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Abstract: In this paper, an adaptive fuzzy wavelet neural network control (AFWNNC) system composed of a neural controller
and a robust compensator is proposed. The neural controller using a fuzzy wavelet neural network (FWNN) is designed to
approximate an ideal controller, and the robust compensator is designed to ensure system stable. In many previous published
papers, to ensure the stability of the intelligent control system, a switching compensator is designed to dispel the approximation
error introduced by the neural controller. However, the switching compensator usually causes chattering phenomena. The
proposed robust compensator is designed to eliminate the approximation error without occurring chattering phenomena.
Moreover, a proportional-integral-derivative (PID) type adaptation tuning mechanism is derived to speed up the convergence
of the tracking error and controller parameters. Finally, the proposed AFWNNC system is applied to a chaotic system and a
DC motor. The simulation and experimental results verify the system stabilization, favorable tracking performance and no
chattering phenomena can be achieved by the proposed AFWNNC system.
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1. INTRODUCTION

Neural network technology is an effective tool for dealing
with complex nonlinear processes that are characterized with
ill-defined and uncertain factors. The key factors for the use
of neural networks in the control field are the properties that
they have such as: learning and generalization abilities,
nonlinear mapping, parallelism of computation, and vitality
(Lin and Lee, 1996). Several adaptive neural network
controllers have been successfully applied to solve the
problem of identification and control for the uncertain
nonlinear systems (Lin, 2005; Tang et al., 2006; Wang et
al., 2008; Hsu, 2009). These approaches hinted the neural
networks as a “black box”. It means neural networks can
approximate a continuous function arbitrarily closely over
a compact set. The basic issue of the adaptive neural network
control provides online learning algorithms that don’t require
preliminary off-line tuning. Some online learning algorithms
are based on the Lyapunov stability theorem and some online
learning algorithms are based on the gradient decent method.

For solving the majority of approximation problems,
the neural networks require a large number of neurons.
Furthermore, the neural networks may get stuck on a local
minimum of the error surface, and the network convergence
rate is generally slow. A suitable approach for overcoming
these disadvantages is the use wavelet functions in the
network structure to construct the wavelet neural network
(WNN) (Zhang, 1997; Billings and Wei, 2005; Chauhan et

al., 2009; Lin et al., 2009). The wavelet function is a
waveform that has limited duration and an average value of
zero. Then, the WNN has a nonlinear regression structure
that uses localized basis functions in the hidden layer to
achieve the desired input-output mapping. The integration
of the localization properties of wavelets and the learning
abilities of neural network result in the advantages of WNN
over neural network for complex nonlinear system modelling
(Billings and Wei, 2005; Lin et al., 2009). There has been
considerable interest in exploring the applications of the
WNN to deal with the non-linearity and uncertainty of
control problems (Sousa et al., 2002; Lin et al., 2006 and
2009; Hsu et al., 2006 and 2009; Khan and Rahman, 2008).
To achieve better learning performance, Ho et al. (2001)
have proposed a fuzzy wavelet neural network (FWNN)
based on multi-resolution analysis of wavelet transforms and
fuzzy concepts. The goal of the introduction of fuzzy model
into WNN is to improve function approximation accuracy.
Based on this advantage, several published papers used the
FWNN to deal with the uncertain nonlinear systems (Lin,
2006 and 2009; Zekri et al., 2008).

Since the number of hidden neurons in the neural
network is finite for the real-time practical applications, the
approximation error introduced by the neural network is
inevitable. To ensure the system stability, a switching
compensator was designed to dispel the approximation error.
However, the switching compensator will cause chattering
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phenomena to wear the bearing mechanism (Lin and Hsu,
2004). To reduce the chattering phenomenon, the sign
function in compensator can be replaced by a saturation
function (Lin and Hsu, 2004). However, there is a trade off
problem between chattering and control accuracy rises. Some
researchers using a fuzzy system to estimate the
approximation error bound; however, the fuzzy rules should
be pre-constructed by time-consuming trial-and-error tuning
procedure (Lin et al., 2005).

Moreover, though these FWNN-based adaptive neural
network control systems (Lin, 2006 and 2009; Zekri et al.,
2008) can guarantee the system’s stability, the convergence
of the controller parameters and tracking errors may be slow.
If the learning-rate parameters are too small, the convergence
of the tracking error and controller parameters can be easily
guaranteed but the convergence speed is very slow. If the
learning-rate parameters are too large, the parameter
adaptation laws may become unstable. To solve this problem,
a variable learning rate is determined (Lin and Peng, 2004;
Lin et al., 2007). Lin and Peng (2004) used a discrete-type
Lyapunov function to determine the learning-rate parameters
of the adaptation laws. However, the exact calculation of
the Jacobian term of the system cannot be determined due
to the unknown control dynamics. Lin et al. (2007) used a
genetic algorithm to determine the learning-rate parameters
of the adaptation laws; however, the computation loading is
heavy.

In this paper, an adaptive fuzzy wavelet neural network
control (AFWNNC) system composed of a neural controller
and a robust compensator is proposed. The neural controller
uses a FWNN to approximate an ideal controller; and the
robust compensator is utilized to eliminate the approximation
error between neural controller and ideal controller without
occurr ing chatter ing phenomena. To speed up the
convergence of the tracking error and the controller
parameters, this paper derives a proportional-integral-
derivative (PID) type adaptation law based on the Lyapunov
stability theory, thus not only the system stability can be
guaranteed but also the convergence can be speeded up.
Finally, the proposed AFWNNC system is applied to a
chaotic system and a DC motor. The simulation and
experimental results show the high tracking performance and
no chattering phenomena can be achieved by the proposed
AFWNNC system.

2. DESCRIPTION OF FWNN

Assume there are m rules in FWNN can be described as
(Zekri et al., 2008; Lin, 2009)
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For ease of notation, (2) can be expressed in a vector
form as

 = T (z, , c) (4)

where 1 2[ , , , ]T
m� � � �α � ;  1 2[ , , , ]T

m� � � � �θ �

1 1 2 2[ , , , ]T
m m� � � � � �� ;  1 2[ , , , ]T

m�σ σ σ σ�  and

1 2[ , , , ]T
m�c c c c� . There is an ideal FWNN can uniformly

approximate any nonlinear function � such as (Ho et al.,
2001)

* * * *( , , )T� � � �α θ z σ c (5)

where * and * are the optimal parameter vectors of  and
, respectively; * and c* are the optimal parameter vectors

of  and c, respectively; and � is the approximation error.
However, the optimal parameter vectors are unknown, so it
is necessary to estimate the values by an estimated FWNN
as following

ˆˆ ˆ ˆˆ( , , )T� � α θ z σ c (6)

where α̂  and θ̂ are the estimated parameter vectors of 

and , respectively; and ˆ  and ĉ are the estimated parameter
vectors of  and c, respectively. Then, the estimation error
is obtained as

* * ˆˆˆ T Ty� � �� � � � �α θ α θ�

ˆ ˆˆ ˆ( ) ( )T T� � � � � �α α θ θ α θ��

ˆ ˆT T T� � � � �α θ α θ α θ� �� � (7)

where * ˆ� �α α α�  and ˆ-�θ θ θ� * .  To speed up the

convergence of the FWNN learning, the optimal parameter
vector * and the estimated parameter vector α̂  decompose
into three parts as (Golea et al., 2002)

* * * *
P I D� � � � � �P I Dα α α α (8)

ˆ ˆ ˆ ˆ
P I D� � � � � �P I Dα α α α (9)
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where *
Pα , *

Iα  and *
Dα are the proportional, integral and

derivative terms of  *, respectively; ˆ
Pα , ˆ

Iα and ˆ
Dα are the

proportional, integral and derivative terms of α̂ , respectively;
and �

P
, �

I
 and �

D
 are positive coefficients specified by

designers. Thus, α� can be expressed as

ˆ ˆ
I P D� � � � � � � �I P Dα α α α� � (10)

where ˆ*� �I I Iα α α�  and * *
P D� � � � �P Dα α . Substituting (10)

into (7), it is obtained that

ˆˆ ˆ ˆ( )T T T
I P D� � � � � � � � � � � � �I P Dα θ α α α θ α θ� �� � �

ˆ ˆ ˆ ˆˆ ˆ ˆT T T T T T
I P D� � � � � � � � � � � �I P Dα θ α θ α θ α θ α θ θ� �� � (11)

The Taylor expansion linearization technique is
employed to transform the nonlinear function into a partially
linear form, so (Lin, 2009)

T T� � �θ A σ B c h� �� (12)

where * ˆ� �σ σ σ� ; * ˆ� �c c c� ; h is a vector of high order
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yields

ˆ ˆ ˆ ˆˆ ˆ ˆ ( )T T T T T T T T
I P D� � � � � � � � � � � � � � �I P Dα θ α θ α θ α A σ B c h α θ θ�� � � ��

ˆ ˆ ˆˆ ˆ ˆ ˆT T T T T
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where ˆ ˆT T T�α A σ σ Aα� � and ˆ ˆT T T�α B c c Bα� �  are used since

they are scalars; and ˆˆ T T� � � � � � �Tα h α θ θ�� denotes the

approximation error which is assumed to be bounded by

0 E� � �  in which E is a positive constant.

3. DESIGN OF THE AFWNNC SYSTEM

Consider a class of n-th order nonlinear systems

x(n) = f(x) + gu (14)

where ( 1)[ , ,..., ]n Tx x x ��x � is the state vector of the system

which is assumed to be available for measurement; f(x) is a
real continuous function; g is the control gain of the system;
and u is the control input. The control objective is to find a
control law so the state trajectory x can track a trajectory
command x

c
. To determine the control law, a tracking error

is defined as

e = x
c
 – x. (15)

If the system parameters in (14) are known, there exists
an ideal controller as (Slotine and Li, 1991)

* 1 ( ) ( 1)
1 1[ ( ) ... ]n n

c n nu g f x k e k e k e� �
�� � � � � � �x � (16)

where k
i
, i = 1, 2,..., n are nonzero positive constant. Apply

this ideal controller (16) into system dynamic (14), it can be
obtained

( ) ( 1)
1 1... 0n n

n ne k e k e k e�
�� � � � �� . (17)

If the parameter k
i
 is selected to satisfy that all roots

will lie on left half side of s-plane, it implies lim 0
t

e
��

� .

However, because the system dynamics in (14) are actually
unknown, the ideal controller (16) cannot be utilized.

In this paper, the AFWNNC system shown in Fig. 1 is
designed to resolve this problem which the controller output
is designed as

Figure 1: The Block Diagram of the AFWNNC System
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where a sliding surface is defined as
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... ( )
t

n n
n ns e k e k e k e d� �
�� � � � � � �� (19)

The neural controller u
nc

 utilizes a FWNN to mimic the
ideal controller, and the robust compensator u

rc
 is designed

to compensate for the difference between the ideal controller
and neural controller. In the sliding-mode control approach,

the sliding condition is derived as 0s s ��  such that the

stability and convergence of s � 0 as t ��� can be
guaranteed for the closed-loop system (Slotine and Li, 1991).
Substituting (18) into (14) and using (16) and (19), yields

( ) ( 1) *
1 1... ( )n n

n n nc rce k e k e k e g u u u s�
�� � � � � � � �� � (20)

By using the approximation property (13), (20) can be
rewritten as

ˆ ˆ ˆˆ ˆ ˆ ˆ( )T T T T T
I P D rcs g u� � � � � � � � � � �I P Dα θ α θ α θ σ Aα c Bα� �� �

(21)
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In this paper, the robust compensator is designed as

ˆ sgn( )

ˆ ˆ ˆrc T
P I

E s for s
u

E s E s dt for s

� � ��� �
� � � ��� � ς ξ (22)

where Ê , ˆ
PE  and ˆ

IE  are free controller parameters; � > 0

is the thickness of the boundary layer; ˆ ˆˆ [ , ]T
P IE E�ς ; and

[ , ]Ts sdt� �ξ . When the sliding surface is within the

boundary layer  ( s � � ), the robust compensator is defined

as ˆ ˆ
rc P Iu E s E s dt� � � ; and when the sliding surface is

outside the boundary layer ( s � � ), the robust compensator

is defined as ˆ sgn( )rcu E s� . The parameters Ê , ˆ
PE  and

ˆ
IE  are not known in advance. To guarantee the stability of

the proposed AFWNNC system, two cases are considered
separately depending on the value of  |s|.

Case 1: For |s| > �, a Lyapunov function is defined as

2 2
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where ˆE E E� �� . Differentiating (23) with respect to time

and using (21), it is obtained that
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Choose the adaptive laws as

ˆˆ s� � � �I Iα α θ��� (25)

ˆˆ s�� � � ��σ σ Aα��� (26)

ˆ ˆc s� � � ��c c Bα��� (27)

then (24) can be obtained

1
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rc P D D
E

g
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�P D P Pα θ α θ α α ��� � � (28)

Since ˆ
Pα , ˆ

Iα  and ˆ
Dα are the proportional, integral and

derivative terms of α̂ , respectively; the controller parameter
vectors are chosen as

ˆˆ s�Pα θ (29)

ˆ ˆ�D Pα α� (30)

and the approximation error bound estimation law is
designed as

ˆ
EE E s� � � ����� (31)

then (28) can be obtained

1
ˆ ˆˆ ˆ ( )T

PV g s gE s g g E E s� � � � � � �P Pα α�

ˆ ˆT
Pg s gE s g� � � � � P Pα α

g s gE s� � �

( ) 0g s E� � � � � . (32)

Since 1 ˆ( , , , , , , )V s E tI Pα α σ c� �� ��  is negative semi-definite,

that is 1 ˆ( , , , , , , )V s E tI Pα α σ c �� ��  1 ˆ( , , , , , ,0)V s E� I Pα α σ c �� �� ,  i t

implies that s, ˆ, , ,I Pα α σ c� ��  and E� are bounded. Define the

following term

1( ) ( )t gs E V� � � � � � � (33)

and integrate �(t) with respect to time, then it is obtained
that

1 10
ˆ ˆ( ) ( , , , , , ,0)- ( , , , , , , )

t
d V s E V s E t� � � �� I P I Pα α σ c α α σ c� �� � � �� �

(34)

Because 1 ˆ( , , , , , ,0)V s EI Pα α σ c �� ��  is bounded and

1 ˆ( , , , , , , )V s E tI Pα α σ c �� ��  is nonincreasing and bounded, the

following result can be obtained

0
lim ( )

t

t
d

��
� � � � �� . (35)

By Barbalat’s Lemma, it shows lim 0
t��

� � . That is

s � 0 as t ��� (Slotine and Li, 1991). As a result, the
AFWNNC system is asymptotically stable when the sliding
surface is outside the boundary layer (|s| > �).

Case 2: For |s| � �, a Lyapunov function is defined as

2

2
ˆ ˆ

2 2 2 2 2 2� �

� �� �
� � � � � �� �

� � �� �� �
I I P P

σ σ c c ς ς
α α α α

� � � �� �
� �

T T T
T TI D

c

s
V g (36)

where the positive constant �� is the learning rate; * ˆ� �ς ς ς�

and �* is the optimal value for � as defined

2

* ˆarg  min sup sgn( )T

R s R

E s
� �

� �� �� �� �ς
ς ς ξ . (37)

Taking the derivative of Lyapunov function (36) and
using (25)-(30), yields
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g
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�
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�� �� �
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It can find ˆTς ξ lies in the first and third quadrant and

ˆ 0Ts �ς ξ  for s = 0. It concludes * *T Ts s�ς ξ ς ξ . If the
adaptation laws is chosen as

ˆ s�� � � ��ς ς ξ��� (39)

then (38) can be rewritten as

2 ˆTV s g sg� � � ς ξ�

*TE s g s g� � ς ξ

*( ) 0T E s g� � � �ς ξ . (40)

Similar to the proof of (32), it can be similarly shown
that s � 0 as t ���. As a result, the AFWNNC system is
asymptotically stable when the sliding surface is within the
boundary layer (|s| ���).

4. SIMULATION AND EXPERIMENTAL RESULTS

In this section, the proposed AFWNNC system is applied to
a chaotic system and a DC motor to verify its effectiveness.
It should be emphasized the development of the AFWNNC
system doesn’t need to know the knowledge of the system
dynamics. For practical implementation, the parameters of
the AFWNNC system can be online tuned by the proposed
adaptive laws.

Example 1: chaotic system

Chaotic system is a nonlinear deterministic system that
displays complex, noisy-like and unpredictable behavior

(Peng and Hsu, 2009). It can be observed in many nonlinear
circuits and mechanical systems. For control engineers,
control of a chaotic system has become a significant research
topic in physics, mathematics and engineering communities.
Consider a second-order chaotic system such as the Duffing’s
equation describing a special nonlinear circuit or a pendulum
moving in a viscous medium (Peng and Hsu, 2009)

( )x f u� �x�� (41)

where f(x) = 3
1 2 cos( )px p x p x q wt� � � �� is the system

dynamics, t is the time variable, w is the frequency, u is the
control effort and p, p

1
, p

2
 and q are real constants. For

observing the chaotic unpredictable behavior, the open-loop
system behavior with u = 0 was simulated with p = 0.4,
p

1
 = –1.1, p

2
 = 1.0 and w = 1.8. The phase plane plots from

an initial condition point (0, 0) are shown in Figs. 2(a) and
2(b) for q = 2.1 and q = 7.0, respectively. It is shown the
uncontrolled chaotic system has different chaotic trajectories
with different q values.

Figure 2: Phase Plane of Uncontrolled Chaotic System
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The proposed AFWNNC system is applied to the chaotic
system. There are 5 rules in the used FWNN with the sliding
surface s as the input variable. The parameters �

ki
 in the

“Mexican hat” mother wavelet function are fixed as �
ki
 = 2

for k = 1 and i = 1,2,..., 5; the parameter vectors of the
Gaussian membership functions are initialized from

 = [0.3, 0.3, 0.3, 0.3, 0.3]T and c = [–1.0, –0.5, 0.0, 0.5,
1.0]T; and the initial output connections �

i
 are initiated from

zeros. The choices of these initial values are through some
trials to achieve satisfactory control performance. There are
15 parameters can be online tuned by the derived adaptive
laws in the used FWNN. The control parameters of the
AFWNNC system are selected as k

1
 = 2, k

2
 = 1, �

I
 = 10,

�
P 

= 1, �
D
 = 0.1, ��= �

c
 = 1, ��= 0.5 and �

E
 =��� = 0.1. All

the gains in the AFWNNC system are chosen to consider
the requirement of stability condition. Properly choosing the
values of k

1
 and k

2
, the desired system dynamics such as rise

time, overshoot, and settling time can be easily designed by
the second-order system. The parameters �

P
, �

I
, �

D
, �� and

�
c
 are the leaning rates of the interconnection weights of

FWNN; and the parameters �
E
 and �� are the leaning rates

of the robust compensator. If the leaning rate parameters
are chosen to be small, then the parameters convergence of
the AFWNNC system will be easily achieved; however, this
will result in slow learning speed.

A performance index I is defined as 2 2( )I e e�� � � . As

�
P
 = �

D
 = 0, the learning algorithm of the proposed method

is the same as conventional AFWNNC system with integral
type adaptation laws in the previous published papers (Lin,
2006; Zekri et al., 2008; Lin, 2009). The simulation results
of the AFWNNC system with integral type adaptation laws
are shown in Figs. 3 and 4 for q = 2.1 and q = 7.0,
respectively. The tracking responses of state x are shown in
Figs. 3(a) and 4(a); the tracking responses of state x�  are
shown in Figs. 3(b) and 4(b); the associated control efforts
are shown in Figs. 3(c) and 4(c); the performance indexes
are shown in Figs. 3(d) and 4(d); and the output connections

α̂  are shown Figs. 3(e) and 4(e) for q = 2.1 and q = 7.0,
respectively. The simulation results show there is no
chattering phenomena in the control effort; however, the
convergence of controller parameter and tracking error is
slow. Then, the developed PID type adaptation law is applied
to the AFWNNC system. The simulation results of the
AFWNNC system with PID type adaptation laws are shown
in Figs. 5 and 6 for q = 2.1 and q = 7.0, respectively. The
tracking responses of state x  are shown in Figs. 5(a) and

6(a); the tracking responses of state x�  are shown in Figs.
5(b) and 6(b); the associated control efforts are shown in
Figs. 5(c) and 6(c); the performance indexes are shown in
Figs. 5(d) and 6(d); and the output connections α̂  are shown
in Figs. 5(e) and 6(e) for q = 2.1 and q = 7.0, respectively.
The simulation results show the proposed PID type
adaptation laws can achieve faster convergence of the

Figure 3: Simulation Results of AFWNNC with Integral Type
Adaptation Laws for q = 2.1
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Figure 4: Simulation Results of AFWNNC with Integral Type
Adaptation Laws for q = 7.0

Figure 5: Simulation Results of AFWNNC with PID Type
Adaptation Laws for q = 2.1
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Figure 6: Simulation Results of AFWNNC with PID Type
Adaptation Laws for q = 7.0

tracking error and controller parameters than that using
integral type adaptation laws.

Example 2: DC motor

The equation of a DC motor can be simplified as
(Damiano et al., 2004; Nouri et al., 2008)

a
a a a a b

di
v r i l k

dt
� � � �� (42)

t aJ B k i� � � ��� � (43)

where r
a
, l

a
, k

b
 and k

t
 are the DC motor parameters that are

unknown; v
a
 and i

a
 are the DC motor voltage and current,

respectively; � is the rotor position; J is the moment of
inertia; and B is the damping coefficient. The standard
canonical form of DC motor can be expressed as

( )x f gu� �x��� (44)

where [ , , ]T� � � �x � �� ;  u =  v
a
;

3 2( ) a a t b

a a

r Br k kB
f x x

J l Jl

� � � ��
� � � �� � � �� � � �

x  and 
t

a

k
g

Jl
� . The

experimental setup as shown in Fig. 7 is based on a field
programmable gate array (FPGA). FPGA is a fast
prototyping IC component. It consists of thousands of logic
gates, some of which are combined together to form a
configurable logic block thereby simplifying high-level
circuit design ([Online] http://www.altera.com/). The
advantage of a controller implemented by FPGA includes
shorter development cycles, lower cost, small size, fast
system execute speed, and high flexibility. The proposed
AFWNNC system is applied to the DC motor. There are 7
rules in the used FWNN with the sliding surface s as the
input variable. The parameters �

ki
 in the “Mexican hat”

mother wavelet function are fixed as �
ki
 = 1 for k = 1 and

i = 1,2,..., 7; the parameter vectors of the Gaussian
membership functions are initial from  = [0.2, 0.2, 0.2,

Figure 7: The Experimental Setup
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0.2, 0.2, 0.2, 0.2]T and c = [–1, –0.6, –0.3, 0, 0.3, 0.6, 1]T;
and the initial output connections �

i
 are initiated from zeros.

The choices of these initial values are through some trials to
achieve satisfactory control performance. Moreover, a
second-order transfer function is chosen as the reference
model for a periodic step command

2

2 2 2

64

2 16 64
n

n n

w

S w S w S S
�

� � � � � (45)

where S is the Laplace operator; � and w
n
 are the damping

ratio and undamped natural frequency. To illustrate the
effectiveness of the proposed design method, a comparison
between a supervisory recurrent fuzzy neural network control
(Lin & Hsu, 2004), the proposed AFWNNC system with
integral type adaptation law and the proposed AFWNNC
system with PID type adaptation law is made.

First, the supervisory recurrent fuzzy neural network
control (Lin & Hsu, 2004) is applied to the DC motor. The
experimental results of the supervisory recurrent fuzzy neural
network control system are shown in Fig. 8. The tracking
response is shown in Fig. 8(a); the associated control effort
is shown in Fig. 8(b); and the tracing error is shown in

Figure 8: Experimental Results of Supervisory Recurrent Fuzzy
Neural Network Control

Fig. 8(c). The experimental results show favorable tracking
performance can be achieved; however, the convergence of
the controller parameter and tracking error is slow. And, there
exists the undesirable control chattering in Fig. 8(b). Then,
the AFWNNC system is applied to the DC motor again. The
control parameters are selected as k

1
 = 6, k

2
 = 12, k

3
 = 8, ��

= �
c
 = 1, ��= 0.5 and �

E
 = ���= 0.1. All the gains in the

AFWNNC system are chosen to achieve good transient
control performance in the experiment considering the
requirement of stability condition. The experimental results
of the AFWNNC system with integral type adaptation law
(�

I
 = 30, �

P
 = �

D
 = 0) are shown in Fig. 9. The tracking

response is shown in Fig. 9(a); the associated control effort
is shown in Fig. 9(b); and the tracing error is shown in Fig.
9(c). The experimental results show favorable tracking
performance can be achieved; however, the convergence of
the controller parameter and tracking error is slow. The
experimental results of the AFWNNC system with PID type
adaptation law (�

I
 = 30, �

P
 = 5, �

D
 = 0.1) are shown in

Fig. 10. The tracking response is shown in Fig. 10(a); the
associated control effort is shown in Fig. 10(b); and the
tracing error is shown in Fig. 10(c). The experimental results
show the favorable tracking performance and no chattering

Figure 9: Experimental Results of AFWNNC with Integral Type
Adaptation Laws
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phenomena can be achieved and the convergence of
controller parameter and tracking error converge quickly
with pay the price of a little larger computational load. In
summary, a comparison of the control performance and

control characteristics between the supervisory recurrent
fuzzy neural network control, the AFWNNC system with
integral type adaptation law and the AFWNNC system with
PID type adaptation law is summarized in Table 1. It is seen
the PID type adaptation law can achieve better tracking
performance than integral type adaptation law. Moreover,
the robust compensator not only can guarantee system
stability but also does not result in any chattering phenomena.

5. CONCLUSIONS

This paper has successfully implemented an adaptive fuzzy
wavelet neural network control (AFWNNC) system for a
chaotic system and a DC motor. The proposed AFWNNC
system is composed of a neural controller with PID learning
law and a robust compensator. The PID learning law can
speed up the convergence of controller parameter and
tracking error, and the robust compensator can dispel the
approximation error to guarantee system stable based on the
Lyapunov stability theorem. Finally, the effectiveness of the
proposed AFWNNC system has been verified by some
simulation and experimental results. The simulation and
experimental results verify (1) a learning algorithm in a PID
type form can achieve better tracking performance than the
conventional learning algorithm; (2) the robust compensator
can guarantee system stability and it does not result in any
chattering phenomena; (3) the successful applications of the
AFWNNC system to control a chaotic system and a DC
motor.
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Table 1
Performance and Characteristic Comparison

controller maximum tracking computational stability chattering convergence
error (rad) time (msec) analysis phenomena speed

supervisory recurrent fuzzy neural network 1.809 0.371 Yes serious slow
control (Lin and Hsu, 2004)

AFWNNC system with integral type adaptation law 4.227 0.392 Yes none slow

AFWNNC system with PID type adaptation law 0.615 0.396 Yes none fast

Figure 10: Experimental Results of AFWNNC with PID Type
Adaptation Laws
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