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1. INTRODUCTION

DNA computing isafast growing areaof research concerned
with the use of DNA molecules for the implementation of
computational processes. It is a multidisciplinary area of
research involving interplay between molecular biology and
information science. Since the first practical example by
Adleman [1], there has been intensiveresearch into the use
of DNA moleculesasatool for calculations, smulating the
digital information processing procedures in conventional
computers [2-11]. It has been shown by many research
accomplishments that any process that could naturally be
described as an algorithm can be realized by DNA
computation. Computing with DNA offers the advantages
of massive degree of miniaturization and parallelism.
However, the main application of DNA in computing
technology will be rather to perform complex molecular
constructions, diagnostics and evol utionary tasks[8, 12, 13].

Adleman described in detail a library of operations,
which are useful when working with amolecular computer
and estimated that given an arbitrary pair of plain-text and
cipher-text, one can recover the Data Encryption Standard
(DES) key in about four months of work. Furthermore, it
was shown that under chosen plain-text attack, it ispossble
to recover the DES key in one day using suitable
preprocess ng. Thismethod can be generalized to break any
cryptosystem, which uses keys of length less than 64 bits
[14, 15]. Another hard solvable problem isthefactorization
of alarge number intoits primefactors. Thismay be used to
break a public key cryptosystem. There are anumber of hard
solvabl e problemsfrom graph theory and operationsresearch
which may be solvable by DNA computing [8, 13]. While
there are advantages of DNA computation like parallelism,
high information density, and the DNA reaction speed etc,

some disadvantages also exist, most important one being the
lack of aunique generalization. The DNA encoding and the
possible methodology in handling a problem may not be
applicableto other problem.

In this paper, we propose a new DNA number system
and its applications to searching and cryptosystems. DNA
strands are sequences of 4 nuclectidesA, T, Gand C. Inthe
present work, we describe a method to represent numbers
in terms of these DNA strands instead of numerical digits
and call this system, the DNA number system (DNA —NS).
In order to distinguish integers from real numbers, every
integer isrepresented asa DNA sequence whoselength isa
multipleof 3 and every real number isrepresented asa DNA
sequence of length one more than a multiple of 3. We use
the concept of codons to define a DNA number function
(DNF) to represent negative numbers. Further, we shall
describe a search method that performs the task in a unit
time, oncetheinput isgiven, irrespective of theinput size.
Thismethod usesthenovel ideaof DNA annealing property.
We also proposeaclassical cryptosystem in termsof a DNA
algorithm.

2. REVIEW OF POSITIONAL NUMBER SYSTEMS

Usually, numbers are represented in the decimal form. In
the decimal number system, any number isa sequence of 10
digits or bases {0, 1, 2, ... 9}. Since the number of base
symbolsis 10, thisnumber system is called base 10 number
system or simply the decimal number system. The digital
computers make use of binary numbersi.e., numbersto the
base 2. In the binary system any number is asequence of 0's
and1l's.

In general, any positiveinteger can be used asthe base
of a number system. Let b be a positive integer. With b as
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the base, any real number can berepresented using symbols
fromtheset {0, 1, 2... b-1} asdigits. When wewrite baseb
numberswe keep b as a suffix to the number to indicate that
the representation is to the base b. For example: (1101),
stands for a binary number with digits 1101.

Sincethedecimal number system isthe most commonly
used system, realizing the decimal equivalents of base b
numbers and vice versawould be an important task. A base
b number (b b, ...b b, b, b,b...b ) —whee®“” isthe
decimal separator, the digits bJ for j in {0, 1, 2, 3... k}
represent the integer part and digits b_j forjin{1,2,...,r}
represent the decimal or precision part — has its decimal
equivalent

bbb+ ...+ bb+b+b b'+b b*+..+b b".

Conversdy, base b equivalent of agiven decimal number
(N.F),, (Nistheinteger part of the decimal number and F is
the precision) can be obtained as follows: the base b
equivalent of the decimal integer N is given by (N), = [N/
b] #(N%b), where [N/b] represents the integer part of N/b
(i.e. thelargest integer < N/b), N%b represents remainder
when N is divided by b and the operator # is the
concatenation of stringsover thealphabet {0, 1, 2 ... b-1}.
The base b equivalent of the precision F is given by (F), =
[F*b] # (F*b—[F*b]), where[f] represents the integer part
of any real number f. Then, base b equivalent of the real
number (N.F), is: (N),.(F),.

Example2.1
1. Thenumber (101101.011), is equivaent to the decimal
number

1* 2540 244+ 1% D3+ 1* 224-0* 2L+1* 20+0* 2-14+1* 2-241* 23
=32+8+4+1+0.25+0.125
=45.375

2. (10.1125),, = (1010.0001110011001100...),

2|10 0.1125 *2=0.225
215-0 0225 *2=045
212-1 045 *2=09
1-0 09 *2=18
08 *2=16
06 *2=12
02 *2=04
04 *2=08

Table 2.1 A worked example of computing the binary
equivalent of a decimal number.

With this background, we introduce the DNA number
system below.

3. DNA NUMBER SYSTEM

DNA strands are sequences of 4 nucleotidesA, T, G and C.
In what follows, we shall describe a method to represent
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numbersin termsof these DNA strandsinstead of numerical
digitsand call this system, the DNA number system (DNA —
NS). To be ableto distinguish integers from real numbers,
every integer isrepresented asa DNA sequencewhoselength
isamultiple of 3 and every real number is represented as a
DNA sequence of length one more than amultiple of 3.

Before describing the representation of integers under
the new number system, let us define a codon. A codonisa
triplet of the nucleotidesA, T, G or C. Example: ATG, GCT,
AAC etc. arecodons.

3.1. Representing Integersfrom 0to 63

We shall definethe number system using the codons as the
digits. Sincethe number of nuclectidesis 4, thereexist 4° =
64 distinct codons. A number system which uses the codons
as digits would therefore be numerically equivalent to the
base 64 number system. The problem of defining the number
system thus reduces to defining a mapping between the
codonsand the numbersO, 1, 2... 63.

A natural way to do thisisto associate the 64 distinct
codonswith al threedigit numbersto the base4 (which are
exactly 64 in number). Note that, the smallest and largest
three digit numbers to the base 4 are 0 and 63 (=4°%1)
respectively. Also notethat every number between 0 and 63
has a uni que base 4 representati on.

Therefore, our idea is to assign a one — one
correspondence between the sets |1 = {0, 1, 2,3} and D =
{A, T, G C} and hence represent the corresponding numbers
from 0 to 63 in terms of the codons.

Let usdefinef: | —» D asfollows:
f(0)=A,f(1)=T,f(2)=G f(3)=C (@)

Now, using the correspondence given in (1) we have,

AAA =(000),=0 AGA =(0204=8

AAT =(001),=1 CCC =(333),=63

AAG=(002),=2 GCT=(231),=45 etc,,

It may be noted that f is bijective. In fact, in a similar
way, one can define atotal number of 4! (=24) such bijective

functionsfrom | to D and correspondingly in each case, one
can obtai n a unique number associated with each codon.

Definition 3.1: DNA Number Function (DNF)

Since each of the 4! functions such astheonedefinedin (1)
givesriseto aunique number system, it isvery important to
know which function isin usefor computing the numerical
equivalent of a DNA strand or vice versa. Let us call each
of thesefunctions as a DNA number function (DNF)

3.2. Representing Number s Beyond 63

Now let us proceed with the numbers beyond 63. Let ¢, c,

C, ..., C _beany numbers from {0, 1, 2, ... , 63} (where
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r > 0). Then thenumber (crer-1 ... c1c0) to the base 64 has
the decimal equivalent

C*64"+C *64"+ ... +C*64" +C*64°
=C*64" +C *64+ ... +Cc*64+cC,
In the DNA number system, therole of each ¢ isplayed
by a codon. Thus any number greater than or equal to64 is
a sequence of two or more codons whose val ue is computed

to the base 64 using the above interpretation of codons as
numbersfrom O to 63.

Example 3.2.1
With the DNF defined in equation (1), we have:

1. AGTTGA AGT= (021),=9
= 0*64+24 TGA= (120),= 24
= 576+24
= 600

2. GCCTAGAGA GCC=(233),=31
=31*64°+ 18*64+8 TAG=(102),=18
=31*4096+18*64+8 AGA= (020),=8
=126976+1152+8
=128136.

3. 757739=AAG CGA CCC GGC

4|757739
4| 189434.--3=C
4| 47358---2

4| 11839---2=G
4| 2959.--3

4 739...
4 184---
4 46
4 11---
4 2...
4 0---

Note that, the approach of using codons as digits
congrainsthelength of aDNA strand representing a number
to be a multiple of 3. This constraint on the length will be
exploited to distinguish the floating point numbers from
integers, asdescribed | ater.

Example 3.2.2

1. AGT GTA 2.AGT GTA
=(020120), =(9Y),, WhereY=24
= O* 4+2% 4440* 43+ 1% 42+2% 440 = 9*64'+Y
=512+64+16+8 =576+24
=600 =600
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So far, we have described a way to represent non-
negative integers. We can extend our system to represent
negative integersaswell asreal numbers.

3.3. Representing Negative Integers

Oneway to represent the negative numbers could beto make
it aconvention that every negative number startswith acodon
whose numerical equivalent is“0” with respect to the DNF
in use. If we use any other codon whose numerical equivalent
isnon-zero, it would create ambiguity astowhether thefirst
codon representsthe sign or thefirst digit of the number. In
contrast, if we use the codon whose numerical equivalent is
0, the net value remainsthe same, because appending O prior
to a number does not alter the net value. In the example
number system that we have described above using the DNF
givenin equation (1) (see section 3.1), the codon AAA equals
“0". Hence, in this number system, the negative numbers
can be represented with DNA strands starting with AAA.

Example 3.3.1
1. AAATGCCGA
= - (123320),
= - (1024+512+192+48+8+0)
=-1784.
2. -B1=AAACAC.
Thefollowing exampleillustrates the ambiguity caused

by using arandomly chosen codon whosevalueis non-zero
torepresent the minussign.

Example 3.3.2: The DNA equivalent of 75isAAT AGC.
Choosing AAT to represent the negative sign, we have
75=AATAGC=-(023),=-11.

Hencethe codon AAT failsto unambiguously represent
the negative sign. The same holdstrue for any codon whose
numerical equivalent is non-zero. Therefore, one has to
choose the codon whose numerical equivalent is O to
represent the negative sign.

3.4. Representing Real Numbers

Torepresent thereal numbers, et usfix the first nucleotide
to represent the sign and reserve some fixed number of
codons to represent theintegral part (unsigned) of thereal
number followed by some fixed number of codons to
represent the decimal part.

To convert areal number into a DNA sequence, we will
first set the nucl ectide representing the sign accordingly, find
the base 64 equivalent of thenumber and replace each base
64 digit in the so-obtained base 64 representation of thereal
number by itsequivalent codon. In doing this, one particular
DNF ischosen and is fixed.

Similarly to find the numerical equivalent of a DNA
strand, we will first check whether the strand is of length
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3ptl for somep =0, 1, 2, 3 ... If not, the corresponding
DNA strand does not represent areal number. If the length
condition issatisfied, then first wewill set thesign by looking
at the first nucleotide. Next, by knowing the DNF in use,
each codon is recognized with its equivalent number.
These numbers are the digits of the base 64 representation
of the real number we are looking for. Hence by
knowing the number of codons used to represent integral
part and the decimal part, one can computethe required real
number.

The number of codonsthat have to be reserved depends
upon the magnitudes of numbers present in the
problem under consideration. Suppose in a particular
case, the highest real number hasitsinteger part equal to an
integer “a@” . Onehastofindthefirst natural number nsuch
that a < 64n. Then n number of codons can be used to
represent the integer part. And the number of codons to
represent the precision can be chosen depending on the
maximum number of significant digitsin the precision to be
used.

Definition 3.4.1: DNA Sign Function

Thesign of thereal number isdetermined by a1 - 1 function
from the set {+, -} to asubset of {A, T, G C}. There are
exactly 4C, * 2! = 12 such functions. We call each of these
12 functionsa DNA sign function (DSF).

Suppose that 5 codons are used to represent integral
part and 5 codons are used for decimal part. Then using the
DNF defined in equation (1) (see section 3.1) to determine
codons asnumerical digits, we have:

GAGT TAA CGT GAT ATAATA TCA CTT CCT AAA

= + (9% 644+ 16* 64°+57* 64°+33* 64+4+4/64+28/642+53/
643+61/64°+0/64°)

= 150094944 + 4194304 +233472 +2112 + 4 + 0.0625 +
0.0068359375  +  0.000202178955078125
+0.000003635883331298828125

= 155424836.069541752338409423828125.

3.4.1. A Better Representation for Real Numbers

An improvement for the representation of real numbers
presented in previous section could be to add two more
codons as follows: the two codons are added after the first
nuclectidethat representsthe sign of thereal number. These
two codons are used to represent the number of codons in
the integral part and the precision part respectively. This
modified representation can be used to represent the above
example asfollows:

[Number of codonsin the precision]
G ATT ATT AGT TAA CGT GAT ATAATA TCA CTT CCT AAA

[Number of codons in integer part]
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We prefer this modified representation of real numbers
tothepreviousrepresentation. Inthelater sections, whenever
werefer to the DNA strand representation of areal number,
unless otherwise mentioned, it is this improved method of
representation that we refer to and not the one that is
described in the example 3.4.1 or prior to it. But we have
come acrossthe previous method for better understanding.
However, it should be noted that, thisrepresentation putsa
theoretical limit on the magnitude of numbersthat could be
represented. For instance, thefact that one codon is used to
indicate the number of codons constituting the integer part
implies that the integer part is at most 64%-1. While
representing higher magnitude numbers can be naturally
achieved by increasing the number of codonsto indicate how
many codons will be used in integer part and precision, we
believe that one codon as described above is sufficient for
most practical purposes.

Example 3.4.2: Using thefunctionsdefined in (1) and
(2) (seesection 3.1 and example 3.4.1) and considering five
significant digitsin precision we have

150.96 = GAAGATTAAGTTGCCTTCAAGGACCTTC

Because

0.96*64=61.44 61 - CCT
0.44*64=28.16 28 > TCA
0.16*64=10.24 10 - AGG
0.24*64=15.36 15 > ACC
0.36*64=23.04 23—>TTC

3.4.2. Computer Algorithm

We summarize the number system described aboveinto two
computer algorithms. The first procedure DNA-
NS DNA_to NUMBER(DNA strand) converts the DNA
strand into its equivalent number.

The second procedure DNA-NS NUMBER_
to_DNA(Number) doesthe opposite; it converts the Number
toits equivalent DNA strand representation.

3.4.2.1. Algorithmto convert a DNA strand into a Number

(a) DNA-NS DNA to NUMBER (DNA strand)
L « length of DNA strand;
If (L % 3=0) then
Number < Convert_to _integer (DNA strand);
elseif (L% 3=1andL > 1) then
Number < Convert_to_real (DNA strand)
elseDNA strand isinvalid
Exit
(b) Convert_to_integer (DNA strand)
i«1
num < 0
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While (DNA stand [i] = EOF)
num = num * 4 + atoi (DNA strand[i])
i«<i+1

sign(DNA strand, num)

return (num)

(c) atoi (ch)

Input: A DNF / Thisprocedureisgiven for DNFin (1).
Thereturn statements that appear in the subsequent linesin
the procedure will change according to the DNF that is
inputted /

if ch="A")
return O
if ch="T")
return 1
if ch="G")
return 2
if ch="C")
return 3

(d) sign (DNA strand, num)
if (thefirst three charactersin DNA strand areAAA)
then
return( - num)
ese
return( num)

(e) Convert_to real (DNA strand)
S« DNA strand [1]

Codl « the string formed by 2™, 3 and 4™ characters in
the DNA strand

Cod2 « the string formed by 5™, 6" and 7*" charactersin the
DNA strand For j « 8to (Codl1+7)

Str1[j — 7] « DNA strand [j]
For k « (Cod1+8) to (Cod1+Cod2+7)
Str2 [k —Cod1 —7] « DNA strand [K]
A « absolutevalue of (Convert_to_integer (Strl))
B « Convert_to_precision (Str2)
Num « Set_sign(A.B, S)
return (Num)

() Convert_to_precision (str)
i«1

den « 4

sum<«0
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while (str [i] # EOF)
Sum <« sum + atoi(str[i])/den
den«den* 4

return (sum)

(@) Set_sign(num, S

Input: A DSF/ Thisprocedureisgiven for the DSF defined
in Example3.4.1/

If (S='G")
then return (num)
elsereturn (- num)

3.4.2.2 Algorithmto convert a number into a DNA strand

(a2) DNA-NS NUMBER to DNA (Number)
If Number isreal
then
DNA strand «— Real_to_ DNA (Number)
If Number isinteger
then
DNA strand « Integer_to_DNA (Number)

(b) Integer_to DNA (Number)
DNA strand < Conversion (Number)
If (Number < 0) then
DNA strand «— concatenation of (‘ AAA’, DNA strand)
return (DNA strand)

(c) Conversion (Number)
i«1
j<1
num <« absol ute val ue of Number
while (num > 0)

r<num%4

strand [j] <« itoc (r)

jej+ L

num <« num/10
L « (j—1) /thelength of “strand” /
If (L%3 = 0)

For k « 1to L%3

strand «— concatenation of (‘A’, strand)

return (strand)

(d) itoc(r)
/this procedure changes according to the DNF /



54

if (r=0)

return (‘A’)
if (r=2)

return (‘T")
if r=2)

return (‘G’)
if (r=3)

return (‘C’)

(e) Real_to DNA (Number)
n <« the least possible number such that 64n > Number

m <« the number of codonsrepresenting the precision digits
required to be displayed (dependson theuser’ s requirement)

DNA strand « conversion (n)
DNA strand «— concatenation of (DNA strand, conversion

(m))
Num « integer part of Number

DNA strand « concatenation of (DNA strand, conversion
(Numy))

F <~ Number — Num
DNA strand «— concatenation of (DNA strand, findflo (Fm))
if (Number < 0)
then

DNA strand «— concatenation of (*C’, DNA strand)
ese

DNA strand «— concatenation of (‘G’, DNA strand)

(f) findflo (F, m)
fori« 1tom
F«F*64
R « integral part of F
Str « concatenation of (Str, conversion (R))
F«F-R
return (Str)

4. POLYNUCLEOTIDE NUMBER SYSTEM

Ancther straight forward method for representing numbers
asDNA strandsisto find the base 4 equivalent of the number
and to replace its digits by nucleotides using a DNF. Note
that negative numbers can berepresented asa DNA strand
with its first nucleotide equivalent to zero in the DNF in
use.

But with this representation, there is no way to
distinguish between integersand real numbers, because such
sequences could be of arbitrary length. In other words, the
function u from the set of all DNA strands to the set of all
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real numbers defined by 4 (X) = N, where x is the DNA
representation of N under the present representation scheme,
isnot one—one.

However, we shall call this straight forward number
system as polynucleotide number sysem (PN-NS). Thismay
be useful in some situations where it is known that only
integers or only real numbers are dealt with (for example
see section 3.1 or 3.4).

4.1. Computer Algorithm for Polynuclectide Number
System

Since we have already observed that the function u defined
above isnot one — one, we present only one algorithm that
converts a given number into its polynucleotide
representation.

(8) PN-NS_NUMBER_to_DNA (Number)
If Number isreal then

DNA strand «— Real_to_DNA (Number)
If Number isinteger then

DNA strand « Integer_to_DNA (Number)

(b) Integer_to DNA (Number)
DNA strand < Conversion (Number)
If (Number < 0) then
DNA strand «— concatenation of (‘ A", DNA strand)
return (DNA strand)

(c) Conversion (Number)
<1
j<1
num <« absol ute val ue of Number
while (num > 0)

r<—num%4

strand [j] <« itoc (r)

jeit L

num < num/10
return (strand)

(d) itoc(r)
/this procedure changes according to the DNF /
if (r=0)
return (‘A’)
if r=1)
return (‘' T")
if r=2)
return (‘G’)
if (r=3)
return (‘C’)
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(e) Real_to DNA (Number)

n <« the least possible number such that 4" > Number

m <« the number of nucleotides (representing the precision)
to be displayed (depends on the user’s requirement )

DNA strand « conversion (n)
DNA strand « concatenation of (DNA strand, conversion
(m))
Num « integer part of Number
DNA strand « concatenation of (DNA strand, conversion
(Numy))
F <~ Number —Num
DNA strand «— concatenation of (DNA strand, findflo (F,m))
If (Number < 0)
then

DNA strand « concatenation of (‘C’, DNA strand)
ese

DNA strand « concatenation of (‘G’, DNA strand)

(f) findflo (F, m)
fori«< 1tom
F«F*64
R « integral part of F
Str « concatenation of (Str, conversion (R))
F«F-R
return (Str)

5. AN EFFICIENT SEARCHING ALGORITHM USING
DNA COMPUTATION

Several computational problemsrequireaparticular item to
be searched from a given list of items. For example in a
database, one has to search a number of times, particular
record that could beidentified uniquely by akey. Thereare
several algorithmsfor searching [16].

The most basic method that works all the time is the
linear search. When thereisalist of “n” items, thisalgorithm
performsthetask in O(n) time. Another method isthe binary
search, which works when the given list is sorted either in
ascending order or in descending order. This algorithm
requires O(log n) timeto search aparticular itemfrom alist
of “n” items. Another method uses binary search tree. In
this method thelist of “n” itemsis organized into a binary
search tree and searching takes O(log n) time.

Now, we present a method that performsthetask in a
unit time, once the input is given, irrespective of the input
size. This method uses the novel idea of DNA annealing
property.

5.1. DNA Algorithm for Searching

Supposewe haveaset of numbersS={a , a,, a,...a} (where
k> 1) and atarget number N. Let N betheitemto be searched
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in the set S. We present the new DNA agorithm to achieve
the search bel ow as a stepwi se procedure.

Sep 1. Encode the given numbers{a,, a,, a,... 3} as
follows:

The DNA strand corresponding to a (1<j <K)consists
of three (logical) parts, namely:

(1) The Polynucl eotide representation of the number |
(refer to the definition of a Polynucleotide number explained

in section 4), which specifies the position of the number a
inthelist

(2) A special codon, “GGG” to recognize that the
number is from the list (this is essential to prevent
‘unnecessary’ annealing of DNA strands corresponding to
different numbersin theset S

(3) The DNA representation of the number a.
The Polynucl eotide number representing j is realized
with thefunction
f(0)=C,f(1) =G, f(2) =A,f(3) =T.
The DNA number corresponding to @ is realized with the
function
f(0)=A,f(1)=T,f(2 =G, f(3)=C.
And the strand corresponding to gj isthe concatenation
of all thethree strandsdescribed above.

Example 5.1: Suppose that the task is to search the
number 23 fromthelist of numbers8, 2, 16, 23, 61, and 55.
Table 5.1 shows encryption of each g

Table 5.1
Encryptions of Each Number a,

Given Number Position Value a
8=a, G AGA GGGGAGA
2=a, A AAG AGGGAAG
16=4a, T TAA TGGGTAA
23=a, GC TTC GCGGGTTC
61=a, GG CCT GGGGGCCT
55=a, GA CTC GAGGGCTC

Sep 2: Synthesize DNA strand equivalent tothe number
N which isto be searched, with thefunction f(0) =T, f(1) =
A, f(2) = C, f(3) = G and pad special codon CCC before
the strand equivalent to the number N. This special codon
works as an identification mark for the number to be
searched. For the above example, N = 23 and hence the
encoding of N is: CCCAAG.

Sep 3: Pour all these strandsinto a 0.5 ml microfuge
tube. Mix the components well, spin briefly, and incubate
the mixture at 4 degrees centigrade to allow the annealing
reaction take place. If thetarget srand findsamatch, it binds
to its complement to form adouble strand.

For the above example, the following double strand
would be formed.
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GCGGGTTC
CCCAAG

Sep 4: The so-formed double strand is separated by
using hydroxyapatite column chromatography [17]. If double
strand is not formed, then column chromatography will not
give any result meaning that theitemis not found. Success
of the column chromatography experiment for the above
example indicates the presence of the following double
strand:

GCGGGTTC
CCCAAG

Sep 5: To read the position of the item found, an
enzyme called Tagq DNA polymerase is added to the double
strand. As a result, the full-length double strand will
be formed. For the above example, the result of this step
would be the formation of the following full-length double
strand:

GCGGGTTC
CGCCCAAG

Step 6: Finally, the full-length double strand is
sequenced and the position is read. In the above example,
the position isread as GC which isequal to 4, which means
theitemisfound at location 4 in thelist.

Complexity: Step 3 is the place where searching is
performed. The parallelism offered by DNA is highly
exploited at this step. The DNA annealing is so powerful
that the complementary strands bind together just in
nanoseconds irrespective of the number of other strands
present in the centrifuge. Each of the subsequent steps also
require just a constant time irrespective of the number of
itemsin the given set. Thus the above agorithm performs
searching in aconstant time.

6. A CLASSICAL CRYPTOSYSTEM USING DNA

6.1. Introduction to Cryptography

Cryptography is the study of coding messages [18] into
a hidden form such that only some people who share
a particular secret information with the sender will be
able to decode the message and retrieve the actual
information.

Theactual messageis called the plain text and the coded
message is called the cipher text. The set of al phabets that
congtitute the plain text messagesis denoted by P and that
of cipher text messages is denoted by C.

An enciphering transformation or a cryptosystemisa
1-1 function f: P—C that converts the plain text message
into a cipher text. Note that, for every enciphering
transformation the inverse function iswell defined. There
are many cryptosystems designed using conventional
mathematics [18]. Now, we shall describe a new
cryptosystem which is constructed on an entirely different
background, namely DNA.
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6.2. DNA Cryptosystem
Let us describe the cryptosystem below in multiple steps.

Sep 1: Let theplain text bethe English language with
some punctuation marks namely ‘ space’, ‘comma’ and *full
stop’ etc.:

i.e, P={A,B,C,....Z,,,,.} 3)
Let the cipher text alphabet be the following set of 64

characters:
C={A,B,C,....Z,ab,c,....2,+-*/,%@#3,!,2><}(4)

Associate the values O, 1, 2... 63 with each of the
charactersin C respectively. This correspondence between
the elements of C and numbers from 0 to 63 is shown in
Table6.2.1 Infact, the cryptosystem that we propose works
well with the same set C (described in (4)) independent of
theset Pi.e. for any P we can follow the same method that
isbeing described to convert the plain text message unitsto
the cipher text over the alphabet C. We have fixed P as in
(3) just for the sake of convenience.

Table 6.2.1
The Correspondence between the Cipher Text Characters
(Elements of C) and Number s from O to 63

Element Number Element Number
of C assigned of C assigned
A 0 g 32
B 1 h 33
C 2 i 34
D 3 i 35
E 4 k 36
F 5 | 37
G 6 m 38
H 7 n 39
| 8 o) 40
J 9 p 41
K 10 q 42
L 11 r 43
M 12 s 44
N 13 t 45
(0] 14 u 46
P 15 \ 47
Q 16 w 48
R 17 X 49
S 18 y 50
T 19 z 51
U 20 + 52
\ 21 - 53
w 22 * 54
X 23 / 55
Y 24 % 56
Z 25 @ 57
a 26 # 58
b 27 $ 59
c 28 ! 60
d 29 ? 61
e 30 > 62
f 31 < 63
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Sep 2: Assign DNA sequences to each element of P
such that thelength of each strand isamultiple of 3. Let us
fix thelength of our strandsto 6 for the current discussion.
At thisstep, it ismandatory that no two distinct el ements of
P are assigned the sasme DNA strand i.e., there should bea
one— one correspondence between the elements of the set P
and their corresponding DNA codes. The choice of DNA
sequences that are assigned to elements of P is purely on
the random basis. One such correspondence given in Table
6.2.2 is chosen for our discussion.

Table 6.2.2
Assignment of DNA Srandsto the Plain Text Characters

Al phabet DNAcoding Alphabet DNAcoding
A GCGATA P GAGCGA
B CGATTC Q CCGCAG
C ATTAGC R TTTGGG
D AGTACA S AGCTAG
E ACGAAT T GGAATT
F GATGCA U CCTTGG
G GGCAAC \Y ACGTTT
H CATCAT W GGTTAA
| CTGGTT X TTCCGG
J ATAGCT Y TGCATG
K TATTCG VA CCCcCcC
L TCGCGA , TTTTTT
M CAATAT AGTAGT
N CTTGAA

(0] AACACA (SPACE) CGCGCG

Encryption (Sep 3 through Sep 6)

Sep 3: Now, collect all DNA strands corresponding to each
character in the plain text messageinto atest tubeto makea
union. For instance, if the plain text messageis“MATHS’,
then the test tube containsthe DNA strands which code for
M, A, T, H and Srespectively. In our examplethisturns out
to be the union of the strands, CAATAT, GCGATA,
GGAATT, CATCAT, and AGCTAG

Sep 4: Now, run PCR (polymerase chain reaction) to
get the complementary sequence[19] for each single strand
present in the test tube. For the above example, the PCR
resultsin obtaining the foll owing double strands.

CAATAT GCGATA GGAATT CATCAT AGCTAG
GTTATA CGCTAT CCTTAA GTAGTA TCGATC

Sep 5: Identify the codonsin the complementary DNA
strands (Table 6.2.3) from the double strandsformed in step
4, and computethe numerical equivalent of each codon using
the following one — one function:

f(A)=0,f(T)=1,f(G)=2,f(C) =3 (5)
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Table 6.2.3
The Codons in the Complementary Strands Obtained in
Sep 4, their Numerical Equivalents, and the Equivalent
Cipher Text Characters

codons Numericale Corresponding
quivalent Character

GTT 37 I
ATA 4 E
CGC 59 $
TAT 17 R
CCT 61 ?
TAA 16 Q
GTA 36 k
GTA 36 k
TCG 30 e
ATC 7 H

Sep 6: The Cipher text isthe sequence of characters of
the set C numerically equivalent to the numbersobtained in
the step 5. From Table 6.2.3 we get the cipher text as
“IE$R?QkkeH” corresponding to the above example.

6.3. Decryption

The person on the receiving end, on receiving the cipher
text, follows the sequence of steps described below in order
to decode the cipher text. This consistsof reading the actual
message and recognizing the numbers equivalent to each
character in the cipher text. Then synthesizes the
corresponding DNA codons, ligatesthem in that order, runs
PCR, logically divides the complementary sequenceinto 6-
base units (the length of the encoding strands) and retrieves
the actual message by looking up the association between
6-base length DNA sequences and plain text characters.
Table 6.3.1 shows the deciphering process. The result
obtained is“MATHS’ asrequired.

6.4. The Secret Key of the Cryptosystem

Table6.2.1, Table 6.2.2 and (4) together congtitutethe secret
key for the cryptosystem described above.

6.5. Security

The cryptosystem described above is not a public key
cryptosystem. But one can increase the security of the
cryptosystem by increasing the length of the DNA strands
assigned to each character in P (That is, by increasing the
length of the DNA strands in the Table 6.2.2). Because, if
thelength of the DNA strandsisn, then the number of trials
needed to correctly guessthe DNA strand corresponding to
aparticular character is4" (in theworst case). Sowhen nis
increased, it would be very difficult for theintrudersto guess
the key, thus increasing the level of security of the

cryptosystem.
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Table 6.3.1
The Table Explaining the Deciphering Process
Cipher text I E $ R ? Q k k e H
Numerical Equivalents 37 4 59 17 61 16 36 36 30 7
Corresponding codons GTT ATA CGC TAT CCT TAA GTA GTA TCG ATC
After PCR: CAA TAT GCG ATA GGA ATT CAT CAT AGC TAG
After dividing
into 6- base units CAATAT GCGATA GGAATT CATCAT AGCTAG
Plain text: M A T H S
6.6. Complexity [7] WangX.,BaoZ., Hu J., Wang S., Zhan A.: Solving the
PCR generates the complementary strands of each DNA SAT Problem usingaDNA Computing Algorithm based
strand in parallel. This massive parallelism offered by DNA on Ligase Chain Reaction. Biosystems 2008, 91(1): 117-
makes this cryptosystem more efficient over the general 125.
cryptosystems, which encode or decode messages letter by [8]  IgnatovaZ., Zimmermann K. H., Martinez-Pérez |: DNA
letter using some mathematical function (enciphering/ Computing Models: Springer-Verlag New York Inc; 2008.
de_:ci pheringtransformations). Especially thiscryptosystem [9]  Qian L., Winfree E.: A Simple DNA Gate Motif for
will be more appropriate when the message to be encoded Synthesizing Large-scale Circuits. DNA Computing
or decoded is very lengthy. 2009, 5347/2009: 70-89.
[10] Qian L., Soloveichik D., Winfree E.: Efficient Turing-
7. CONCLUSION Universal Computation with DNA Polymers. In: The 16th
In this paper, we presented a DNA number system to International Conference on DNA Computing and
represent numbers in terms of DNA strands instead of Molecular Programming: June, 14-17 2010; Hong Kong
numerical digits. We have described a search method that University of School of Science and Technology, Hong
performs the task in a unit time, once the input is given, Kong, China; 2010.
nr@pedlveof_themputsze Further,_weproposed adasscal [11] Liu X, Wang S: Development of an in Vivo Computer
cryptosystemin termsof DNA algorithm. for SAT Problem. Mathematical and Computer
Modelling 2010, In press.
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