
International Journal of Computational Intelligence in Control, 1(1), 2009, pp. 57-69

Graph-based Selection of Orchestrator Paths in
Manufacturing Lines

Corina Popescu and Jose L. Martinez Lastra
Tampere University of Technology, Korkeakoulunkatu 6, Tampere 33101

Abstract: Service encapsulation of processes in manufacturing should facilitate a natural and rapid response to machine
failure or replacement and to changes in required product types and quantities. Such situations are traditionally addressed
by offline modifications in the schedule of the entire line; the search space of the optimal solution varies with each change.
Alternative answers are needed for the cases characterized by unknown input job mix and online equipment changes. This
paper proposes that the device selection be based on a search in the model of the physical system. Transportation services
can be selected based on a search in the state space of the physical system. This way the search space remains independent
from the process needs of the pallets entering the line. Information about the cycles of the physical layout graph and their
average cycle time, together with real time data of the line will assist the decision taking process. A method to compute the
node sequences of the cycles in a graph is presented to serve as a tool for quantification of possible pallet routes in the line.

Keywords: Service oriented architecture, Factory automation, Scheduling, Cycles in a graph, Petri Nets

1. INTRODUCTION

The bridging of the Service Oriented Architecture (SOA)
paradigm and the factory automation world is envisioned to
address frequent changing market demands and time to
market pressure [3]. The loose coupling provided by services
ensures changes in one part of the system do not affect other
parts of the system. Dynamic discovery of new services not
known beforehand is attainable with SOA. Moreover,
ontologies provide computer interpretable descriptions of
services that make it possible to achieve automatic
composition.

From a SOA perspective, a manufacturing line is seen
as a set of service encapsulations of provided and requested
processes. The provided processes are the equipment skills.
The requested processes are the product needs. Each product
can be described in terms of its orchestrator. The orchestrator
specifies the order of execution (the flow) of its needs – the
services that should operate upon the raw product to get it
to a finished status. When entering the line, a pallet discovers
the devices that offer the services requested by its
orchestrator. Selections of each device to execute upon it
are made gradually, as the orchestrator executes. Each time
a device is selected for execution, the transportation services
needed to carry the pallet to its chosen destination are
subjected to discovery and selection as well.

The production process in a line should be highly
adaptable to changes. Machine failures or replacements and
changes in lot sizes should be recognized and responded to
naturally. These goals can be reached if factory automation
is seen from a SOA perspective. However, the loose coupling
provided by services will not fully support fast reconfigur

ability and adaptability unless satellite issues such as
scheduling and planning are re-considered from this
viewpoint.

Traditionally, the scheduling problem is formulated as
the finding of an optimal input sequence of jobs and resource
usage for a given job mix [1] [2]. To schedule a system it is
absolutely necessary to have beforehand knowledge of all
due product types and device capabilities. Each time a
change occurs, a new schedule has to be derived offline. A
wide variety of methods can be used for this purpose [1].
Among other methods, Petri Net (PN) based scheduling has
been successfully used for manufacturing systems, because
the formalism can finely describe shared resources,
synchronization and lot sizes. A PN based schedule is
heuristically searched in the state space of the complete
model of the system. This type of scheduling is deadlock
free and event driven. However, with this approach it can
happen that the search space becomes too large for complex
systems. The scheduling speed strongly depends on the
selected heuristic search function. The optimality of the
obtained schedules is also influenced by this choice, and
cannot be always guaranteed.

Traditional scheduling approaches rely on the
assumption of offline equipment changes and known input
job mix. The limitations of the traditional vision are clear:
First, it is not possible to build a new schedule, on-the-fly,
in case of machine breakdown. The same applies in case a
machine is reconfigured to provide an enriched or slightly
different set of operations, or when the line is added
equipment. Second, variations in the input job sequence are
unavoidable, mainly due to human error. The implemented

International Journal of Computational Intelligence in Control, 9(1), 2017

58 International Journal of Computational Intelligence in Control

schedule cannot deal with this type of situations. The input
sequence of the jobs must be the assumed input sequence
when initially building the schedule. Indirectly, this limitation
is related to sizable multiple lot size scheduling problems,
which are especially difficult to solve optimally in a
reasonable amount of time and space.

The encapsulation of processes within services achieves
the objective of having a running production line with online
device modifications and unknown sequencing of requested
product types. This evolution from a traditional system is
desirable, yet it imposes significant constraints on the
assumptions that scheduling techniques rely on. To meet
these constraints, new methods for finding optimal routes
for each pallet entering the system must be evaluated.

PN scheduling techniques work on the state space of
the entire system. The system is modelled by merging the
PN sub-models of each (possibly) requested job (sequence
of operations). All possible allocations of resources for each
operation of a job and for material handling have to be
incorporated in its model. Multiple lot sizes are represented
by the amount of tokens held within the start places of each
sub-model. Flexible routes can be conveniently expressed
through choice structures, at the expense of an increased
search space. This approach imposes (possibly large)
modifications in the search space each time any type of
change occurs.

The notion of ‘job’ differs from the earlier defined
concept of ‘orchestrator’. A job is assigned all possible
devices that may perform its composing operations before
being input to the line. An orchestrator discovers eligible
devices while it executes. An orchestrator does not impose
temporal constraints on the activities within a line, and can
re-adjust in case of machine failure or online replacement.
If one machine is no longer able to offer a certain service,
an orchestrator will search and discover other devices
compatible with its needs. Unless this type of situation is
explicitly incorporated in the initial schedule, a job will not
adapt to such a situation.

In the new, service oriented context, resource allocation
(device selection) is a problem of finding the best of all
possible paths within the model of the physical layout of the
system, for each orchestrator. The search for transportation
devices should be performed on the state space of the
physical system. This way the search space remains the same
no matter what are the orchestrators within the line, unless
additions to the line occur. The search should take into
consideration existing possibilities for the other orchestrators
in the line, in addition to the makespan of each pallet.

This paper analyzes the mind shift required to work with
service encapsulations of manufacturing processes. The
usage of formal representations of each orchestrator and the
physical layout of the system to optimally allocate resources
and select transportation devices is investigated.

The paper is structured as follows: Section 2 describes
the modelling assumptions of this discussion and the used

formalism. Section 3 highlights the relations between the
state space of each orchestrator and the physical layout of
the system. Section 4 explores possible solutions to the
problem of finding the best routes of each orchestrator in
the line - a new algorithm to compute the cycles in a graph
is defined in its general form. Section 5 addresses related
work, and Section 6 presents the conclusions.

2. MODELING ASSUMPTIONS

This work uses for modelling a Petri Net (PN) [4] derived
formalism called Timed Net Condition Event Systems
(TNCES) [5][6]. TNCES enhances the expression
capabilities of PNs with typed modularity, and adds to the
originally defined elements of a PN the notions of event arcs
and condition arcs. Event arcs report changes in the state of
the system, while condition arcs carry state information.
TNCES can model simultaneous start, has a clear notion of
interfaces and a modular hierarchy. An example of a simple
TNCES module is depicted in Figure 1.

TNCES may be defined by the following tuple:

0TNCES = {name, type, , , , , , , , }�P T F m CN EN DC (1)

where:
• name—a unique str ing id of a module used to

differentiate the modules at the same hierarchical level
of the composite TNCES module.

• type—a unique string id of a module to allow reusing
the module in hierarchical models.

• P = {p
1
, p

2
, …, p

n
} is a finite set of places;

• T = {t
1
, t

2
,…, t

m
} is a set of transitions disjoint with P;

• F � (P × T) � (T × P) is a finite set of flow arcs between
places and transitions;

• m
0
 is an initial marking;

• � is input/output structure of TNCES module;

• CN � (P × T) is a finite set of condition arcs;

• EN � (T × T) is a finite set of event arc.

The input/output structure of TNCES module is
represented by the following tuple [6]:

Figure 1: TNCES Module example

Graph-based Selection of Orchestrator Paths in Manufacturing Lines 59

� = {Cin, Ein, Cout, Eout, Bc, Be, Cs, Dt} (2)

where:
• Cin is a finite set of TNCES module condition input

signals;

• Ein is a finite set of TCNES module event input signals;

• Cout is a finite set of TNCES module condition output
signals;

• Eout is a finite set of TCNES module event output
signals;

• Bc � Cin × T is a set of TNCES module input condition
arcs;

• Be � Ein × T is a set of TNCES module input event
arcs;

• Cs � P × Cout is TNCES module output condition arcs;

• Dt � T × Eout is a set of TNCES module output event
arcs.

Time intervals may be assigned to the pre-transition flow
arcs (F – � P × T), which imposes time constrains to the
firing of the transition [6]:

DC = {DR, DL, D
0
} (3)

defines a set of delay times:

• DR representing the minimum times that the token
should spent at particular place before the transition can
fire;

• DL is the set of limitation time that defines the maximum
time that the place may hold a token (if all the other
conditions for transition firing are met);

• D
0
 is the initial set of the clocks associated with the

places.

The main elements of the tuple of the module in Figure
1 are: name = type = “A Module”; P = {p1, p2}, p3}; T =
{t1, t2, t3}; F = {(p1, t2), (t2, p2), (p2, t1), (t1, p1), (p2, t3),
(t3, p3)}; C in = {ci1}; E in = {ei1}; C out = {co1, co2}; E out =
{eo1}; Bc = {(ci1, t1)}; Be = {(ei1, t3)}; Cs = {(p1, co1),
(p3, co2)}; Dt = {(t1, eo1)}; D

0
(P) = {0, 0, 0}; DR(P) = {0,

2, –}; DL(P) = {�, 10, –}. The formalism is hierarchical,
modular and composable. Its typed nature facilitates the
tracking of the blocks associated with each module in the
markings of the state space. Condition and event arcs enrich
Petri Nets with possibilities to carry information about states
and changes of states. These extensions can be fully
expressed mathematically, so verification techniques are not
traded for higher modelling power.

The physical layout of the system is modelled following
the general guidelines for modelling flexible manufacturing
systems [1][2]. The modelling of service orchestration is

Figure 2: Fragment of the Petri Net model (bottom-left) of the Physical layout of a Line (Top-right)

60 International Journal of Computational Intelligence in Control

approached in a modular manner: a set of TNCES models
has been defined to cover eight flow descriptors capable of
expressing multithreading, synchronization, looping and
sequencing. Separate modules to address the formal models
of the Boolean conditions that come in conjunction with
looping constructs have been created as a satellite set [13].
The set of basic flow descriptors was taken from the list of
control constructs specified by the OWL-S W3C Note [7].
The end atomic services are treated as black boxes
characterized by a time interval, to specify the upper and
lower boundaries of the admissible execution of the process.
The formal model of each orchestrator can be expressed as
interconnected TNCES modules.

Figure 2 illustrates a fragment of the PN model of the
physical layout of a system consisting of five robotic cells
and a conveyor system. Pallets can either occupy a
workstation of a cell or bypass it through an auxiliary
conveyor. If the workstation is occupied, lifters situated
beneath its main conveyor assist the robot in reaching the
pallet. The shown fragment is the formal representation of

the layout of two of the cells within the line. The right-
most cell can be input pallets by the adjacent cells or
through an extra conveyor. Examples of possible
orchestrators that are input to this line are shown in
Figs. 3 & 7.

The models of the orchestrators and the equipment offer
an explicit state view of the services to be requested/to finish
in future. The markings of each orchestrator map to
corresponding groups of state possibilities in the reachability
graph of the equipment model. An update of all markings as
the pallets go through the line should make inferences on
potential evolutions of line activity possible. These
inferences are valuable because the actual mapping to the
physical devices is done gradually, as each orchestrator
executes. Decisions have to be taken in case several
orchestrators compete for the same device, or whenever the
same service is offered by two different devices. Knowledge
of the set of path possibilities within the state space of the
equipment, for all orchestrators, can assist the optimal
selection of devices.

Figure 3: TNCES Orchestrator Model: Sequence of Two Atomic Services

Graph-based Selection of Orchestrator Paths in Manufacturing Lines 61

3. RELATIONS BETWEEN THE STATE SPACES OF
ORCHESTRATOR MODELS AND THE PATHS OF
THE PHYSICAL SYSTEM

Based on the nature of the basic flow representations used
at modelling stage, it is possible to identify relations between
pairs of states in the resulting state space of each orchestrator.
A group of such relations for one orchestrator is denoted
here by the term ‘stamp’. Timing can be associated with each
stamp if the knowledge about the equipment capable to
provide the needed services is taken into consideration. Each
path/cycle in the reachability graph (RG) of an orchestrator
corresponds to several path/cycle possibilities in the model
of the physical layout of the system, depending on the related
number of possible device-process mappings. A stamp can
assist in detecting the changing, over time, of the degree of
desirability of each ongoing path. Thus it can support
decision making about the evolution of the system.

This section analyzes, first, the stamps of TNCES
models of three basic flow descriptors. Further on, a system
resulting from interconnecting elements of the basic set is
analyzed to generalize the initial statements.

3.1. State Spaces of Basic Modules

An example of a Sequence TNCES module engaging two
participant services A and B is illustrated in Figure 3.
Transition t

1
 of the Sequence module is enabled and may

fire only upon receiving the event startSeq. There are two
atomic services A and B, whose internal functionality is not
included in the model. The only information concerning the
atomic services that is available to the other TNCES modules
is related to their busy/idle status and possibly their time
intervals. The TNCES representation of the Sequence
specifies the entire orchestration of this simple system.

Figure 4 depicts the reachability graph of the model
shown in Figure 3. Rows numbered 1 to 6 host the marking
vectors corresponding to each state of the logical RG. The
row labeled ‘P.nr.’ keeps a record of the flat numbers of the
places within the overall model. There are 12 places in the
flat model. The first 6 belong to the Sequence TNCES
module. Places 7 and 8 (respectively 9 and 10) correspond
to the functionality within the atomic TNCES representation
of service A (respectively B). Finally, places 11-12 are part
of an ‘init’ TNCES module that is part of the overall model
but is not shown as it is technically irrelevant for the present
discussion (its purpose is to ensure the start of the execution
of the Sequence module when building the reachability

graph). The first element of the marking vector is the first
element of the Sequence block: a token in p

1
 corresponds

to the initiation of activity in the Sequence module. The
sixth element of the Sequence block corresponds to the last
place of the Sequence module, so m(p

6
) = 1 marks the end

of activity within the module. The relation imposed by the
Sequence on the state space of the final orchestrator is 1�6.
Time is imposed on this relation by the equipment capable
to provide services A and B. If there is more than one piece
of equipment capable to provide the same service, the
annotation with time may be governed by the slowest device.

An optimal scenario from the viewpoint of the
orchestrator is a situation in which the pallet does not wait
for a long time to have the devices operate on it. This
corresponds to a full execution of the Sequence in the
amount of time that is necessary for all needed services to
complete, in case the slowest eligible device is chosen in
each case. This corresponds, in the above described situation
(the reasoning is similar if a number of participants that is
greater than 2 is considered), to the temporal distance
between state 6 and state 1

T
SEQ

 � [6l – 1h; 6h – 1l] (2)

where l and h denote the lower and respectively higher time
instants at which the corresponding state may be reached in
an optimal situation from the orchestrator’s perspective.
Once state 1 is visited, 6l – 1h; (6h – 1l) is the lower
(respectively higher) boundary of the needed optimal time
range for the orchestrator to reach state 6.

Transportation services depend on the position of the
pallet in the physical system and of the chosen device-process
mappings, and are not considered in this reasoning.
Temporally, the Sequence typed module is equivalent to the
AnyOrder typed module. Consequently, this analysis can
be extended to AnyOrder similarly.

The detailed RG of a model of an orchestrator involving
a Split + Join construct in conjunction with two participating
atomic services A and C is depicted in Figure 5. The first
five places correspond to the block describing the activity
in the Split + Join module. An example of a Split + Join
model with two participants can be seen in Figure 7, as part
of a more complex model. The beginning of the activity in
this module is marked by the presence of tokens in places p

2

and p
3
 (state 2). Termination of activity in the module is

announced by the presence of tokens in p
4
 and p

5
.The relation

Figure 4: RG of the Model of Figure 3
Figure 5: RG of a TNCES Orchestrator Model: SJ of Two Atomic

Services A and C

62 International Journal of Computational Intelligence in Control

imposed by the Split + Join on the state space of the
final orchestrator is 2�5. Time is imposed on this relation
by the equipment capable to provide services A and C in the
line.

Based on knowledge about the equipment, a temporal
distance may be defined quantitatively between states
5 and 2:

T
SJ

 � [5l – 2h; 5h – 2l] (4)

where l and h have the same meanings as above.
Figure 6 illustrates the RG of a model of an orchestrator

involving a Choice between two participating atomic
services A and B. Places 7 to 10 in each marking vector
correspond to the activity of the Choice module in the overall
system model. The relation imposed by Choice on the state
space of the orchestrator is 7�8. The temporal distance
between states 2 and 1 (in this order on the time line) is
given by:

T
CH

 � [1l – 2h; 1h – 2l] (5)

Quantitatively this distance is given as:

[min(T
min

(A), T
min

(B)), max(T
max

(A), T
max

(B))] (6)

Each of the constructs occupies a clearly delimited
segment of the marking vector. For instance, the activity of
the Split + Join module (Figure 5) is specified by the first 5
places of the vector. The activity of the Choice module
(Figure 6) is described by the last 4 places in the vector.
The identification of the places that mark start and end of
activity in each of the typed TNCES module within the basis
can be performed automatically. This is achievable if the
(flat) numbers of the places are known. For instance, each
Sequence of N services used in the overall model of the
system requires 2N + 2 elements in its corresponding block
in the vector of markings. The first element in the block is
the start of that particular Sequence. Element 2N + 2 in the
block corresponds to the end of the activity of the module.
For each Split + Join of N services, a block of 1 + 2N
elements is necessary in the marking vector. In this case,
tokens in elements 2 to N + 1 of the block mark the start of
activity of the construct. The end of the Split + Join activity
is identified by presence of tokens in elements N + 2 to 2N
+ 1 of the block. This result is obtained in case the numbering
is performed first for the places s_ j_ start, and then for the
places s_ j_ end. This reasoning can be easily extended to
all TNCES models within the basis.

The stamp of an orchestrator may be defined by
inspecting the typed blocks of its marking vectors that
correspond to the basic modules forming it.

3.2. State Spaces of Orchestrator Models Obtained as
Interconnections of Basic Modules

Consider a production system involving three atomic services
A, B and C, which are to be completed in order to obtain a
final product (Figure 7). The order in which the three tasks
must take place involves first initiation of both tasks A and
B. After task A is completed task C must be initiated. The
final product is obtained when both B and C are finished.

Figure 8 illustrates the logical flow between the
markings of the reachability graph and the detailed marking
vectors describing each state within the RG. Places 1 to 5
define the segment in the marking vector that characterizes
the activity within the Split + Join construct. To infer the
states that should be in a temporal relation in the optimal
case, the Split + Join block should be analyzed to define
the groups of states (the regions) characterizing the start and
end of activity within the block. A possible initiation of
activity is thus indicated in five separate cases (region RSJ

1
,

corresponding to states 2, 3, 5, 7 and 9). Only one state
(region RSJ

2
, i.e. state 13) is a possible termination of activity

within the construct. The relation imposed by Split + Join
on the state space of the orchestrator is RSJ

1
�RSJ

2
. In an

optimal scenario, the temporal distance between the two
found regions is a function of the temporal constraints
associated with all possible physical participants to the flow
module.

T
SJ

 � [RSJ
2

l – RSJ
1

h; RSJ
2

h – RSJ
1

l] (7)

This relation may be refined to finer levels if each region
is investigated separately to look for its possible source/ sink
states. In this case, the source state of the region concerned
with the start of activity - RSJ

1
- is state 2. RSJ

2
does not need to

be refined to its sink state as it contains only one state. The
relation imposed by Split + Join on the state space of the
orchestrator becomes 13�2, and its temporal distance:

T
SJ

 � [13l – 2h; 13h – 2l] (8)

The logical regions marking the start and end of the
activity in the Sequence module are R

1

SEQ = {1, 11, 13} and
R

2

SEQ = {9, 12}. The temporal distance between the regions
is defined similarly:

T
SEQ

 � [R
2

SEQ l – R
1

SEQh; R
2

SEQh – R
1

SEQl] (9)

and may be further refined to states 11 (the source state of
R

1

SEQ) and 12 (the sink state of R
2

SEQ). The relation becomes:

T
SEQ

 � [12l – 11h; 12h – 11l] (10)

The temporal relations defined in Eq. 8 (between states
2 and 13) and Eq.10 (between states 11 and 12) are inferred
through inspecting the basic modules used to build the final
model of the orchestrator. The temporal stamp associated
with the model of Figure 7 is represented by the group of
relations 12�11 and 13�2.

Figure 6: RG of a TNCES Orchestrator Model: Choice of Two
Services A and B

Graph-based Selection of Orchestrator Paths in Manufacturing Lines 63

Once an orchestrator is introduced in the system it
should work towards achieving/minimizing its temporal
stamp. Increases of the inferred temporal distances are either
correlated with a malfunction of one of the atomic services,
or with the waiting for one of the services to become
available for execution. The first case is not of concern here,
as it is assumed that all atomic services incorporate an inner
fault handling mechanism, characterized by time boundaries
as well. The second case is analogous to the situation in
which a controlled value remains within control limits, but

the overall process is out of control: each atomic process is
executing correctly once started, and yet the overall
orchestrator does not follow its optimal temporal constraints
accurately.

The stamp of each orchestrator may be reflected
temporally once or several times in the state space of the
physical layout of the system.

This depends on the amount of devices that are capable
to provide the needed services. The inferred temporal
relations can be used together with real time observations
of the running system to detect the situations in which the
system loops in a state cycle whose degree of desirability is
decreasing with time.

A trivial example to illustrate this point is the situation
of Figure 7: a certain temporal distance characterizes the
orchestrator state cycles containing states 2 and 13 (and
respectively 12 and 11). This temporal distance is dictated
by the equipment that is able to perform the services
requested by the orchestrator. The cycles in question can be
mapped to cycle possibilities in the state space of the physical
layout. This evaluation can be performed for each
orchestrator, and intersections between the possible groups

Figure 7: TNCES Orchestrator Model: Interconnections of Split + Join and Sequence Constructs

Figure 8: Markings for the Model of Figure 7

64 International Journal of Computational Intelligence in Control

of paths inferred. Future evolutions of the physical layout
can be thus evaluated to select the routes that are most likely
to satisfy the optimal time needs of each orchestrator. In this
way situations that are found to be potentially critical in the
future can be resolved at an early stage.

4. QUANTIFICATION OF POSSIBLE ORCHESTRATOR
PATHS—AN APPROACH TO COMPUTE THE
CYCLES OF A GRAPH

The main steps of the proposed algorithm are depicted in
Figure 9. The graph is first subjected to structural reduction.
The reduced graph serves as an input to an encoder who
performs a search on the graph and outputs a vector encoding
an entire set of cycles. Second, the coded vector is input to
a decoder. The output of the decoder consists of an array of
vector representations of both complete and partially covered
(incomplete) cycles. The complete cycles are retained,
whereas each partially covered cycle will be input once more
to the encoder for further processing. The procedure ends
when there are no more incomplete cycles to be processed.
Details on each of the steps described above are given below.

4.1. Structural Reduction of the Reachability Graph

To illustrate the structural reduction procedure, a small
example of an RG containing 7 states (Figure 10a) shall be
considered. The graph is reduced to so-called ‘crosspoints’
(i.e. states with more than one outgoing state) and the
corresponding transitions.The results of cycle computation
would not be affected by this type of reduction. Figure 10
illustrates on the right side the reduced graph. A record of
all sequences of states emerging from one crosspoint and
ending in another is kept.

For instance, crosspoint number 2 in Figure 10b should
keep a record of the sequence {2, 5, 2}, although node 5 is
removed in the reduced graph. The cycles for node 5 may
be easily computed based on the cycles obtained for the start
crosspoint (crosspoint 2) of the sequence. In order to retrieve
the actual cycle {2, 5, 2} from the crosspoint cycles,

trimming may be performed for the first and last branches
in the cycle. The state space may be safely reduced this way.

Further cleanup is performed in two steps, in order to
eliminate all crosspoints that are sure to result in a deadlock.
First, the crosspoints with no incoming crosspoints are
eliminated (as they are sure to be part of no cycle). The
crosspoints found to have all incoming crosspoints among
the ones already eliminated are removed from the reduced
graph as well, iteratively. Second, the reduced graph is
checked with respect to the sets of outgoing crosspoints of
each crosspoint. Once a set is found to be fully included in
the set of previously eliminated crosspoints, the owner of
the set is removed as well from the state space. This cleanup
is performed for all remaining crosspoints iteratively each
time eliminations are detected to have occurred, until no such
detections are signaled. The graph is thus reduced to the set
of crosspoints prone to be a part of one or more cycles.

4.2. Encoding Algorithm

In order to find all cycles starting and ending in a particular
crosspoint, a Depth First Search is performed. Each element
in the coded vector keeps a record of two data structures:
the number of successors and the incomplete cycles. The
number of successors of an element denotes the number of
outgoing crosspoints of the element that appear further in
the coded vector. An incomplete cycle is a search direction
that was stopped for reasons related to the consistency of
the coded vector, but needs further investigation.

The general steps of the encoding algorithm are shown
in Table 1. The needed data structures are outlined below:
• a vector codedVector that stores the elements output

by the encoding procedure. Each element in the coded
vector is represented by:

• an integer codedElementNo: the number of the
corresponding crosspoint in the reduced reachability
graph.

• an integer noSuccessors: the number of outgoing
crosspoints of the crosspoint with the number
codedElementNo, that are stored further in the
codedVector.

• a Boolean variable final: to mark the noSuccessors as
non-modifiable in the futureFigure 9: Computation of Cycles in a Graph. General Approach

Figure 10: (a) Initial Graph (Example); (b) The Corresponding
Structurally Reduced Graph

Graph-based Selection of Orchestrator Paths in Manufacturing Lines 65

Besides the codedVecor some auxiliary data structures
are used:
• a list incompleteCycles containing integers that store

the search directions that are yet to be explored.
• a set tempFinal of the elements in the coded vector

with the number of successors set to final.

• a set temp of all elements within the coded vector that
do not have the number of successors set to final yet.

• a structure representation reducedRG of a reduced
reachability graph.

• an integer sourceNo: the number of the first element in
the coded vector, for which the cycle computations are
to be performed.

• a list outgoingCrosspoints: the outgoing crosspoints
of the crosspoint with the number equal to
codedElementNo.
The small example of Figure 10 shall be used henceforth

to illustrate the steps of the encoding procedure. Table 2
shows the sets of outgoing crosspoints for each of the 5
crosspoints of the reduced graph of Figure 10b. The steps
of the encoding algorithm applied to searching all cycles
emerging and ending in crosspoint number 2 are outlined
below. Table 3 shows the encoded vector output after the
algorithm is applied once.

Depth First Search is started on crosspoint 2.
The crosspoint is found to have 4 outgoing crosspoints:

{3, 6, 2, 7}. The first outgoing state number (3) is added to
the coded vector, and its children are searched further.

Crosspoint 3 is found to have the set of children {2, 1}.
2 is added to the coded vector, and its children are not
searched further as its number is equal to the number of the
first element in the coded vector (a cycle end was detected).
The number of successors of element 3 is incremented and
its next child (i.e. 1) is searched for.

Crosspoint 1 is detected to not have been added
previously in the vector, so it is added and the number of
successors of element 3 is incremented. Crosspoint 1 has
two outgoing crosspoints: 2 and 3. 2 is added to the coded
vector, and the number of successors of element 1 in the
coded vector is incremented. The next child of element 1 is
3. Crosspoint 3 is not added to the coded vector nor searched
further, as inspection on the structure of the coded vector
results in detecting the fact that an inner 2 – {3 – 1 – 3}
loop was reached. Details on detection of loops are given
later in this subsection. As there are no more children to
inspect for element 1, its number of successors of element 1
is marked to be final.

Similarly, the number of successors of element 3 is
marked to be final. The next child of the source crosspoint
(i.e. 6) is investigated. Element 6 is added to the coded vector
and the set of its outgoing crosspoints ({1, 2}) is investigated.
Element 1 is detected to be part of the coded vector already,
and verification of the existence of a possible inner loop is
performed. 1 is added to the list of incomplete cycles for
element 6, and the next child of element 6 is searched for.
Since it is a 2, it is added to the coded vector, the number of
successors for element 6 is incremented and also set as final
(there are no more children to investigate).

The number of successors of the source crosspoint is
incremented, and its next children (2 and 7) are taken into
consideration for processing. Element 2 is added to the coded
vector and the number of successors is incremented. Finally,
element 7 is added to the coded vector, and since its only

Table 1
Encoding Algorithm–General Steps

Procedure ENCODE (Reduced RG, CrossPoint cp)

1. currentElement.codedElementNo � cp.no,

currentelement.incompleteCycles �

NULL,currentElement.nosuccesors �� –1;

2. if codedVector.length > 1 and cp.no = sourceNo

then append currentElement to the codedVector fi, return;

3. if cp.no tempFinal then append cp.no to the incompleteCycles
of the last element in temp fi;

4. if cp.no � temp then return; fi;

5. if cp.no � codedVector then

6. append currentElement to the codedVector;

7. increment noSuccessors for the last element in temp;

8. for childCp � outgoingCrosspoints do

9. temp � NULL, tempFinal � NULL;

10. for i = codedVector.length downto 0 do

11. if codedVector(i). final then

12. append codedVector(i) to tempFinal;

13. else append codedVector(i) to temp fi; od;

14. ENCODE(RG, childCp); // apply the algorithm for the child

15. if childCp = the last element in outgoingCrosspoints then

16. currentElement.final � true fi od; fi.

Table 2
Sets of Outgoing Crosspoints for the Example Graph

of Figure 9

Crosspoint No Outgoing Crosspoints

1 2 3

2 3 6 2 7

3 2 1

6 1 2

7 1

Table 3
Example of a Coded Vector

Coded element 2 3 2 1 2 6 2 2 7

No. successors 4 2 4 1 4 1 4 4 0

Incomplete cycle numbers – – – – – 1 – – 1

66 International Journal of Computational Intelligence in Control

child (1) has already been added to the coded vector, its set
of incomplete cycles is added element 1.

The number of successors of the source crosspoint is
incremented and set as final, and the procedure terminates.

Detection of the loops is done based on the structure of
the encoded vector, by means of a simple verification on
whether the element to be added can be found among the
elements already existing in the coded vector, with the
number of successors not set to be final yet.

4.3. Decoding Algorithm

Decoding is performed backwards on the coded vector.
The general steps of the decoding algorithm are outlined in
Table 4. The needed data structures are as follows:
• Input: a vector codedVector storing the encoded

elements.

• Output: an array of vectors allCycles: to store the
decoded cycles.

• An integer sourceNumber: the number of the first
element in the input codedVector.

• An integer counter for iterating through allCycles array.

• Local integer variables counterSuccessors,
noSuccessors, cycleIndex, previousNumber.

The decoder reads the coded vector backwards. The
allCycles array, whose role is storage of the vectors
representing decoded cycles, is initialized.

A new vector is initialized and added to the allCycles
array each time the decoder encounters either an element
with the number equal to the number of the source crosspoint
for which the encoding was performed or an element with
the final number of successors set to 0. The former represents
the end of a coded cycle, whereas the latter represents a
partially covered path which was coded until an inner loop
was found. If the decoder encounters an element with a final
number of successors greater than 0 and an element number
different from the source crosspoint’s number, then this
element has to be added to the decoded cycles. The number
of successors of the element (noSuccessors) is the decision
maker for how many cycles in the allCycles array the element
has to be appended to. The allCycles array is read backwards,
and a counter is incremented from 0 up to noSuccessors
whenever a change in the number of the last element of the
vector in allCycles array is detected, or when this number is
found to be equal to the number of the source crosspoint.
The element is added to the vectors in the allCycles array as
long as the counter does not exceed noSuccessors.

Initialization and addition of a new vector to the set of
all cycles occurs also when the decoder encounters an
element with a non void set of incomplete cycles.

The final step is reversing the order of the elements in
each vector found in the array of all cycles.

The coded vector of Table 3 will be used to illustrate
the decoding procedure. The output of the decoder is
illustrated in Table 5. The decoded cycles are denoted here
by the letters A to G. The first element encountered by the
decoder is element 7, which has a final number of successors
set to 0 and a set of incomplete cycles containing only one
element–element 1.

The first vector to be added to the allCycles array
contains the number of the element 7. The second vector
retains the information related to the incomplete cycles
attached to element 7 as well.

Table 4
Decoding Algorithm–General Steps

Procedure DECODE (codedVector)

1. allCycles � NULL, sourceNumber � the number of the first
element in the input codedVector, counter � 0;

2. for i = codedVector.length downto 0 do

3. decodedElement � codedVector(i);

4. if decodedElement.codedElementNo = sourceNumber OR
decodedElement.noSuccessors = 0 then

5. append decodedElement.codedElementNo to a llCycles
[counter];

6. increment counter; fi;

7. if decodedElement.codedElementNo � sourceNumber and
decodedElement.no Successors � 0 then

8. counterSuccessors � 0,

9. noSuccessors � decodedElement.noSuccessors,

10. cycleIndex � counter – 1,

11. previousNumber � – 1.

12. while counter Successors < noSuccessors + 1 do

13. int elementNo � the codedElementNo of the last element in
allCycles[cycleIndex];

14. if previousNumber elementNo OR elementNo = sourceNumber
then

15. increment counterSuccessors fi

16. append decodedElement to allCycles[cycleIndex];

17. decrement cycleIndex; od; fi;

18. if size of decodedElement.incompleteCycles � 0 then

19. append decodedElement to allCycles[counter];

20. increment counter; fi;

21. od.

Table 5
Decoded Cycles for the Coded Vector of Table III

‘All Cycles’ Array

A 2 7

B 2 7 (1)

C 2 2

D 2 6 2

E 2 6 (1)

F 2 3 1 2

G 2 3 2

Graph-based Selection of Orchestrator Paths in Manufacturing Lines 67

The second element read by the decoder is element 2,
whose number is equal to the number of the first element in
the coded vector (the source crosspoint). Therefore a new
vector is initialized and added to the array of all cycles.

The third element encountered by the decoder is
processed similarly.

The fourth element to be decoded is 6, which has one
successor and one incomplete cycle, ending in element 1.
Crosspoint 6 is appended only to the last vector added to
the array of allCycles, since the last element found in this
vector is 2 (the end of a cycle). To retain the information
related to the incomplete cycle of 6, a new vector is
subsequently initialized and added to the array of all cycles.

The fifth element encountered in the decoding process
is 2, which is treated the same as the second and third.

Next item to be read is element 1, who is found to have
one successor, so it is appended to the last decoded vector
in the array.

A new vector is initialized and added to the array of all
cycles to retain the seventh element read by the decoder.

Element 3 has 2 successors, so the array of allCycles is
read backwards and element 3 is appended to the vectors
{2} and {2, 1}.

The last encountered element (the source) is appended
similarly to obtain the full output of the decoder.

Finally, all decoded cycles are reversed to obtain the
results shown in Table 5.

4.4. Separation between Complete and Incomplete
Cycles. Feeding the Encoder with Incomplete Cycles

The output of the decoder is further separated into arrays of
complete and respectively incomplete cycles. Complete
cycles are the vectors whose first and last element numbers
are equal to the number of the source crosspoint (e.g. cycles
C, D, F and G of Table 5). Incomplete cycles are decoded
vectors ending in an element whose set of incomplete cycles
is non void (e.g. cycles B and E of Table 5). The encoder is
fed again with the partially covered cycles until none are
found in the pool of incomplete cycles.

Auxiliary parameters (i.e. noSuccessors and
incompleteCycles) for the elements in an incomplete cycle
are reset before feeding the encoder again with the cycle.
Each element’s number of successors is set to be final and
1, whereas each element’s set of incomplete cycles is set to
be void. The last element in the incomplete cycle retains the
information related to the search directions that are yet
unexplored, so this information has to be temporarily stored
before resetting the parameters.

The coded vector is initialized to be the decoded
incomplete cycle, and the encoder is fed the new coded
vector and the number of the unexplored search direction.
In case of the first decoded incomplete cycle in Table 5, the
coded vector becomes {2, 7}, and the encoder starts adding
coded elements to the coded vector by appending element 1
and searching its outgoing crosspoints.

5.5. Retrieval of the Actual Cycles from the Crosspoint
Cycles

The complete cycles output by the decoder contain the
information related to the sequence of crosspoints
encountered in that cycle. Each crosspoint stores all
sequences of states (branches) emerging from it and ending
in the same or another crosspoint. The actual cycles can be
retrieved from the decoded complete cycles as sequences

of combinations ,
,� m nk

m n
i

B , where i = 0 : L – 2 (L = the length

of the complete cycle) is the index iterating over the elements
in the complete cycle, m is the number of the crosspoint
element at index i in the complete cycle, n is the number of
the crosspoint element at index i + 1 in the complete cycle
and km,n is the index of the selected branch connecting
crosspoints m and n.

Computation of all cycles for a node that is not a
crosspoint is slightly different from the procedure described
above, in the sense that first identification of the crosspoints
containing branches that include the state of interest is to be
performed. The search is thus reduced to finding all cycles
for each of the identified crosspoints. Finally, trimming is to
be performed for the first and last branches in the cycle at the
stage of retrieving the actual cycles from the crosspoint cycles.

4.6. Benefits of the Proposed Algorithm

If actual vertex sequences forming a cycle are needed,
methods for calculating all cycles in a graph generally rely
on the filling of a tree based on the graph, together with
either breadth first search or depth first search algorithms
applied on the tree. Filling a tree based on the graph is subject
to memory constraints, as it is impossible to know
beforehand how many nodes the tree will have in the end
(the resulting tree may include the same node several times
on different branches). Additionally, all nodes in the tree
have to keep track of all their ancestors, to make detection
of loops possible while filling the tree.

Using the proposed approach is beneficial with respect
to the memory size needed to keep track of the elements
within a cycle. By structurally reducing the state space, and
by the nature of the encoding procedure, a smaller number
of objects is needed in order to represent the information
describing a set of cycles. The length of the coded vector
will always be less than the number of encoded complete
cycles, plus the number of crosspoints in the reduced RG.

The actual cycles obtained from the decoded complete
crosspoint cycles may simply be stored in arrays of integers.
Partially covered paths leading to a loop are no longer
considered for storage after each encoding-decoding step
takes place. The encoded elements do not need to have
knowledge of all their ancestors (or descendants), as
detection of loops is done online, based on the structure of
the coded vector. Therefore the amount of information to be
retained by each encoded element is smaller.

68 International Journal of Computational Intelligence in Control

6. RELATED WORK

Farrow and colleagues [9] were interested in quantifying the
information regarding both cycle and transient structure of
a network. This was achieved by means of developing the
scalar equation approach to Boolean network models. The
authors proposed investigations on designing an algorithm
to systematically find all possible types of scalar equations
of Boolean network equations as future research.

Manivannan [10] designed an algorithm for detection
of knots and cycles in a distributed graph. The method relies
on exchange of messages between the vertices within the
graph. If the initiator vertex is part of a knot, the exact nodes
that are involved in the knot will be found. Otherwise, the
algorithm outputs the set of nodes which are sure to be in a
cycle with the initiator.

In order to deal with the state space explosion problem,
several graph reduction techniques were proposed in the
literature. Muhanna [11] mentioned the recursive removal
of all source and sink nodes from the graph (since they cannot
be involved in a cycle). Further reduction in the size of the
graph was achieved by partitioning the graph into its strong
connected components. Koppol [12] suggested grouping
certain observational equivalent states into a single
condensed state, followed by removal of the states found to
be satisfying specified conditions. Elimination of redundant
paths, while preserving observational equivalence, was also
taken into consideration.

5. CONCLUSION

Service encapsulation of processes can achieve a high level
of reconfigurability and adaptability of manufacturing lines.
Alternatives to scheduling should be researched to ensure
natural response to machine failures or replacements and to
changes in required product types and quantities. Possible
solutions should take advantage of the relations between the
state spaces of each orchestrator and the physical layout of
the system. An explicit state view of the line and its
participants is obtained through formally representing all
orchestrators and the physical layout. It is thus possible to
have knowledge of executed/pending processes for each
orchestrator, their positioning in the line and the activities
of the neighboring devices. Quality criteria can be elaborated
based on the updated formal models to assist decision taking.

For each orchestrator, the selection of the next device
can be redefined as a search problem in the model of the
physical layout of the system. The decision on the needed
transportation services is a problem of search in the state
space of the physical layout of the model. Traditional
scheduling approaches rely on known input job mix and
models that represent all possible device-process mappings
for the given jobs. A different model and search space is
constructed every time a change occurs in the line. The
proposed solution structure is beneficial with respect to the
search space, which is the same for every possible

orchestrator entering the line, unless additions to the
equipment are made.

Each orchestrator faces several options at the point of
device selection for its requested processes. Although the
selection is done gradually, the selection criteria may and
should take into consideration (some of) the subsequent
needed services, and the locations where they can be
physically performed in the line. These options are the
potential orchestrator routes in the physical layout of the
system. Device selection may be performed for one device
at a time only, but each time this selection is done the
orchestrator can register its intention to follow a certain route
in the physical system that may best satisfy its needs. In case
of machine failure or replacement, the orchestrator will
recognize the new surrounding situation, because the
discovery process is performed continuously. Therefore it
may unregister from the initially planned route and the
evaluation of new routes may begin once more. The
registering of an orchestrator’s intentions is valuable as each
path may support physically a certain amount of pallets only.
The number of orchestrators that intend to use a certain
itinerary together with the physical constraints of the itinerary
constitute important decision criteria when selecting the
devices.

For path quantification, an algorithm to compute all
cycles in a graph is presented in its general form. The method
extracts the exact sequences of nodes within each cycle at
the expense of a lower memory cost than other approaches
known by the authors. The cycles of interest for the presented
problem are the paths in the physical layout of the system
that correspond to each orchestrator ’s requirements.
Information about these cycles and their average cycle time,
together with real time data from the physical model will
help the system adjust itself to incoming pallets, no matter
what process sequencing is requested by each.

Cycle computation can be performed offline, as the
search space remains the same unless the machines are
physically removed or added. In the case of machine
removal, the corresponding cycles may be deleted from the
existing cycle set. Machine addition can be addressed by
analyzing the newly imposed physical constraints (the
relationship of the introduced equipment to the already
existing devices), and making the necessary modifications
on the cycle set directly (without the need to compute once
more the entire set). Machine replacements will not affect
the existing cycle set–the routes will be the same, however
they will be considered only by the orchestrators that need
the newly advertised services.

REFERENCES

[1] M. Zhou, K. Venkatesh, Modeling, Simulation and
Control of Flexible Manufacturing Systems–A Petri Net
Approach, World Scientific Publishing, 1999.

[2] M. Zhou, Petri Nets in Flexible and Agile Automation,
Kluwer Academic Publishers, 1995.

Graph-based Selection of Orchestrator Paths in Manufacturing Lines 69

[3] J. L. Martinez Lastra, I. M. Delamer, Semantic Web
Services in Factory Automation: Fundamental Insights
and Research Roadmap, IEEE Transactions on Industrial
Informatics, 2, 1-11, Feb. 2006.

[4] T. Murata, “Petri Nets: Properties, Analysis and
Applications,” Proceedings of the IEEE, 77(4), 541-580,
April 1989.

[5] M. Rausch, H.-M. Hanisch, Net Condition/Event
Systems with Multiple Condition Outputs. In:
Proceedings of the Symposium on Emerging
Technologies and Factory Automation, 3069-3094. IEEE
Press, Paris (1995).

[6] H. M. Hanisch, J. Thieme, A. Luder and A. Wienhold,
Modeling of PLC Behavior by Means of Timed Net
Condition/Event Systems. In Proceedings of 6th
International Conference on Emerging Technologies and
Factory Automation, 391-396. IEEE Press, Los Angeles
(1997).

[7] D. Marin, M. Paolucci, S. A. McIraith, M. Burstein,
D. McDermott, D. McGuiness, B. Parsia, et al.:
Bringings Semantic to Web Services: The OWL-S
Approach. In Proceedings of SWSWPC, 26-42, San
Diego (2004).

[8] J. Gross, J. Yellen, Graph Theory and its Applications,
CRC Press, NJ: 1999, 31-33, 126.

[9] C. Farrow, J. Heidel, J. Maloney and J. Rogers, “Scalar
Equations for Synchronous Boolean Networks with
Biological Applications,” IEEE Trans. Neural Networks,
15(2), March 2004, 348-354.

[10] D. Manivannan and M. Singhal, “An Efficient
Distributed Algorithm for Detection of Knots and Cycles
in a Distributed Graph,” IEEE Trans. Parallel and
Distributed Systems, 14(10), October 2003, 961-972.

[11] W. A. Muhanna, “Composite Programs: Hierarchical
Construction, Circularity and Deadlocks”, IEEE Trans.
Software Engineering, 17(4), April 1991, 320-332.

[12] P. V. Koppol, R. H. Carver and Kuo-Chung Tai,
“Incremental Integration Testing Of Concurrent
Programs”, IEEE Trans. Software Engineering, 28(6),
June 2002, 607-623.

[13] C. Popescu, J. L. Martinez Lastra, “A Method for the
Formal Representation of the Boolean Conditions of
Orchestrated Services”, AINAW 2008, 22nd
International Conference on, 25-28 March 2008, 1410-
1415.

