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Abstract: The recurrent wavelet neural network (RWNN) has the advantages such as fast learning property, good
generalization capability and information storing ability etc. Based on these advantages of RWNN, an adaptive position
tracking control (APTC) system, which is composed of a neural controller and a robust controller, is proposed in this paper.
The neural controller uses the RWNN structure to online mimic an ideal controller, and the robust controller is designed to
achieve tracking performance with desired attenuation level. The adaptive laws of APTC system are derived based on the
Lyapunov stability theorem and gradient decent method. Finally, the proposed APTC method is applied to a brushless DC
(BLDC) motor. The hardware implementation of APTC scheme is developed on a field programmable gate array (FPGA)
chip. Experimental results verify that a favorable tracking response can be achieved by the proposed APTC method even
under the change of position command frequency after training of RWNN.
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1. INTRODUCTION

With thelearning ability of neural network, neural networks
have widdy been recognized asapowerful tool in industrial
control, commercial prediction, image processing
applications and etc. (Mendel, 1994). The characteristics of
fault tolerance, parallelism and learning suggest that they
may be good candidates for implementing real -time adaptive
control for unknown nonlinear dynamic systems (Omidvar
and Elliott, 1997). The successful key element is the
approximation ability of neural network, where the
parameterized neural network can approximate an unknown
system dynamics through somel earning algorithms. Many
authors have hinted the neural networksas powerful building
blocks for awide class of complex nonlinear system control
strategies when there exists no complete model information
or acontrolled plant is considered asa “black box” (Hsu et
al., 2005; Leu et al., 2005; Polycarpou, 1996; Tang et al.,
2006).

Recently, someresearchershave devel oped the structure
of neural network based on thewave et functionsto construct
thewavel et neural network (WNN) (Billings and Wei, 2005;
Zhang, 1997). Unlike the sigmoidal functions used in
conventiona neural networks, wavelet functionsare spatially
localized, so that the learning capability of WNN is more
efficient than the conventional sigmoidal function neural
network for system identification. Thetraining algorithms
for WNN typically convergein asmaller number of iterations
than for the conventional neural networks (Zhang, 1997).
Up to now, there has been considerableinterest in exploring

the applications of WNN to deal with nonlinearity and
uncertainties of real-time adaptive control system (Hsu et
al., 2006; Lin, 2002; Sousa et al., 2002). These WNN-based
adaptive neural controllers combinethe capability of neural
networks for learning ability and the capahility of wavelet
decompoasition for identification ability.

Although the control performances are acceptable in
(Hsu et al., 2005; Hsu et al., 2006; Leu et al., 2005; Lin,
2002; Sousa et al., 2002; Tang et al., 2006), these neural
networks are feedforward neura networks belonging to static
mapping networks. Without aid of tapped delay, a
feedforward neural network isunableto represent a dynamic
mapping. In addition, the neural network must be selected
with a sufficiently large number of neurons in the hidden
layer, which consumes a large amount of processing time
for real-time applications (Juang et al., 2007; Lin and Lee,
1996). According to the structure, the recurrent neural
network has superior capabilities ascompared to feedforward
neural networks, such as their dynamic response and their
information storing ability. Since the recurrent neural
network captures the dynamic response of a system, the
network model can be simplified (Lin and Lee, 1996).

This paper proposesarecurrent wavel et neural network
(RWNN), which has superior capability to the conventional
WNN in an efficient learning mechanism and dynamic
response. Temporal relations are embedded in RWNN by
adding feedback connections, so that the RWNN providesa
dynamical mapping. Then, an adaptive position tracking
control (APT C) system using RWNN approach is proposed
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to tackle the control problem of the brushlessDC (BLDC)
motor, which isideal for usein expensve environments such
as aeronautics, robotics, electric vehicles and dynamic
actuation. All the parameters of the proposed APTC system
areonlinetuned in the Lyapunov sense and gradient decent,
thus the stability of the closed-loop system can be
guaranteed. Finally, the proposed APTC system is
implemented on a field programmable gate array (FPGA)
chip for possiblelow-cost and high-performanceindustrial
applications. The experimental results demonstrate that the
proposed APTC scheme can achieve favorable position
tracking control for the BLDC motor even under the change
of position command frequency. Moreover, the better
tracking performance can be achieved as a specified
attenuation level ischosen smaller.

2. PROBLEM STATEMENT OF BLDC MOTOR

During two decade years, brushlessDC (BLDC) motorshave
gained widespread usein electric drivers. BLDC motorsare
ideal for usein expensive environmentssuch as agronauitics,
roboatics, electric vehicles and dynamic actuation (Dote and
Kinoshita, 1990). Unfortunately, the BLDC motor is a
nonlinear system whose internal parameter values will
change slightly with different input command and
environments. Using these BLDC motors in high-
performance drivers require advance and robust control
methods. The system equations of BLDC motor driverin a
d-g model can be expressed as (Rubaai et al., 2002; Rubaai
etal., 2007).
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wherei, and iqs represent the d and g axes stator currents,

respectively, V, and Ve arethed and q axes stator voltage,
respectively, L, and L, arethed and g axesstator inductances,
respectively, R isthestator resstance, L _isthe stator leakage
inductance, L and Loy arethed and q axes magnetizing
inductances, r@pectwely, o, istheeectrical rotor angular
velocity, and A  is the flux Imkageof permanent magnet.

Thetorque equation isexpressed as (Rubaai et al., 2007).

2 . 2
JN(DI, + Bﬁ(’)r =Te _TL (5)

where N is the number of poles, Jistheinertia of therotor,
B isthedamping coefficient, T_ isthe el ectromagnetic torque
and T_isthe load disturbance. By using the field-oriented
control, the electromagnetic torque of BLDC motor driver
can beexpressed as (Slotineand Li, 1991).
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where k = EEkm isthe constant gain. From (5) and (6),

the system dynamic equation can obtain

0="f0+gu+h @)
. - B N k,
where 0 is a position of rotor, f=-—, g=——,
J 2
N -
h= —ETL, and u = I 1S the control effort. The control

objective of BLDC motor istofind acontrol law so that the
rotor position 6 can track the position command 6_ closely.
Definethetracking error as

e=0-0 (8)
Assumethat all the parametersin (7) are well known,
thereexitsan ideal controller (Slotineand Li, 1991).

U =g*(-f0-h+6, +ke+k,e) (9)

where k; and k, are non-zero positive constants. Applying
theideal controller (9) into (7), it isobtained that

é+ke+ke=0 (10)

If k, and k, are chosen to correspond the coefficients of
a Hurwitz polynomial, it implies that lime=0 for any
gtarting initial conditions. Since the system dynamics and
the load disturbance may be unknown or perturbed in
practical applications, theideal controller u' in (9) can not
be preci sely obtained.

Much research has been done to apply various
approachesin the control field of BLDC motor (Liu et al.,
2005; Rubaai et al., 2002; Rubaai et al., 2007). A PI
controller isproposed based on the compl etely understanding
of the model and through some time-consuming design
procedures; however, their performances generally depend
on theworking point, thusthe control parameterswhich want
to ensure proper behavior in all operating conditions are
difficult to design (Liu et al., 2005). Rubaai et al. (2002)
proposed an adaptive fuzzy controller. In order to ensure
the system stability, a compensation controller will be
designed to dispel the approximation error. However, the
most frequently used of compensation controller islike a
sliding-mode control, which requires the bound of the
approximation error. To solve this chattering problem, a
robust adaptive fuzzy-neural-network controller had been
developed (Rubaai et al., 2007). Though the robust tracking
performance can be achieved, the used neural network isa
feedforward neural network. It may be selected with a
sufficiently large number of hidden neurons, in which the
computation loading is heavy.
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3. APTC DESIGN

3.1. Description of RWNN

Asshown in Fig. 1, the RWNN, is comprised of an input
layer, amother wavel et |ayer, aproduct layer and an output
layer, is adopted to implement the neural controller. The
RWNN output can perform the mapping according to

Y=Z°‘j®j => o ]]e;(z)
-1 =1 =

wherethe subscript ij indicatesthe ith input term of thejth
wavelet, o is the connection weight between the product

(11)

nodes and output node, and z; = G, (X +¢;r; —m;). The
oy M, and I are the dilation factor, translation factor and

recurrent factor, respectively, and the memory term ¢7 is

the self-recurrent term of awavel et. In addition, the mother
wavel ets are chosen as

¢ij (Zj) = (1_5225) eXp(—Zf)-

For ease of notation, (11) can be expressed in a compact
vector form as

(12)

y(x, o, m, r)=a’O(x, 5, m,r) (13)
wherex =[x, X, ... x]"istheinput vector, o. = [a, oL, ... o, T,
0=[0,0,..0,]6=[6,...6,,0,...G,ue. ... 6, ",

m=[m, .m, m,.m,... m,, ..._mLM]Tandrz[rll... r,
r..r Iy - fl™ The architecture of the RWNN

12 L srreee

Figure 1: The Architecture of RWNN

used in this paper isdesigned to keep the advantage of simple
structure and to consider the dynamic characteristics. The
meaning of the recurrent network is to consider the past
output of translation layer in theinput space sincetheinput
of trandlation layer isrelated to its output. Thus, the RWNN
has dynamic characterigtics.

3.2. Design of APTC System

This study proposes an adaptive position tracking control
(APTC) system asshown in Fig. 2, wherethecontrol law is
designed as
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Figure 2: The Block Diagram of APTC System for BLDC Motor

uac = unc + l"lrb (14)
in which adliding surfaceisdefined as
s=e+ke+ Igj';e(r)dr. (15)

The neural controller u_ uses a RWNN to online
approximate the ideal controller in (9), and uses a robust
controller u isdesigned to achieve L, tracking performance
with desired attenuation level. Substituting (14) into (7) and
using (15), the error dynamic equation can be obtained as

(16)

According to the approximation theory, there exists an
optimal RWNN approximator to approximate the ideal
controller, which is denoted as (Billings and Wei, 2005).

U=aT0+A a7)
where A denotes the approximation error and o is the
optimal parameter vector of a. In fact, the optimal parameter
vector for neura network to approximatetheideal controller
u" is difficult to determine. To solve this difficulty, an
estimative parameter vector is required to estimate the
optimal value, and the neural network with estimative
parameter vector is

é+ke+ke=gUu -u, -u,)=5

u, =a’e (18)
where g, isthe estimative parameter vector of .. Then the
estimative error between ideal controller and neural

controller isdefined as

U=u-u,=a"0-a'0+A=& O+A (19)
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where g = ¢ — . Substitute equation (19) into equation
(16) can obtain

$=g(@'®@+A-u,). (20)

In case of the existence of A, consider a specified L,
tracking performance (Lin and Lin, 2002; Wang et al., 2002;
Yang and Wang, 2007)

IOT S ot < Széo) + & (9)i(0) +p? J-OT g2 dt (21)

Ny
wheren, isapodtive congtant. If the sysem startswithinitial
conditions s(0) = 0 and a(0)=0, the L, tracking
performancein (21) can be rewritten as

sup H<p

et ] (22)

where |9 = J'OT Sdt and [¢ = J'OT ¢’dt. The attenuation

constant p can bespecified by the designer to achieve desired
attenuation ratio between and || s|and | € ||. If p = o0, thisis
the caseof minimum error tracking control without disturbance
attenuation. To guarantee the stability of the APTC system,
the Lyapunov function candidateis defined as
vole, 94a
2 2n,

Taking the derivative of Lyapunov functionin (23) and

using (20), yields

(23)

s8+266
™

Y

sg(dcTG)+A—urb)—g )
1

ga' (38—&\ +sg(e—u,).
Sy

= (24)
If the parameter tuning law is choserl1 as
a =1,50 (25)
and therobust controller ischosen as
_ p’ +1S
u, = 207 (26)

then (24) can be rewritten as

_ [
v =9 SS_L 2p2J32:|

IA
«Q
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Assumee € L[O, T], VT e [0, o], integrating (27)
fromt=0tot=T,yieds
1 7 1 T
VT)-V(O)s-7g [ st +Egp2 [Jefdt. (28
Since V(T) > 0, the above inequality implies the
following inequality
1 T 2 1 2 T 2
Egjosdt£V(0)+§gp [ et (29)

Using (23), (29) is equivalent to (21). Since V(0) is
finite, if the approximation error ¢ € L, that is

J-;sz(t)dt <0, using the Barbalat’slemma (Slotineand Li,

1991), the APTC system is stable with L, tracking
performancein Lyapunov sense.

3.3. Full-tuned Online Learning L aws

Although the parameter tuning law in previous sub-section
can modify thewe ghts of output layer to the optimal val ues,
the performance and converge speed are till affected by
the parameter vectorsin trand ation layer. If the variances,
meansand recurrent weightsin trandation layer are selected
in appropriate value, the network will convergeat high speed
aswell as high performance. However, the optimal values
of parameter vectorsin trandation layer arenot easy to find.
In order to get the optimal parameter values of trand ation
layer, the online tuning lawswhich are derived by Lyapunov
function and gradient decent method are proposed to tune
these parameters. To obtain the onlinetuning laws, firgt, the
adaptive law in equation (25) can be rewritten as

&, =80, (30)

According to gradient decent method, thisadaptivelaw

can also be presented as
_ N N
T aua, T Mo
Comparing equation (31) with equation (30), the
Jacobian term of the controlled system can be obtained as

oV
U = —S. Therefore, the online tuning laws of variances,

Q>

(31)

means and recurrent weights can be presented as

N )
% = auas, " oude, o5,

~ —2W o (X +1; ¢ —m;)?
=N j®j|: % T & 7T _2611()9""]1 i?_mj)z

1-W o} (% +1,0f —m,)
(32)

oV au 8V ou 00,

M o0 om, T M u e, om,
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(34)

Apply these online tuning laws into RWNN, the

parametersin trandlation layer can be tuned to appropriate

values. Therefore, the convergence can still beat high speed
even if inappropriateinitial parametersaregiven.

4. EXPERIMENTAL RESULTS

Thisstudy used the Altera Stratix 11 series FPGA chip, the
Altera Quartus |1 software, the Nios 11 processor, the Nios
Il Integrated Development Environment (IDE) and the
verilog hardware description language to implement the
hardware control system. Field programmable gate array
(FPGA) isafast prototyping |C component. Thiskind of IC
incorporates the architecture of a gate array and
programmability of a programmable logic device. The
advantage of controller implement by FPGA includes shorter
development cycles, lower cost, small size, fast system
execute speed, and high flexibility. The Quartus|| software
isthedevel opment tool for programmablelogic devices. The
Nios Il processor is a configurable, versatile, RISC
embedded processor. It can be embedded into Altera FPGA,
and allow designers to integrate peripheral circuits and
processorsin the same chip. Additionally, the PC-devel oped
algorithm and C language program can berapidly migrated
totheNios | processor to shorten the system devel opment
cycle. The Nios Il IDE can be accelerates software
development (http://wwww.altera.com).

The external peripheral interfaces are used to transmit
and receive the motor driver signals including motor
rotational direction control signal circuit, encoder signal
circuit, and 12-bits D/A converter circuit. The motor
rotational direction control signal circuit usesthe operational
amplifier IC to raise the motor rotational direction control
voltage up from the FPGA. Theencoder signal circuit raises
the encoder signal voltage up from the motor driver. The
12-hits D/A converter 1C with dual channel voltage output
is used to control the BLDC motor. Additionally, every IC
that connects with the FPGA chip uses asynchronous bus
transceiver 1C to protect the current reflow to FPGA chip.
The experimental setup is shown in Fig. 3. The proposed
control algorithm is realized in the Nios Il programming
interface. The software flowchart of the control algorithm
isshown in Fig. 4. Inthemain program, theinitialization of
controller parametersispreceded. Next, theinterrupt interval

for theinterrupt serviceroutine (ISR) with a Imsec sampling
rateisset. Then, the controller sampletimescan begoverned
by the built-in timer, which generates periodic interrupts.

The BLDC motor system offers high performance and
simple operation from a compact driver and motor. The
specifications of the adopted BLDC motor system
manufactured by the Orientalmotor Company are outlined
in Table | (http://www.orientalmotor.com). Modern
mechanical systems often require high-speed high-accuracy
linear motions. These linear motions are usually realized
using therotary motorswith amechanical transmisson. The
command using alternating sinusoidal and alternating
stepped can supply the different linear motion speed. A
second-order transfer function with 0.3 sec risetime of the
following form is chosen as the reference model for the
periodic step command

0% 400

n

%2+ 260, + 02 F2 +40% + 400

(35

where 4 isthe Laplace operator, & isdamping ratio (set at
one for critical damping) and _ is undamped natural
frequency. The periodic step command can be specified in
the reference model to smooth the reference trajectory.
Moreover, in the proposed control system, without the
second-order reference model the control input at the
beginning will bevery large due tothe tracking error in the
control algorithm. In addition, when the command is a
sinusoidal reference tragjectory, the trajectory of sinusoidal
command doesn’t need to change; therefore, the reference
model is set asone.

First, an H* adaptive fuzzy tracking control system
proposed in Ref. (Rubaai et al., 2007) is applied to BLDC
motor. The experimental results of H* adaptive fuzzy
tracking control areshown in Fig. 5. Thetracking responses
are shown in Figs. 5(a) and 5(d), associated control efforts
are shown in Figs. 5(b) and 5(e); and tracking errors are
shown in Figs. 5(c) and 5(f), dueto asinusoidal command
and a periodic step command, respectively. From the
experimental results, though the H* adaptive fuzzy tracking
control can achievetracking performancesand thereareno
chattering phenomena in the control efforts; however, the
convergence of the tracking error and controller parameters
are very dow at beginning.

Then, the proposed APTC is applied to BLDC motor
again. It should be emphasized that the development of
APTC system does not need to know the system dynamics
of the controlled system. For practical implementation, the
parameters of the APTC system can be online tuned by the
proposed adaptive laws without the need of system
parameters. The control parameters for adaptive laws are
chosen ask =k, =4, n, =0.02 and n, = n, = n, = 0.0002.
All the gainsin the proposed control systemsare chosen to
achieve the best transient control performance in the
considering the requirement of stability and possible
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Figure 3: The Experimenta Setup
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Figure 4: The Control Design Flow Chart

operating conditions. The experimental resultsof APTC with
p=0.8areshownin Fig. 6. Thetracking responses are shown
in Figs. 6(a) and 6(d); associated control efforts are shown
in Figs. 6(b) and 6(€); and tracking errorsareshown in Figs.
6(c) and 6(f) due to a sinusoidal command and a periodic
step command, respectively. If a specified attenuation level
p ischosen smaller, the experimental results of APTC with
p=0.5areshowninFig. 7. Thetracking responses are shown
in Figs. 7(a) and 7(d); associated control effortsare shown
in Figs. 7(b) and 7(e); and tracking errorsareshown in Figs.
7(c) and 7(f) due to a sinusoidal command and a periodic
step command, respectively. It is shown that the proposed

International Journal of Computational Intelligence in Control

,;oot::ion . : A 4']Traa v
// A\ i A U
oad J/IN [ Yy B 2
nmmnn\ I’ ; \ i \\ j
et NG VERVERY
| #mad | Isec -

. Vc(‘)ntr(r)l efforf
I s AN NN S
N \/ \/ \/ N

1sec [2V-

v -

(b)

tracking error -

' position
- command

poeitmn &

A R A
wed /o Nl N U

| 4r7ad

sd &
Y

e

control effort

EVEsTe e
Ivf luf lUf l\f! :

S A Wil
g
Isec : |2V
: 2 V..{‘v’)
o T t.r.acki;lg :err.o;' .
f- B s achs et s Yoo &
MJ\,.NJ\ W N
” " 1Uf ""Uf VTV

ol
1sec - |]7Trad
- I A

7

Figure 5: Experimental Results of H* Adaptive Fuzzy Tracking
Control



Adaptive Position Tracking Control of a BLDC Motor using a Recurrent Wavelet Neural Network 101

- -

wiAS /A:\Mf
w )\

tracking response
47T; ad

A /\ N
\,",\,-

o N’ v VoV v
T . —477raa’ :
4rrad ) « >
v "~ Isec
(2)

cbntrol effort

/’\ f\

g A\ o

. . [ S
- Isec 12,/2
i . )

U
Isec T Itrrad i
©)
. i ¥ ¢ H
rotor ] . ) B tracklng response
posmon 477.’ a (l ¢ .
f\ == U d VAV
posmon

command

 lsec

GO

control effort

Figure 6: Experimenta Results of APTC with p = 0.8

0rad I\El A )f\( W
) U - . i

rotor . - . ‘ tracking response
| position . . . B 4mrrad )
e a nNAA N
Cwd NNV
o 7 { -
posiuon\\ / \ ‘ / 1] i 1 ! l'\. /
: commahd\/ : \ / \/ \/ ‘\'/ \/
N ad o L7
147111([ : 15“ .

@)

control effort

RANYA
A\

tracking error

1sec | Irrad

©
rotor ) ) ) v tracklng response
posmon : 477md ‘_' :
-Orad K : 1’. J \ [-\ \ ] I\
PrvewSR—J
nn\m:\n
command
l 4rrad : -
f - lsec
@ ’

control effort

Figure 7: Experimenta Results of APTC with p = 0.5



102

APTC can achieve favorable tracking performance;
moreover, the better tracking performance can be achieved
as a specified attenuation level p is chosen smaller.
Further, the trained APTC is applied to the BLDC
system again. The experimental results of trained APTC with
p=05areshowninFig. 8. Thetracking responses are shown
in Figs. 8(a) and 8(d); associated control effortsare shown
in Figs. 8(b) and 8(e); andtracking errorsareshown in Figs.
8(c) and 8(f) due to a sinusoidal command and a periodic
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Table |

The Specifications of BLDC Motor System
Output power HP (W) 1/25HP (30W)
Power supply Single-phase 100~115VAC
Rated current 14A
Gear/ shaft type Round Shaft
Variable speed range 30 ~ 3000 r/min
Rated torque 0.1N.m
Moment of inertia 1.5.10% kg-m?

Load of inertia
Components

0.088 - 10* kg - m?
BXD30A-A (Driver)
BXM230-A2 (Motor)

Control detection system  Optimal encoder (500P/R)

step command, respectively. From the experimental results,
it isseen that the tracking performance of thetrained APTC
isfurther improved when theinitial valuesaretrained, and
they can achieve favorable robust characteristics for the
command frequency variation.

5. CONCLUSIONS

This paper has successfully implemented an adaptive
pasition tracking control (APTC) schemefor abrushlessDC
(BLDC) motor position tracking control on a field
programmabl e gate array (FPGA) chip. Using the FPGA to
implement, the APT C system can achievethe characteristics
of small size, fast execution speed, less memory. Then, the
effectiveness of the proposed APTC system is verified by
some experimental results. The magjor contributions of this
paper are: (1) the successful development of an APTC, in
which the Lyapunov stability theorem and gradient decent
is used to derive the online tuning algorithms. (2) the L,
tracking performance can be achieved with a desired
attenuation level using the proposed learning mechanism.
(3) the successful applications of APTC to control aBLDC
motor. And, the proposed APTC methodol ogy can be easily
extended to other motors. (4) the FPGA implementation
consumes less power, in terms of corel C power consumption
and especially in terms of the board-level power
consumption, than the PC and DSP implementation.
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