column [k, &, --- k ]" of the regulatory
matrix.

Steady State Analysis

One of the advantages of modelling GRNs
using differential equations in power-law
formulation compared to other mathematical
models (e.g. Boolean networks [7], dynamic
Bayesian networks [19], neural networks [20]
or other general classes of nonlinear
differential equations like Michael-Menten
kinetics [21] or Hill functions [21]) is that the
steady state analysis of GRNs can be
performed easily and analytically [18]. The

steady state X =(X,g, -, X,5)" of the GRN

can be computed by equalizing the
synthesis rate and the degradation rate in
Eq. (1). That is, by letting dX(¢) / dt = 0, we
have

O‘iHng =pXs i=1l-n (2)
j=1
Assume o, >0,B,>0, i=1,2,--,n. Thenby
taking the logarithm on both sides of Eq. (2) and
after some rearrangements, we get

n

(k; —1)In X, + z kyIn X =Inp, —Ina, i=1,-,n

J=Lj#

Denoting y; = In X;, b, =1In B, -In o, the
steady state X’S of the GRN satisfies the
following system of linear algebraic equations

(kn _1)y1 +RpYy + Ry Y, =0
kg y1 +(k22 _1)3’2 +o kY, =0y

: 3)
knlyl + kn2y2 +"'+(knn - 1)yn =b

n

Denoting
y b kn -1 k12 kln
g ! G- ! A k:m k22:—1 k?n
b . . e . 9
y" " knl kn2 o knn - ]‘

Eq. (3) becomes the following matrix
equation

Ay=b (4)

We call the matrix A the system matrix of
the GRN. The system matrix contains all the
information of k,'s (all the regulatory
relationships between genes in the GRN). If A
is invertible, then the steady state in the
logarithm domain can be solved uniquely as

5 = A7'b . Hence, the steady state of the GRN

can be computed uniquely as X = eXp(A_lg ) .

RESULTS

A Quantitative Robustness Measure for GRNs

Biologists have known that GRNs are robust
against mutations and the interactions between
genes maybe the major mechanism that
contributes to compensating the phenotypic
effects of mutations [23]. However, robustness
is only a qualitative concept for most biologists,
it is informative to have a quantitative
robustness measure for GRNs.

For a robust GRN, its steady state should
not have a dramatic change caused by small
perturbations of the regulatory interactions
between genes due to mutations or diseases [2].
Using the dynamic system model of GRNs, how
the steady state of a GRN is affected by small
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changes of the regulatory interactions between
genes can be quantitatively calculated. Assume
that the original GRN becomes the perturbed
GRN due to mutations or diseases and denote
the system matrix of the perturbed GRN as
A+AA and the steady state of the perturbed

GRN as y+Ay, then y+Ay satisfies the

following matrix equation which is similar to
Eq. (4)
(A+AA)(5+AY)=b (5)

where A y,b are defined in Eq. (4) and

Aky Ak, - Ak,
| Mo Ay, A,
Ak, Ak, - Ak,

denotes any possible perturbations of the
regulatory effects &, 's due to mutations or

diseases, and Ay denotes the difference between
the steady state y+ Ay of the perturbed GRN
and the steady state y of the original GRN.

A quantitative robustness measure R for a
GRN is proposed as a function of the system
matrix A of the GRN as follows:

S
], -[a™,

Then the following theorem can be proved.

1>

E 6)

Theorem 1

|41,
The relative change of the steady state " ”

of the GRN caused by the relative change of the
a4,

system matrix ||A|| of the GRN due to
2

mutations or diseases satisfies the following
inequality:

___UR
1-[a”aa],

[a4],
4],

451,
|51,

(7)

When HAflAAH , <1, this inequality becomes

s, /151, 1 ©
[aal,/lAl, — R
As seen in Eq. (8), the upper bound of the
|45, /1aA], 1
ratio ” y||2 " A||2 is —, which is the inverse

of the robustness measure for a GRN. That is,

7 represents the maximal possible relative

change of the steady state of a GRN caused by
the relative change of the system matrix of a
GRN. Therefore, the proposed robustness
measure R can be used to quantitatively
calculate the largest possible change of the
steady state of a GRN affected by small changes
of the regulatory effects &,'s due to mutations
or diseases. Moreover, the robustness of
different GRNs can be quantitatively compared
using the proposed robustness measure R. The
first GRN (GRN1) is said to be more robust
against mutations or diseases than the second
GRN (GRN2) if R, > R ,,,. In addition, the
proposed robustness measure R is useful for
designing a robust GRN, which has very
important applications in synthetic biology.
Given a desired robustness value R, if the
original GRN does not have an enough
robustness value,ie. R, <R, thensome Akij's
can be introduced to change the regulatory
interactions between genes in the original GRN
so that the modified GRN has a robustness

valueR ., >R,

Design Examples

Fig. 1a shows a GRN of four genes, where gene
product 1 activates gene 3, gene product 2
activates gene 3 and gene 4, gene product 3
activates gene 2 and gene product 4 activates
gene 1 and gene 4 but represses gene 3. Assume
the dynamics of this GRN can be written as
follows

dX,(t)/dt =5X]%(t)-10X,(¢)

dX,(t)/dt =10X7%(¢) - 5X,(¢)

dX,@)/dt =1.25X"' X)) X" (1) - 2X,(@)
dX,@)/dt =5X"* )X, (t)-8X,(t)
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then its system matrix equals to
-1 0 0 0.98

|0 -1 0.38 0
0.51 0.72 -1 -0.49| and robustness

0 124 O 0

value equals to 0.0011 calculated by Eq. (6).
Since the robustness value of this GRN is very
small, it may not meet the desired robustness
value, say 0.09. Therefore, some Ak_'s should be
introduced to change the system matrix of this
GRN so that the modified GRN has a robustness
value > 0.09. Three possible modifications of the
system matrix are shown as follows. If we

(i) change the value of £, from 0.98 to -1.1
(see Fig. 1b), the robustness value
increases to 0.0924;

(ii) change the value ofk,, from -0.49 to 1.25

(see Fig. 1c), the robustness value
increases to 0.1112;

(iii) introduce a new interaction k,, = —1.49
so that gene product 4 can repress gene
2 (see Fig. 1d), the robustness value
increases to 0.2838.

In order to prove the effectiveness of the
proposed robustness measure, it is needed to
show that the larger the robustness value of a
GRN, the smaller the relative change of its
steady state in response to the change of its
system matrix A caused by small perturbations
of the regulatory interactions between genes
due to mutations or diseases. Fig. 1a to 1d can
be regarded as four different GRNs with
robustness value equals to 0.0011, 0.0924,
0.1112, and 0.2838, respectively. The goal is to
show that the GRN with a larger robustness

Ay
value has a smaller "" ””2 value. That is, GRN

Ay,
in Fig. 1d should have the smallest 7= " ” among

these four GRNs since its robustness value is
the largest among these four GRNs. In order to
test this hypothesis, the following computer
simulation was conducted. The perturbations

Ak, AR, Ak,
AA — A]?QI A}t,‘22 Ak2n )
: : : were introduced

into the above four GRNs, where Ak;'s are

Gaussian random noises with p1 = 0, o = 0.01.
Then the relative changes of the steady states

IIA;v||2

same procedure was done for 1000 times. As
shown in Table 1, the GRN with a larger

(a3,
robustness value does have a smaller " ”

of these four GRNs were calculated. The

value, which demonstrates the usefulness of the
proposed robustness measure to calculate the
robustness of a GRN.

Compare with other Existing Robustness
Measures

Two robustness measures are widely used. The
simplest one is to do computer simulations for

large numbers of different Ak;'s , observing the

effects of the steady state changes. By doing a
lot of computer simulations, biologists can get
a rough idea of how robust a GRN is. However,
this is not an anlytical solution and as the

number of Ak;'s increases, a brute force sweep

through the parameter space becomes
impossible. The second robustness measure is
derived from the local sensitivity analysis [18].
Local means that only one %, is allowed to have
a small perturbation while the other £ 's must
remain fixed. This has limited relevance in the
typical situation where many % ;'s could be
perturbed at the same time. Moreover, since this
kind of local sensitivity analysis takes no
account of interactions between Akij's, it may
give a misleading result. For example, if a small
perturbation in % has no visible effect on the
steady state of a éRN but it makes the steady
state much more sensitive to a small
perturbation in k_,, local sensitivity analysis
will incorrectly say that the GRN is robust to
Ak [24].
i
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Figure 1: Four different GRNs of four genes. (a) The original GRN. (b) A GRN modified from the original GRN by
changing the value of &, from 0.98 to -1.1. (c) A GRN modified from the original GRN by changing the
value of &,, from -0.49 to 1.25. (d) A GRN modified from the original GRN by adding a new interaction &,
with the value -1.49

Table 1
The Mean and Standard Error of the Relative

The quantitative robustness measure
proposed in this study could remedy the
weakness of the above two widely used
robustness measure. The proposed robustness
measure directly considers the effect

Change of the Steady State in Response to

AA (in 1000 Simulations) for four Different
GRNs in Fig. 1a to Fig. 1d

Ak, Ak, Ak,
Robustness value Mean+S.E. Ak, Aky, Ak,,
GRN in Fig. 1a 0.0011 2.9263 + 0.9458 of AA = : : : , the
GRN in Fig. 1b 0.0924 0.0477+0.011 Ak, Ak, - Ak
GRN in Fig. 1¢ 0.1112 0.0362+0.008

perturbation of the system matrix A. That is,
the interactions between all combinations of
Ak /s could be analyzed. Moreover, the proposed
robustness measure, which is defined as

0.0205+0.003
(the smallest
among the four
GRNs)

GRN in Fig. 1d 0.2838 (the
largest among
the four GRNs)
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1
||A||2 .”A-lu , is an analytical formula.
2

1>

R

Therefore, the robustness of different GRNs
could be compared without performing any
computer simulation. In addition, one can still
compute the robustness value of a GRN even
when the number of Ak 's is too large to do
computer simulations.

CONCLUSIONS

In this paper, a GRN is represented as a
dynamical system. Its dynamics is described by
a set of nonlinear coupled differential equations
in power-law formalism. The regular structure
of this model makes theoretically analyses of
the steady state of a GRN relative simple, which
is a formidable task when using other kinds of
mathematical models. Moreover, all the
regulatory interactions between genes in the
GRN can be explicitly represented by the system
matrix A and the small changes of the
interactions between genes due to mutations or
diseases can be represented by AA. Based on
the system matrix, a quantitative robustness

A 1
measure Al -Ja] is proposed. Using
|4, -[a™],

computer simulations, the effectiveness of the
proposed robustness measure was validated by
showing that the larger the robustness value of
a GRN, the smaller the relative change of its
steady state in response to AA caused by small
perturbations of the regulatory interactions
between genes due to mutations or diseases. The
proposed robustness measure is an analytical
formula and can be computed without
performing any computer simulation. Most
importantly, the proposed robustness measure
has two important applications. First, it could
be used to quantitatively compare the
robustness of different GRN topologies, which
has very important applications in studying
the evolution of the robustness of GRNs.
Second, the proposed robustness measure is
useful for designing a robust GRN, which has
very important applications in synthetic
biology.

APPENDIX
Proof of Theorem 1
After some reorganization, Eq. (5) can be rewritten as
follows
ANy = -AA(§ + A) 9

Assume that A is invertible, Eq. (9) can be written as

Ay =—-ATAA (5 + A) (10)

Compute the 2-norm of the both sides of Eq. (10), we
have

a3, = |AAA (5 + A5)) (11)

Using the property that
||A’1AA(5/ + A5/)||2 < ||A’1AA||2 |3+ Aj})"z , we have

8, <A 24], (5 + A7), (12)

Using the property that |(¥+4y)[, <[], +[47], , we

have

g, <A aA], - (I3, +151,) (13)
After some reorganization, Eq. (13) can be rewritten
as follows
Il .44,
bl *(-Jamaal))

(14)

Using the property that ||A’1AA||2 < ||A’1||2 -|AA],, we

have

||A5’"2 < "Ail"z "AAHZ
Bl. “{1-ja a4l =
Using the definition that %i’ = 4], - "A*l"2 in Eq. (15),
we have

|9, . 1/rR [a4],
191, ~ (1-Aaa],) lAl

Remark: It is shown by Chen et al. [25] that when

||A’1AA||2 >1, the steady state of the perturbed GRN

may cease to exist. That is, the perturbed GRN may
undergo a dramatic change and is qualitatively
different from the original GRN. Such changes in
qualitative properties of a GRN are called bifurcations
(a term used in nonlinear system analysis [26]). In this
situation, the biological function of the original GRN
will not be maintained in the perturbed GRN. The
perturbed GRN is therefore regarded as a lethal
mutant. For this reason, the robustness analysis of a

(16)
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GRN in this study only focuses on the perturbations
AA (due to mutations or diseases) that satisfy the

criterion ||A’1AA||2 <1.
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