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Abstract: Researchers have observed that multistage clustering can accelerate convergence and improve clustering quality.
A two-stage and two-phase fuzzy C-means (FCM) algorithms have been reported. A pyramid multistage approach, however,
has not been applied to FCM. This paper describes pyramid FCM clustering, where in the first stage the FCM uses an
arbitrary partition matrix applied to a low resolution input sample. Next, the resultant partition matrix is used to seed the
following, higher resolution stage where the sample size is doubled. The process of seeding higher resolution FCM using
the results of lower resolution FCM, continues until the entire data is clustered. The utility and validity of the traditional
FCM, two-stage FCM, two-phase FCM, and pyramid FCM are tested through fuzzy clustering of synthetic data and natural
color images. The pyramid FCM outperforms the two-stage and two-phase multistage variants and obtains a speedup of
~3X, while maintaining the same or dightly better clustering quality than the traditional FCM. The two-stage and two-
phase multistage variants achieve a speedup of about 2X with dight degradation in performance. Furthermore, all the
multistage variants can be used to identify several local optimum solutions at the same time thetraditional C-meansidentifies

one solution.
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1. INTRODUCTION

Numerous clustering, optimization, and classification
algorithms, apply atraining-phasewherethe system adjusts
parameters using a subset of the data, referred to as the
training-set. Examples of such algorithmsinclude K-means,
fuzzy C-means (FCM), ISODATA, Kohonen Neural
networks, and simulated annealing [12, 16, 27, 33, 44].
Researchers observed that a multistage based training-
procedure can accelerate convergence and improve the
quality of the training as well as the quality of the
classification/decision phases of many of these algorithms
[2, 22, 26, 38]. Research reports show that the pyramid K-
means cl ustering algorithm and multi-resol ution Kohonen
neural networks yield two-to-four times convergence
speedup [41, 42].

The FCM algorithm providesa soft (fuzzy) ass gnment
of patternsto clusters. The assignment is represented by a
partition matrix. Theagorithm startswith an initial partition
matrix and attempts to improve the partition according to a
given quality criterion. Seeding the FCM isdone by selecting
aninitial partition matrix. Alternatively and equiva ently the
seeding can be accomplished by selecting initial cluster
centers. Improvementsto FCM dueto a two-stage approach
are reported in [2]. A two-phase framework where the first
phase includes linear multistage sampling with no
replacement has been reported in [10]. Thereare no reports,
however, on the performance of pyramid FCM which is
another form of multistage FCM.

In multistage FCM, clustering of low resolution data-
samplesisused to seed FCM with ahigher resol ution sample.
The objective of this procedure is to reduce the
computational cost and improvethe quality of theclustering
process. Thetwo-stage algorithm reported in [2] startswith
alow resolution data-sample, and clusters this data. The
initial partition matrix for this stage is chosen through
commonly used methods reported in theliterature [6, 25].
The clustering performed in thelow resol ution stageis used
to seed FCM with the entire training-data. The two-phase
approach of [10] refinesthe two-stage algorithm. The first
phase applies several stageswheredataisaccumulated in a
linear fashion through sampling with noreplacement. Asdata
isaccumulated, theresults of clustering arerefined. Thefirst
phase terminates after clustering a portion of theentire data.
The second phase uses theresults of the first phase to cluster
the entire data.

The pyramid multistage FCM isarefinement of the two-
stage and the two-phase approaches; which accumulates
training-data exponentially. The proposed method involves
anumber of stages. Thefirst gage startswith alow resolution
sample. For each success ve stage, the data-set isre-sampled
with replacement with twice the resolution of the previous
stage. The final partition matrix obtained in stagey is used
astheinitial partition matrix for stagel + 1. Theprocessis
repeated until the sample set is equal to the original data-
.
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This paper describes the pyramid multistage FCM
procedure and provides an extensive comparative study
comparing the pyramid FCM to the two-stage/two-phase
FCM. The FCM algorithm and the multistage variants are
tested through clustering of a set of synthetic data and
quantization of natural color images. Thevalidity of clustering
is assessed using a Binomial Monte Carlo analysis[24]. In
the average case, the FCM obtains a speedup of 3X over the
traditional FCM, while maintaining the same or a dightly
better quantization quality. On the other hand, the comparison
study showsthat the pyramid FCM outperformsthe two-stage
and the two-phase FCM variantswhich achievea speedup of
about 2X with dlight quality degradation. Moreover, thetwo-
stage, two-phase, and the pyramid FCM variantscan be used
toidentify several local optimum solutions at the sametime
thetraditional FCM identifies onesolution.

Therest of the paper isorganized in the following way.
Section 2 reviews related research and presents two
multistage FCM algorithm variants the two-stage and the
two-phase. Section 3introducesthetheoretical background
of the FCM algorithm, lists metrics used to assessthe quality
of clustering, and providesthe detail s of thetraditional, and
pyramid implementations of the algorithm. Section 4
describes a set of experiments conducted to assess the
performance and validity of FCM, two-stage, two-phase, and
pyramid FCM. Finally, section 5 includes conclusions and
proposalsfor further research.

2. REVIEW OF RELATED RESEARCH

2.1. Iterative Optimization Clustering Techniques

Clustering is a widely-used data classification method
applied in numerous research fields including image
segmentation, vector quantization, data mining, and data
compression [11, 13, 30, 32, 40, 45]. K-meansisoneof the
most commonly used clustering algorithms, and the LBG
vector quantization (VQ) algorithm with unknown
probability distribution of the sources, which isavariant of
K-means, isutilized in many applications[30, 33]. TheLBG
algorithm has been intensively researched. Some of these
research results which are relevant to K-means and fuzzy
C-meansarereviewed next.

Lloyd proposes an iterative optimization method for
guantizer design; which assumesthat the distribution of the
data is unknown and attempts to identify the optimal
quantizer [31]. Thisapproach isequivalent to 1-means (that
isK-means; with k=1). While Lloyd'smethod yields optimal
minimum mean squareerror (MM SE) for thedesign of one
dimensional quantizer, its extension to multi-dimensional
data quantizer (i.e., vector quantization) with unknown
distributionsisnot guaranteed to yield optimal results[31].
Consequently, K-meanswith k> 1 isnot guaranteed toreach
aglobal optimum.

Linde, Buzo, and Gray (LBG) method for vector
quantization (VQ) with unknown underlying distribution
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generalizes Lloyd'siterative method and setsaVQ design
procedure that is based on K-means [30]. The LBG VQ
procedureis currently the most commonly used/researched
V Q approach. Garey has shown that theLBG V Q converges
in afinite number of iterations, yet it is NP complete[17].
Thus, finding the global minimum solution or proving that
agiven solution isoptimal isan intractable problem. Ancther
problem with K-meansisthat the number of clusters (k) is
fixed and hasto be set in advance of executing the al gorithm.
ISODATA is a generalization of K-means which allows
splitting, merging, and eliminating clustersdynamically [4,
6]. Thismight lead to better clustering (better local optimum)
and eiminate the need to set k in advance. ISODATA,
however, iscomputationally expensiveand isnot guaranteed
to converge [44].

Several clustering algorithms and combinatorial
optimization techniques, such as genetic algorithms and
simulated annealing, have been devised in order to enforce
the clustering al gorithm out of local minima[1, 12]. These
schemes, however, requirelong convergence time, especially
for large clustering problems. Fuzzy C-means (FCM) and
fuzzy ISODATA generalize the crisp K-means and
ISODATA. The FCM clustering algorithm is of special
interest since it is more likely to converge to a global
optimum than many other clustering algorithmsincluding
K-means. Thisisdueto thefact that the cluster assignment
is “soft” [7, 25]. On the other hand, the FCM attempt to
“skip” local optima may bear the price of numerous soft
iterations and can cause an increase in computation time.
FCM is used in many applications of pattern recognition,
clustering, classification, compression, and quantization
including signal and image processing applications such as
speech coding, speech recognition, edge detection, image
segmentation, and color-map generation [5, 7, 10, 20, 25,
35, 39, 46]. Thus, improving the convergence time of the
FCM is of special importance.

2.2. Accelerating Clustering Conver gence Rate

Multistage processing is a well known procedure used for
reducing the computational time of several applications;
specifically, image process ng procedures. This method uses
a sequence of reduced resolution versions of the data to
execute an image processing task. Results of execution at a
low resolution stage are used to initialize the next, higher
resolution, stage. For example, Coleman proposes an
algorithm for image segmentation using K-means dustering
[11]. Hsiao, have applied Coleman’s technique for texture

1
segmentation [22]. He hasused a 6 -sample of theimage

to identify k. Huang and Zhu have applied the Coleman
algorithm to DCT based segmentation and color separation

1
respectively [23, 47]. Like Hsiao, they have used 6 -of the
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image-pixelsto set up the parameters of thefinal clustering
algorithm; where the final clustering is performed on the
entireimage. They have found that thefinal cluster-centers
obtained in the training-stage are very close to the final
cluster-centers obtained from clustering the entire image.
Thislendsitself to atwo-stage K-means procedure that uses
one low resolution sampleto initiate the parameters of the
actual clustering. Pyramid processing isageneralization of
the two-stage approach where the resolution of samplesis
growing exponentially; each execution stage doubles the
number of samples.

Additional applications of multistage architecturesare
reported in theliterature [10, 21]. Rosenfeld surveysthearea
and proposes methodsfor produci ng the multistage snapshots
of an image [38]. Kasif shows that multistage linking is a
specia case of ISODATA [26], and Tilton uses multistage
for clustering remote sensing data [43]. Tamir introducesa
pyramid multistage method to non supervisedtraining in the
context of K-means, and neural networks. He has shown that
the pyramid approach significantly accelerates the
convergence of these procedures [41, 42].

Several papers deal with accelerating the convergence
of FCM [9, 21, 28]. Altman hasimplemented atwo-stage FCM
algorithm [2]. Thefirst stage operates on arandom sample of
thedata, and the second sage usestheduger centersobtained
in the first stage to cluster the entire set. Instead, we ue a
multistage pyramid approach with multiple stages; each sage
operates on higher resolution data wheretheresol ution grows
in an exponentia fashion. Our method iscompared to Altman’s
two-stage approach, and we show a significant improvement
in performance. Cheng improves the method proposed by
Altman and hasinvestigated atwo phase approach. Thefirst
phaseimplementsalinear multistage algorithm which operates
on small random dices of the data. Each dice contains A% of
the data. The algorithm finds the cluster centers of the first
dice (say S), then use these centers as initia centers for
clustering a sample that contains the first slice and an
additiona dice(S,) obtained through random sampling. After
running the multistage phasefor n stages, thefina centersfor
the combination of dices{S, S,, ... S} which contain nA%
of the entire data are obtained. Next, in the second phasg,
these centersareused to cluster theentiredata. Theresearch
reported in thispaper, however, extendsthismethod, and rather
than using two phasesand linear multistage sampling with no
replacement; we use a pyramid sampling (i.e., exponential
growth in thesampling). Another differenceisthat our method
uses sampling with replacement which is less susceptible to
bias. Results presented in this paper show that the pyramid
approach outperforms Cheng'’s two-stage approach. Other
approachesfor improving the convergencerate of clustering
include data reduction techniques and data sampling using
hypothesistesting [14, 34].

A related research effort deals with clustering of very
large data-sets which are too big to fit available memory.
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Oneapproach tothis problemisusing incremental algorithms
[18, 29]. Severd of these algorithmsload adliceof the data,
wherethesizeof adliceis constraint by available memory,
and cluster this dice [8, 15]. Results of clustering current
dices(e.g., centers, partition matrices, dispersion, etc.) are
used in the process of clustering upcoming dlices. Hore has
proposed a dlice based single-pass FCM algorithm for large
data-sets [21]. The proposed method lumps data that has
been clustered in previous dicesinto a set of weighted points
and uses the weighted points along with fresh dices to
commence with the clustering of the entire set in one path
[21]. Another approach for clustering large data-sets is to
sample, rather than slice, the data[34].

It is interesting to note that K-means, FCM, Neural
Networks (e.g., Kohonen Neural networks), and many other
iterati ve optimization agorithms have two main modes of
operation, the batch mode and the paralld-update mode. For
example, in the batch mode execution of FCM, each iteration
considers every pattern individually, and the centers are
updated with respect to every pattern considered. The
parallel-update mode, which is less computationally
expensive and the predomi nantly used modein most current
applications, assignsall the patternstotherdevant clusters
and then updates the centers. In this context, the dice
approach which isused for | arge data-setscan be considered
asahybrid of batch and parallel -update.

Thisbringstheissue of parallel processing of clustering
algorithms. Several ways to partition and distribute the
clustering task have been considered [3, 21, 36, 37, 43, 45].
One potential way it to assign a set of samplesor aslice of
data to each processor and eventually merge the cluster
centers obtained from each processor into one set of
centers. We plan to addressthis problem asafuture research
subject.

3. THEFUZZY C-MEANSAND MULTISTAGE FUZZY
C-MEANS CLUSTERING ALGORITHM

The fuzzy C-meansalgorithm (FCM) isageneralization of
the crisp K-means clugtering. Actually, the generalizationis
quiteintuitive. In the K-means algorithm, set membership
iscrisp. Hence, each pattern belongsto exactly one cluster.
In the FCM, set membership is fuzzy and each pattern
bel ongs to each cluster with some degree of membership.
The following section formalizesthisnotation.

Let X={Xx, X, ..., X }, wherex e R", beaset of m, n-
dimentsional vectors representing the data to be clustered
into ¢ clusters S={S, S, ..., S} with cluster centers
Q={o,n, .., o}.Under the FCM each element X belongs
to every cluster S with some degree of membership u;.
Hence, thematrix U = [uij], referred to asthepartition matrix,
represents the fuzzy cluster assignment of each vector X to
each cluster S. The goal of FCM isto identify a partition
matrix U, such that U optimizesa given objective function.
A commonly used FCM objective function isdefined to be:
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[EQ-4]

Whereq > 1isweighting exponent. In thisresearch qis set
to2.

The most common measuresfor FCM clustering quality
are: (1) The value of objective function, (2) the partition
coefficients, (3) the classification entropy, (4) measures of
deviation of the partition matrix from amatrix obtained with
uniformly distributed data, and (5) measures of induced
fuzziness [6, 7, 24]. It should be noted that some of the
quality criteriaare derived from distortion measures. Hence,
in this casethegoal isto minimizedistortion, and high quality
means low distortion. In other words, the quality can be
considered as the inverse of distortion. Measures 1 trough
5, assume that the end result of the clustering is soft.
Nevertheless, in many cases, it isdesirableto obtain “hard
clustering” assignment to be used for vector quantization,
image segmentation, or other classification applications. In
these casestwo additional quality criteriacan be considered:
6) theratedistortion function, and 7) the dispersion matrix
[24, 44]. Of all these measures, 1, 6, and 7 are most
commonly used. In specific, metric 1, thefunctional J can
be interpreted as ageneralized distortion measure which is
theweighted sum of the squared distancesfrom all the points
in the cluster domain to their assigned cluster center. The
wel ghts are the fuzzy membership values [7, 25]. Hence,
this metric is proportional to the inverse of the quality of
FCM. Lower distortion denoteshigher quality. Metrics6 and
7 arefurther elaborated in the next section.

In general, therate distortion function isused when the
FCM is utilized for quantization. In this case, after
convergence, thematrix U = [uij] isdefuzzified; e.g., by using
aneares neighbor assignment. The compressionrate of fuzzy
C-means is fixed by the selection of c. Hence, the rate
distortion quality-measure boils down to the MM SE; given

by:

1 C
D=—3 ¥ lIx -0

i=1 xj eo;

[EQ-2]

Again, lower distortion denotes higher quality. When
theclustering isused for classification, aquality criteriathat
measurethedensity of cluser aswdl astherdativedistance
between clusters can be used to estimate the recognition
accuracy. In this case adispersion measure can be used. To
elaborate: Let S= {S, S, ..., S} be the set of clusters
obtained through “hard clustering,” and let Q = { o, ®,, ...,
o } bethe set of the corresponding cluster centers, then, W
the Within Dispersion Matrix of the cluster S is defined to
be the covariance matrix of the set of elements that belong
to S. The within dispersion matrix of S (W), is a given
function of the entire set of the within dispersion matrices
of theindividual clusters. For example, the elements of W
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can be the averages of the compatible elements of W, for
1<i < c. The Between dispersion matrix of S (B), isthe
covariance matrix of Q2. Thequality of the clustering can be
expressed as afunction of the within dispersion matrix W
and the between dispersion matrix B. A commonly used
dispersion function is[24]:

D =tr(W) / tr(B)
wheretr(M) isthe trace of the matrix M.

[EQ-3]

3.1. The Fuzzy C-meansAlgorithm

The FCM consists of two main phases; setting/updating the
membership of vectors in clusters and setting/updating
cluster centers. Some variants of FCM start with a set of
centerswhich inducesapartition matrix [ 7, 25]. In thiscase,
seeding thealgorithm relatesto theinitial selection of centers.
Other variantsinitialize a partition matrix which induces
initial centers [6]. Hence, seeding these FCM variants;
amounts to initializing the partition matrix. The two
approaches are virtually equivalent choosing one over the
second isjust a matter of convenience rel ated to the format
of data and the form of the application. We are using the
second approach where the seeding relates to selecting the
initial partition matrix. Hence, in the seeding step, the
membership matrix isinitialized. In thenext iterations, the
cluster centers are calculated and the partition matrix is
updated. Finally, the value of the objective function for the
current classification iscalculated. The algorithm terminates
when alimit on the number of iterationsisreached or a“short
circuit condition” is met. A commonly used termination
condition halts the algorithm when the derivative of the
digortion function is small. Because the C-means algorithm
is sensitive to the seeding method, a variety of procedures
have been proposed for selecting seed points [1, 3]. The
following paragraphs include formal definition of the
algorithm as well as pseudo-code.

Given aset of vectors X = {X , X,, ..., X }, wherex € R"
and an initial partition matrix U@, the FCM is an iterative
algorithm for partitioning a set of vectorsinto c clustersS=
{S, S, ... S}, with cluster centersQ = {0, ®,, ..., ® }. In
iteration | the algorithm uses the cluster

centersQ® ={0", 0,0} induced by the partition
matrix U® to re-partition the data-set and obtain a new

partition matrix U™*D, Cluster centers at iteration | are
computed according to:

(& 2 ) (@ 1)
(Di(l) = LZ(USI))Q l'XjJ /LZ(Ui(jI))q lJ [EQ-4]
j=1 j=1
ThematrixU ™ =[u{*] iscalculated according to

2
e (l1x —o |\ @

Ut g0+ =
=2 —a )

1=1

[EQ-5]
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The process of center induction, data partition, and
matrix update continues until a given termination condition
which relates to an optimization criteria or limit on the
number of iterations is met. The following isa commonly
used criterion[30]:
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(-0 _ 30
Jq Jq

<g
(I-1)
Jq

[EQ-6]

Thefollowing is a pseudo code of the algorithm.

Algorithm-1 baseline FCM:

1. Parameters:
a X={x, X, o X }, (xj e R")- a set of vectors.
b. m -the number of vectors

Cc. - the number of partitions

d. q-—aweghting exponent (g > 1)

e, UM = [uiﬁk)] — the partition matrix at iteration k

f. QW ={0)£k),co(2k),...,cof:k)} - the set of clustering
centers at iteration k

g.  N- the maximum number of iterations

=

Jék) — the objective-function’s value at iteration k

2. Set k = 0, choose an initial partition matrix U©
3. Initeration k>0 let Q® = {wik) ,co(zk) ,...,cof:k)} be the
induced clustering centers computed by equation 4.

a  Set Ut :[uiﬁk”)] according to equation 5.

b.  Compute J**V according to equation 1.
C. Setk=k+ 1.

4, Sop if k= N; or if k> 1, and equation 6 holds for a small

¢ such as ¢ = 10°5. Otherwise, go to (2).

Theideabehind the multistage methodsreported in the
next section isthat an estimate of the partition matrix and
the location of the cluster-centers can be obtained by
clustering a sample of the data. Thereis however, atrade-
off that relatesto the samplesize. A small sampleisexpected
to produce a fast yet less reliable estimation of the cluster-
centers. Thisleadsto a multistage approach, which involves
several stages of sampling (with replacement) of the data
and estimating the membership matrix for the next stage.
The size of thefirst sample should be as small as possible.
On the other hand it should be statistically significant [ 24].
Each of the stages includes more objects from the data and
setsthe initial partition matrix of stage | according to the
final partition matrix of stagel — 1.

3.2. The Pyramid FCM and Other Multistage FCM
Algorithm

The pyramid procedure consists of thefollowing stages: In
thefirst stage, FCM isapplied to an initial under-sampling
of the data. The partition matrix for the first stage is
initialized by any of the traditional methods for partition
matrix initialization e.g., random initialization or uniform
distribution initialization [6, 7]. FCM is performed on the
sample until it converges. In stage | the original data-set is
re-sampled with twice the resolution of stage | — 1. The
membership matrix obtained in stagel —1 isused toinitiate
the C-meansclustering of the stage .

The procedure is repeated until aresolution of 1: 1is
reached. At this stage, the C-meansalgorithm is performed
on theentireinput data and theresultant membership matrix,
which implies cluster assignmentsand centers, isreported.

Every stage of the pyramid C-means increases the
resolution by a factor of two. Since the estimation of the

membership matrix for the clustering in every stage
(excluding thefirst stage) is based on previous stage results,
and utilizes an increasing sample of the data, it isexpected
to be closer to the final value of the membership matrix
obtai ned from the compl ete data-set. Thisdecreasesthetotal
number of weighted iterations (iterations are weighted by
the number of data elements executed) required for reaching
stability. In addition, sincethe under-samplings are smaller
than the original data-set, each low-resolution stage of the
FCM requiresfewer computations. Therefore, it isexpected
that the under-sampling method would decrease the
computational cost of FCM clustering.

For the pyramid execution we assume the avail ability
of aproceduref cm() which implements the base-line FCM
algorithm (Algorithm 1) described above. Let:

f em(c, X, UV, UL) be a procedure with the following
inputs (1) the number of clusters (c), (2) an input set of
vectors (X®), and (3) an input partition matrix of X, (U ).
The function implements the algorithm describesin section
3.1 and outputs the final partition matrix (U{)). In this
notation, (1) stands for stage | in the multistage algorithm.
The pyramid algorithm, using f cm() is described next.

The two-stage and two-phase algorithms, described in
section 2.2, aresimilar to the pyramid FCM algorithm. The
main differences arethe number of stages, the down sampling
resolution at each stage, the exponential versus linear
accumulation of samples, and the sampling method (i.e.,
sampling with, or without, replacement).

4. EXPERIMENTSAND RESULTS

4.1. Experimental Setup

The FCM, two-stage FCM, two-phase FCM, and pyramid
FCM areapplied numeroustimestodifferent data-sets, using
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Algorithm-2 Pyramid FCM

1. Parameters:

a. X-the entire set of input vectors.

b.  c-the number of partitions

o

| - the stage number

d. X0 -theset of input vectors at stage I.
e. |XY| - the cardinality of the set X"

f.  R"-an under-sampling index at stage .
g. zaninitial under sampling rate (e.g., 128).

U W - the initial partition matrix at stage |
i.  UY)-thefina partition matrix at stage|.
i Jé') — the final clustering quality at stage .

2. Set | =0, set RO =z, set X© to be the set obtained
from X by randomly choosing every R® element

from X, and choose an initial partition matrix U .

3. At stagel >0:
a Calfem (c, X", UM

in 1

)
U out
b.  Compute Q® usingU () according to equation 4

c. saul™=ul)
d.  Set R™D =min (|X], 2 - RY)
e.  Set XY to bethe set obtained from X by randomly
choosing every RV element from X
f. Setl=1+1
4.  If RY < [X]then got to stage (2).

5. If RY = [X| then

a calfem((c,X,Uul

1)
in 'Uout
b.  Compute Q usingU ") according to equation 4

c. OutputQand UL
d.  Stop

different parameters. Two sets of data are used for the
experiments performed; thefirst set includes synthetic data
with known centersand known distribution. The second set
consists of the Red, Green, and Blue (RGB) components of
color images used for color quantization. The experiments
compare and contrast the performance of the FCM and the
multistage variants. Three types of output data/results are
collected: (1) Execution time and solution quality (i.e.,
inverse of distortion), (2) the results of a Binomial Monte
Carlo validity testing of assertions concerning the execution
time and quality, and (3) Records of convergences (i.e.,
distortion per iteration).

The execution timeisapproximated through aweighted
number of iterations. Since thereis almost no overhead in
the down-sampling procedure, then asingle multistage FCM

1
iteration applied to a sample which contai ns; of the data

1
points takes about the same amount of time as; of a

traditional FCM iterations performed on the entire data-set.
Thus, for themultistage FCM, the weighted number of total
iterationsN, isgivenby: N, = X7 ((N®-R"). Where, pis
the total number of stages, N® isthe number of iterations at
stage | of the pyramid algorithm, and R" is the sampling
rate at stage |I. The termination condition in all the
experimentsis afixed number of iterations (set to 150) or a
“short circuit” related to a negligible change in the first
derivative of thedistortion [30]. In most of the experiments
the “short circuit” is encountered before the maximum
number of iterationsisreached.

The objective function (Jq) affectsthe partition matrix
obtained by the FCM, the MM SE of hard clustering, the
rate distortion function, and the dispersion. For thisreason,
in this research, we use the objective function (EQ-1) to
assessthequality of FCM procedures. Since J, isadistortion
measure, then low val ues of J, denote high clustering quality.

A Binomia Monte Carlo validity testing of assertions
concerning the results of execution time and distortion is
implemented. Theresults of each experiment are trand ated
into“success’ or “failure” of basic assertionsor hypothesis
related to validity. Analysis of the execution time and solution
quality is accomplished by computing histograms showing
the distribution of execution time and distortion.

4.1.1. Synthetic Data

A st of C (4 <C<32) random cluster centerswith mvectors
per cluster (4096 < m < 16384) is generated. The vectors
within aclugter are distributed with variances of 0.01 to 0.05
according toanormal distribution around the center. These
patternsare used for the experimentswith the synthetic data.
Thefirst level of under-sampling used in the experiments

_ 1 1 _ .
varies from 18 to 32.Th|ssuppllesan average of 128-

512 elements per cluster and is above the number of elements
per partition which arerequired in order to guarantee atight
and acceptable 95% confidence interval. In this research,
an acceptable confidenceinterval liesabove 0.5[24].

4.1.2.Monte Carlo Analysisof Experimentswith Synthetic
Data

An extensive set of experiments using synthetic data is
conducted and performance is recorded. In addition, the
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experiments are designed to enable Monte Carlo analysis
for validation of assertions about the rel ations between the
traditional FCM and themultistage FCM variants (two-stage,
two-phase, and pyramid). Overall, thousands of experiments
are performed. In general, each set of experiments isused
for accepting or rgecting one assertion. The validation of
an assertionisdone using Binomial Monte Carlo procedure.
Under this approach, the “success’ of an experiment is
defined in tandem with an assertion. The estimated
probability of successin aset of experiments and the exact
95% confidenceinterval are used to assess the significance
of the results which implies the validity of the assertion.
Some of the assertions, however, may require hundreds of
experimentsin order to ensure a tight and acceptable 95%
confidence interval.

Generdly, each set of experimentsisdivided into groups
of 100 experiments per group. The difference between
experimentswithin agroup isdueto the fact that theinitial
partition matricesarerandomly initiated, the sub sampling
is random, and due to the fact that initial sub-sampling of
the multistage FCM variants is selecting different sub-
samples. Within a set of experiments only one e ement of
the experiment is changing. For example, one set of
experiments is used to compare the performance of the
multistage FCM variants to traditional FCM where the
number of clusters synthetically generated is 16, and the
number of centers sought by the FCM procedure, is 8.

Thefaollowing assertions areexamples of assertionsthat
are validated or rejected through the Monte Carlo
experiments:

1. INS> IS; where INS denotes the number of
weighted iterationswith thetraditional FCM, where
no samplingisapplied, and | S denotes the number
of weighted iterations under one of the multistage
FCM variants. Hence, if thisassertion istruethen
the number of weighted iterations required for
convergence of the multistage FCM variant is
smaller than the number of weighted iterations
required for convergence of thetraditional FCM

2. DNS<DS: whereD standsfor distortion (. Hence,
if thisassertion istrue, then the distortion obtained
by thetraditional FCM issmaller than thedistortion
produced by the multistage FCM variant. Thus, the
quality of thetraditional FCM clustering ishigher
than the clugtering quality of the multistage variant.

4.1.3. Color Quantization

The problem of color quantization can be stated in the
following way: given an image with N different colors,
choose C<<N colors such that the resulting C-color image
isthe least distorted version of the original image[19, 40,
47]. Color quantization can be implemented by applying the
FCM clustering procedure to the image-pixels where each
pixe representsa vector in somecolor representation system.
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Nevertheless, the FCM produces a fuzzy assignment of
clusters to centers, while the quantization requires a crisp
assignment of patterns to colors. For this end, the final
partition matrix is defuzzified and each pattern is assigned
to one cluster e.g., the nearest cluster. For example, the
clustering can be performed on thethree-dimens onal vectors
formed by thered, green, and blue (RGB) color components
of each pixel in the image. After clustering and
defuzzification, each three-dimensional vector (pixel) is
represented by the cluster-number to which the vector
bel ongs, and the cluster centers are stored in a color-map.
The C-value imagea ong with the col or-map isacompressed
representation of the N-colors, original image. The
compressed image can be used to reconstruct the original
three-dimensional data-set by replacing each cluster-number
by the centroid associated with the cluster. In the case of
k=64 with 8 hit per color component, the original 24 bit per
pixel imageisrepresented by a6 bits per pixel imagealong
with a small color map. Hence, about 4 times compression
isachieved.

4.1.4.Monte Carlo Analysis of Experiments with Color
Quantization

Several RGB images are used to assess convergence rate
and the distortion (Jq) of the traditional FCM and the FCM
multistage variants. Asin the case of synthetic data, we have
performed an extensive set of experimentsto enableaMonte
Carlo analysis of assertions about the algorithms. For
example, one set of tests is performed on the image Lena
with C=8 (C isthe number of clusters sought). Another set
of experiments uses C=16. Similarly, C=8 and C=16 are
used with other imagestoo.

4.2. Experimental Results

4.2.1. Experimentswith Synthetic Data

This section provides detailed results of one set of
experiments, and general results of the entire set of
experiments where the FCM, two-stage FCM, two-phase
FCM, and pyramid FCM (these last three methods are
referred to asthe multistage FCM variants) have been applied
to 2-dimensional synthetic data. The data is generated by
randomly selecting 16 centerswithin the unit square[0 1; O,
1] and randomly distributing 16384 samples, with two
dimensional normal distribution, around these centers. The
variance for each center is randomly selected to be in the
range (0.01, 0.05). As a result, the boundaries between

1
clustersare not crisp. Theinitial quantization level is -

The traditional FCM and its multistage variants, with
C = 16, are run 100 times with different sets of random
patterns, produced as described above, and different random
selection of initial cluster centers. In each run the maximum
number of iterations is 150. A short circuit termination
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condition stopstherun if the changein the derivative of the
distortion measure (Jq) isbelow asmall threshold.

Figure 1 shows a histogram with thedistribution of the
number of weighted iterations for thetraditional FCM and
for each of the FCM multistage variants. The figure shows
that the number of weighted iterations obtained in most of
theruns of the pyramid FCM arelocated below 35 (i.e., these
runsconvergein lessthan 35 weighted iterations) whilemost
of the runs of the traditional FCM require more than 75
iterations before convergence. The number of weighted
iterationsfor thetwo-stage and two-phase FCM are centered
in the middleof the histogram with no significant difference
between thesetwo variants. The two-phase, however, dightly
outperforms the two-stage variant. Consequently, Figure 1
demonsgtrates that pyramid FCM has higher potential for
speed up than two-phase FCM which has higher potential
for speedup than thetwo-stage FCM. Overall, the sametrend
isapparent in theresultsof all of theother setsof data, where
the distribution of number of iterations for the traditional
FCM isat the high end of the histogram, thedistribution for
the pyramid variant is at thelow end of the histogram, and
thedistribution of the other two variantsisat the mid-range.

Figure 2a shows the average speedup relative to the
traditional FCM obtained with every multistage variant of
the FCM. The figure demonstrates that pyramid FCM
provides a speed-up of about 2.75X, while two-phase FCM
provides a speedup of 2.4X, and two-stage FCM providesa
speedup of 2X. Again, the pyramid FCM outperforms the
other multistagevariants. Overal, the sametrend isapparent
in the results of all of the other sets of data where pyramid
FCM provides a speedup of 2X to 3.5X , two-stage FCM

45
H Distribution of the number of iterations - traditional FCM

a5
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provides a speedup that is close to, and generally dightly
lower than 2X, and the two-phase algorithm provides a
speedup that is slightly above 2X.

Figure 2b shows the average values of the distortion
obtai ned with thetraditional FCM and itsmultistagevariants.
Thequality of thetraditional FCM and different multistage
variantsisvery smilar. The quality is assessed viathe FCM
objective function: J, = X7 X7'u, " || - o, ||. Since J, is
a distortion measure, then low values of J, denate high
clustering quality. In this specific casethe pyramid approach
outperforms the rest of the multistage variants, but the
differenceis not significant (< 2%). Overall, after running
numerous experiments and obtai ning about the same quality
(distortion) from many different experiments we conclude
that almost all of the runs provide a solution that is very
closeto the global optimum. Hence, in thiscase, we cannot
demonstrate asignificant improvement in quality dueto the
multistage approach.

Figure 3 showsthe convergenceratefor thetraditional
FCM and the multistage variants for one out of the 100
experiments. The x-axi s representsthe number of weighted
iterationsrequired for convergence and they-axis showsthe
distortion in each of the weighted iterations. The
discontinuitiesin the curves of the multistage variants are
duetoa“jump” in distortion that occurswhen moving from
one stageto the next where centersfrom previous stage are
used as seed for the next stage. Overall, the pyramid
approach has the best convergence rate and converges to
the lowest value. A similar trend is observed in therest of
the experiments.
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Table 1 summarizes the results of Monte Carlo
validation for this set of experiments. The assertion tested
for the 100 members of this set of experiment and analyzed
using exact estimation for the confidence intervals of
binomial distribution are: (1) INS> IS, where INS denotes
the number of weighted iterations with no sampling, 2) INS
>2x1S5 3)INS>3x 1S 4) INS>4x 1S 5) DNS> DS
where D stands for distortion (Jq), and 6) DNS< DS The
table shows the number of successesin thebinomial testsas
well astheexact 95% confidenceinterval. It can be observed
that in the case of pyramid FCM, assertions 1, and 2, hold
while assertions 3, 4, 5, and 6 fail (apart of the confidence
interval is below 0.5).

This further validates the speedup results shown in
figure 2a and the distortion results shown in figure 2b. In
addition, the table shows that assertions 1 is the only
assertions that hold true for the two-stage and two-phase
approaches, and therest of the assertionsfail. Again, thisis

consistent with theresultsdepicted in figures2aand 2b. In
specific, the fact that both assertion 5 and 6 fail for all of
the experiments showsthat thereisno significant difference
in the distortion obtained from the different algorithms.
Similar and consi stent results are obtained with other sets
of experiments. The conclusion from the observations
obtained from experiments with synthetic data is that the
pyramid FCM can be used to extend the speedup obtained
with theother multistage variants, while providing the same
or slightly better quality.

4.2.2. Experimentswith Color Quantization

This section provides detailed results of one set of
experiments, and general results of the entire set of
experiments where the FCM, two-stage FCM, two-phase
FCM, and pyramid FCM have been applied to color Images.
Theimage used for thisset isan RGB version of Lenawith
resolution of 512 x 512 pixels. Theinitial quantization level

Table 1
Summary of Monte Carlo Validation Tests (Synthetic Data)

Assertion / INS> IS INS>2x IS INS>3x IS INS> 4 x IS DNS> DS DNS< DS
FCM Variant

Two-Stage 86 [0.78,0.92] 58 [0.48,0.68] 41[0.31,0.51] 27[0.19,0.39] 47 [0.37,0.57] 53[0.43,0.63]
Two-Phase 99 [0.95,0.99] 57 [0.47,0.67] 25[0.17,0.35] 9[0.00,0.16] 46 [0.36,0.56] 54 [0.44,0.64]
Pyramid 95[0.89,0.98] 76 [0.76,0.84] 58 [0.48,0.68] 51[0.41,0.61] 57 [0.47,0.67] 43[0.33,0.53]




74

1
isé. Thetraditional FCM and itsmultistage variants (two-

stage FCM, two-phase FCM, and pyramid FCM), with, C=
16 arerun 100 timeswith different random selection of initial
cluster centers. In each run the maximum number of
iterationsis 150. A short circuit termination condition stops
the run if the change in the derivative of the distortion
measure(Jq) isbelow asmall threshold.

Figure 4 shows a histogram with thedistribution of the
number of weighted iterations for thetraditional FCM and
for all the FCM multistage variants. The figure shows that
the number of weighted iterations obtained in most of the
runs of the pyramid FCM islocated bel ow 35 while most of
the runs of the traditional FCM require more than 100
iterations before convergence. The number of weighted
iterations for the two-stage and two-phase FCM is centered
in the middleof the histogram with no significant difference
between the two multistage variants. As in the case of
synthetic data, the two-phase variant dightly outperforms
thetwo-stage variant. Overall, the sametrend isapparent in
theresults of all of the other sets of images.

Figure 5a shows the average speedup relative to the
traditional FCM obtained with every multistage variant of
the FCM. The figure demonstrates that pyramid FCM
provides a speed-up of about 3.1X while two-phase FCM
provides a speedup of 2.6X and two-stage FCM provides a
speedup of 1.9X. Again, the pyramid FCM outperformsthe
other FCM multistage variants. Overall, the sametrend is
apparent in theresults of other sets of imageswhere pyramid
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FCM provides a speedup of 2X to 4X, two-stage FCM
provides a speedup that is between 1.5X to 3X, and the two-
phase algorithm provides a speedup that is dightly better
than the two-stage speedup. Figure 5b shows the average
values of the solution quality obtained with the traditional
FCM and its multistage variants. The quality (inverse of
distortion) of thetraditional FCM and different multi stage
variants is very similar with a difference of less than 1%
between variants. Nevertheless, the pyramid approach
outperformstherest of the approaches. Again, after running
numerous experiments with different images and obtaining
about the same quality from many different experiments
(when applied to the sameimage) we conclude that almost
all of the runs provide a solution that is very close to the
global optimum, and we cannot demonstrate a significant
improvement in quality dueto the multistage approach.

Figure 6 shows the convergence rate for the different
multistage variants for one out of the 100 experiments. The
x-axis showsthe number of welghtediterationsrequired for
convergence and the y-axis shows the distortion in each of
theweighted iterations. The discontinuitiesin the curves of
themultistage variantsare dueto a“jump” in distortion that
occurs when moving from one stage to the next; where
centers from previous stage are used as seed for the next
stage. Overall, the pyramid approach has the best
convergencerate and convergesto thelowest value. A Smilar
trend is observed in therest of the experimentsin this and
other setsof experiments.

Table 2 summarizes the results of Monte Carlo
validation for this set of experiments. The assertion tested
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Figure 6: Convergence Rate of the FCM Algorithms (Lena)

Table 2
Summary of Monte Carlo Validation Tests (Lena)

Assertion / INS> IS INS>2x IS INS>3x IS INS> 4 x IS DNS> DS DNS < DS
FCM Variant

Two-Stage 87[0.78,0.93] 60 [0.50,0.70] 41[0.31,0.52] 37[0.78,0.47] 43[0.33,0.53] 57 [0.65,0.83]
Two-Phase 93[0.86,0.97] 53[0.43,0.63] 24[0.16,0.34] 10[0.05,0.18] 56 [0.46,0.66] 44 [0.34,0.54]
Pyramid 97 [0.91,0.99] 82[0.73,0.89] 69 [0.59,0.78] 58 [0.47,0.68] 69 [0.59,0.78] 31[0.22,0.41]

for the 100 members of the set of experiment and analyzed
using exact confidence level sfor binomial distribution are:
1) INS>1S 2) INS>2x 1S 3) INS>3x 1S 4) INS>4x IS
5) DNS> DS, and 6) DNS< DS Thetable showsthe number
of successes in the binomial tests as well as the exact 95%
confidence interval. It can be observed that in the case of
pyramid FCM, assertions, 2, 3, and 5, hold while assertions
4 and 6fail (apart of the exact confidenceinterval isbelow
0.5). In addition, the table showsthat assertions 1 and 2 are
theonly assertionsthat hold true for the two-stage approach,
and assertion 1 isthe only assertion that holds true for the
two-phase approach. Again, thisis cond stent with the results
depicted in figures5a and 5b. Similar and consistent results
are obtained with other sets of experiments. Finaly, the
conclusion for the observations obtained from experiments
with col or image dataisthat the pyramid FCM can be used
to extend the speedup obtained with the other multistage
variants, whileproviding the same or dightly better quality.

5. CONCLUSIONS

The quality of clustering and the computational cost of the
FCM depend on the initialization of the partition matrix.
The multistage FCM variants set the matrix using data-
samples. Consequently, these methods can provide
improvement in convergencerate. Theresultsshow that the
multistage FCM can betuned to improve convergencerate
without significant impact on quality. Of the multisage FCM
variants, the pyramid approach is the most cost effective.
We werenot ableto demonstrate a significant improvement
in clustering quality. Nevertheless, in some cases, it is
conceivable that the saving in time due to the multistage
framework can betranslated into better quality viamultiple
runs of the multistage procedure.

We plan to expand thisresearch and investigate agenera
framework for multistage approach in optimization
algorithms including fuzzy 1SODATA and expectation
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maximization. In addition, we plan to investigate a hybrid
of the linear sampling of the two-phase approach with the
exponential sampling of the pyramid FCM variant.
Furthermore, we plan to investigate the utility of methods
for merging the results of different runs of clustering in
parallel multistage FCM and large data FCM applications.
Finally, we plan to use the validation technique devel oped
in this research to compare the performance of algorithm
from different domains; for example, K-means versus FCM.
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