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Abstract: The recurrent wavelet neural network (RWNN) has the advantages such as fast learning property, good
generalization capability and information storing ability etc. Based on these advantages of RWNN, an adaptive position
tracking control (APTC) system, which is composed of a neural controller and a robust controller, is proposed in this paper.
The neural controller uses the RWNN structure to online mimic an ideal controller, and the robust controller is designed to
achieve tracking performance with desired attenuation level. The adaptive laws of APTC system are derived based on the
Lyapunov stability theorem and gradient decent method. Finally, the proposed APTC method is applied to a brushless DC
(BLDC) motor. The hardware implementation of APTC scheme is developed on a field programmable gate array (FPGA)
chip. Experimental results verify that a favorable tracking response can be achieved by the proposed APTC method even
under the change of position command frequency after training of RWNN.
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1. INTRODUCTION

With the learning ability of neural network, neural networks
have widely been recognized as a powerful tool in industrial
control, commercial prediction, image processing
applications and etc. (Mendel, 1994). The characteristics of
fault tolerance, parallelism and learning suggest that they
may be good candidates for implementing real-time adaptive
control for unknown nonlinear dynamic systems (Omidvar
and Elliott, 1997). The successful key element is the
approximation ability of neural network, where the
parameterized neural network can approximate an unknown
system dynamics through some learning algorithms. Many
authors have hinted the neural networks as powerful building
blocks for a wide class of complex nonlinear system control
strategies when there exists no complete model information
or a controlled plant is considered as a “black box” (Hsu et
al., 2005; Leu et al., 2005; Polycarpou, 1996; Tang et al.,
2006).

Recently, some researchers have developed the structure
of neural network based on the wavelet functions to construct
the wavelet neural network (WNN) (Billings and Wei, 2005;
Zhang, 1997). Unlike the sigmoidal functions used in
conventional neural networks, wavelet functions are spatially
localized, so that the learning capability of WNN is more
efficient than the conventional sigmoidal function neural
network for system identification. The training algorithms
for WNN typically converge in a smaller number of iterations
than for the conventional neural networks (Zhang, 1997).
Up to now, there has been considerable interest in exploring

the applications of WNN to deal with nonlinearity and
uncertainties of real-time adaptive control system (Hsu et
al., 2006; Lin, 2002; Sousa et al., 2002). These WNN-based
adaptive neural controllers combine the capability of neural
networks for learning ability and the capability of wavelet
decomposition for identification ability.

Although the control performances are acceptable in
(Hsu et al., 2005; Hsu et al., 2006; Leu et al., 2005; Lin,
2002; Sousa et al., 2002; Tang et al., 2006), these neural
networks are feedforward neural networks belonging to static
mapping networks. Without aid of tapped delay, a
feedforward neural network is unable to represent a dynamic
mapping. In addition, the neural network must be selected
with a sufficiently large number of neurons in the hidden
layer, which consumes a large amount of processing time
for real-time applications (Juang et al., 2007; Lin and Lee,
1996). According to the structure, the recurrent neural
network has superior capabilities as compared to feedforward
neural networks, such as their dynamic response and their
information storing ability. Since the recurrent neural
network captures the dynamic response of a system, the
network model can be simplified (Lin and Lee, 1996).

This paper proposes a recurrent wavelet neural network
(RWNN), which has superior capability to the conventional
WNN in an efficient learning mechanism and dynamic
response. Temporal relations are embedded in RWNN by
adding feedback connections, so that the RWNN provides a
dynamical mapping. Then, an adaptive position tracking
control (APTC) system using RWNN approach is proposed
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to tackle the control problem of the brushless DC (BLDC)
motor, which is ideal for use in expensive environments such
as aeronautics, robotics, electric vehicles and dynamic
actuation. All the parameters of the proposed APTC system
are online tuned in the Lyapunov sense and gradient decent,
thus the stability of the closed-loop system can be
guaranteed. Finally, the proposed APTC system is
implemented on a field programmable gate array (FPGA)
chip for possible low-cost and high-performance industrial
applications. The experimental results demonstrate that the
proposed APTC scheme can achieve favorable position
tracking control for the BLDC motor even under the change
of position command frequency. Moreover, the better
tracking performance can be achieved as a specified
attenuation level is chosen smaller.

2. PROBLEM STATEMENT OF BLDC MOTOR

During two decade years, brushless DC (BLDC) motors have
gained widespread use in electric drivers. BLDC motors are
ideal for use in expensive environments such as aeronautics,
robotics, electric vehicles and dynamic actuation (Dote and
Kinoshita, 1990). Unfortunately, the BLDC motor is a
nonlinear system whose internal parameter values will
change slightly with different input command and
environments. Using these BLDC motors in  high-
performance drivers require advance and robust control
methods. The system equations of BLDC motor driver in a
d-q model can be expressed as (Rubaai et al., 2002; Rubaai
et al., 2007).
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 are the d and q axes magnetizing
inductances, respectively, �
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 is the electrical rotor angular

velocity, and �
m
 is the flux linkage of permanent magnet.

The torque equation is expressed as (Rubaai et al., 2007).
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where N is the number of poles, J is the inertia of the rotor,
B is the damping coefficient, T

e
 is the electromagnetic torque

and T
L
 is the load disturbance. By using the field-oriented

control, the electromagnetic torque of BLDC motor driver
can be expressed as (Slotine and Li, 1991).
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Define the tracking error as
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Assume that all the parameters in (7) are well known,
there exits an ideal controller (Slotine and Li, 1991).
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the ideal controller (9) into (7), it is obtained that
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If k
1
 and k

2
 are chosen to correspond the coefficients of

a Hurwitz polynomial, it implies that lim 0
t
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starting initial conditions. Since the system dynamics and
the load disturbance may be unknown or perturbed in
practical applications, the ideal controller u* in (9) can not
be precisely obtained.

Much research has been done to apply various
approaches in the control field of BLDC motor (Liu et al.,
2005; Rubaai et al., 2002; Rubaai et al., 2007). A PI
controller is proposed based on the completely understanding
of the model and through some time-consuming design
procedures; however, their performances generally depend
on the working point, thus the control parameters which want
to ensure proper behavior in all operating conditions are
difficult to design (Liu et al., 2005). Rubaai et al. (2002)
proposed an adaptive fuzzy controller. In order to ensure
the system stability, a compensation controller will be
designed to dispel the approximation error. However, the
most frequently used of compensation controller is like a
sliding-mode control, which requires the bound of the
approximation error. To solve this chattering problem, a
robust adaptive fuzzy-neural-network controller had been
developed (Rubaai et al., 2007). Though the robust tracking
performance can be achieved, the used neural network is a
feedforward neural network. It may be selected with a
sufficiently large number of hidden neurons, in which the
computation loading is heavy.
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3. APTC DESIGN

3.1. Description of RWNN

As shown in Fig. 1, the RWNN, is comprised of an input
layer, a mother wavelet layer, a product layer and an output
layer, is adopted to implement the neural controller. The
RWNN output can perform the mapping according to
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For ease of notation, (11) can be expressed in a compact
vector form as
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used in this paper is designed to keep the advantage of simple
structure and to consider the dynamic characteristics. The
meaning of the recurrent network is to consider the past
output of translation layer in the input space since the input
of translation layer is related to its output. Thus, the RWNN
has dynamic characteristics.

3.2. Design of APTC System

This study proposes an adaptive position tracking control
(APTC) system as shown in Fig. 2, where the control law is
designed as

Figure 1: The Architecture of RWNN

Figure 2: The Block Diagram of APTC System for BLDC Motor
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in which a sliding surface is defined as
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The neural controller u
nc

 uses a RWNN to online
approximate the ideal controller in (9), and uses a robust
controller u

rb
 is designed to achieve L

2
 tracking performance

with desired attenuation level. Substituting (14) into (7) and
using (15), the error dynamic equation can be obtained as

*
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According to the approximation theory, there exists an
optimal RWNN approximator to approximate the ideal
controller, which is denoted as (Billings and Wei, 2005).

u* = *T � + � (17)

where � denotes the approximation error and * is the
optimal parameter vector of . In fact, the optimal parameter
vector for neural network to approximate the ideal controller
u* is difficult to determine. To solve this difficulty, an
estimative parameter vector is required to estimate the
optimal value, and the neural network with estimative
parameter vector is

ˆ T
ncu � (18)

where ˆ  is the estimative parameter vector of �. Then the
estimative error between ideal controller and neural
controller is defined as
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where * ˆ .� ��  Substitute equation (19) into equation

(16) can obtain
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In case of the existence of �, consider a specified L
2

tracking performance (Lin and Lin, 2002; Wang et al., 2002;
Yang and Wang, 2007)
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Taking the derivative of Lyapunov function in (23) and
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Since V(T) � 0, the above inequality implies the
following inequality
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Using (23), (29) is equivalent to (21). Since V(0) is
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3.3. Full-tuned Online Learning Laws

Although the parameter tuning law in previous sub-section
can modify the weights of output layer to the optimal values,
the performance and converge speed are still affected by
the parameter vectors in translation layer. If the variances,
means and recurrent weights in translation layer are selected
in appropriate value, the network will converge at high speed
as well as high performance. However, the optimal values
of parameter vectors in translation layer are not easy to find.
In order to get the optimal parameter values of translation
layer, the online tuning laws which are derived by Lyapunov
function and gradient decent method are proposed to tune
these parameters. To obtain the online tuning laws, first, the
adaptive law in equation (25) can be rewritten as

1
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According to gradient decent method, this adaptive law
can also be presented as
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Apply these online tuning laws into RWNN, the
parameters in translation layer can be tuned to appropriate
values. Therefore, the convergence can still be at high speed
even if inappropriate initial parameters are given.

4. EXPERIMENTAL RESULTS

This study used the Altera Stratix II series FPGA chip, the
Altera Quartus II software, the Nios II processor, the Nios
II Integrated Development Environment (IDE) and the
verilog hardware description language to implement the
hardware control system. Field programmable gate array
(FPGA) is a fast prototyping IC component. This kind of IC
incorporates the architecture of a gate array and
programmability of a programmable logic device. The
advantage of controller implement by FPGA includes shorter
development cycles, lower cost, small size, fast system
execute speed, and high flexibility. The Quartus II software
is the development tool for programmable logic devices. The
Nios II processor is a configurable, versatile, RISC
embedded processor. It can be embedded into Altera FPGA,
and allow designers to integrate peripheral circuits and
processors in the same chip. Additionally, the PC-developed
algorithm and C language program can be rapidly migrated
to the Nios II processor to shorten the system development
cycle. The Nios II IDE can be accelerates software
development (http://www.altera.com).

The external peripheral interfaces are used to transmit
and receive the motor driver signals including motor
rotational direction control signal circuit, encoder signal
circuit, and 12-bits D/A converter circuit. The motor
rotational direction control signal circuit uses the operational
amplifier IC to raise the motor rotational direction control
voltage up from the FPGA. The encoder signal circuit raises
the encoder signal voltage up from the motor driver. The
12-bits D/A converter IC with dual channel voltage output
is used to control the BLDC motor. Additionally, every IC
that connects with the FPGA chip uses asynchronous bus
transceiver IC to protect the current reflow to FPGA chip.
The experimental setup is shown in Fig. 3. The proposed
control algorithm is realized in the Nios II programming
interface. The software flowchart of the control algorithm
is shown in Fig. 4. In the main program, the initialization of
controller parameters is preceded. Next, the interrupt interval

for the interrupt service routine (ISR) with a 1msec sampling
rate is set. Then, the controller sample times can be governed
by the built-in timer, which generates periodic interrupts.

The BLDC motor system offers high performance and
simple operation from a compact driver and motor. The
specifications of the adopted BLDC motor system
manufactured by the Orientalmotor Company are outlined
in Table I (http://www.orientalmotor.com). Modern
mechanical systems often require high-speed high-accuracy
linear motions. These linear motions are usually realized
using the rotary motors with a mechanical transmission. The
command using alternating sinusoidal and alternating
stepped can supply the different linear motion speed. A
second-order transfer function with 0.3 sec rise time of the
following form is chosen as the reference model for the
periodic step command

2

2 2 2

400

2 40 400
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n n
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�
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where �  is the Laplace operator, � is damping ratio (set at
one for critical damping) and �

n
 is undamped natural

frequency. The periodic step command can be specified in
the reference model to smooth the reference trajectory.
Moreover, in the proposed control system, without the
second-order reference model the control input at the
beginning will be very large due to the tracking error in the
control algorithm. In addition, when the command is a
sinusoidal reference trajectory, the trajectory of sinusoidal
command doesn’t need to change; therefore, the reference
model is set as one.

First, an H� adaptive fuzzy tracking control system
proposed in Ref. (Rubaai et al., 2007) is applied to BLDC
motor. The experimental results of H� adaptive fuzzy
tracking control are shown in Fig. 5. The tracking responses
are shown in Figs. 5(a) and 5(d), associated control efforts
are shown in Figs. 5(b) and 5(e); and tracking errors are
shown in Figs. 5(c) and 5(f), due to a sinusoidal command
and a periodic step command, respectively. From the
experimental results, though the H� adaptive fuzzy tracking
control can achieve tracking performances and there are no
chattering phenomena in the control efforts; however, the
convergence of the tracking error and controller parameters
are very slow at beginning.

Then, the proposed APTC is applied to BLDC motor
again. It should be emphasized that the development of
APTC system does not need to know the system dynamics
of the controlled system. For practical implementation, the
parameters of the APTC system can be online tuned by the
proposed adaptive laws without the need of system
parameters. The control parameters for adaptive laws are
chosen as k

1 
= k

2
 = 4, �

1
 = 0.02 and �

2
 = �

3
 = �

4
 = 0.0002.

All the gains in the proposed control systems are chosen to
achieve the best transient control performance in the
considering the requirement of stability and possible
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operating conditions. The experimental results of APTC with
��= 0.8 are shown in Fig. 6. The tracking responses are shown
in Figs. 6(a) and 6(d); associated control efforts are shown
in Figs. 6(b) and 6(e); and tracking errors are shown in Figs.
6(c) and 6(f) due to a sinusoidal command and a periodic
step command, respectively. If a specified attenuation level
� is chosen smaller, the experimental results of APTC with
��= 0.5 are shown in Fig. 7. The tracking responses are shown
in Figs. 7(a) and 7(d); associated control efforts are shown
in Figs. 7(b) and 7(e); and tracking errors are shown in Figs.
7(c) and 7(f) due to a sinusoidal command and a periodic
step command, respectively. It is shown that the proposed

Figure 3: The Experimental Setup

Figure 4: The Control Design Flow Chart

Figure 5: Experimental Results of H� Adaptive Fuzzy Tracking
Control
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Figure 6: Experimental Results of APTC with � = 0.8 Figure 7: Experimental Results of APTC with � = 0.5
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step command, respectively. From the experimental results,
it is seen that the tracking performance of the trained APTC
is further improved when the initial values are trained, and
they can achieve favorable robust characteristics for the
command frequency variation.

5. CONCLUSIONS

This paper has successfully implemented an adaptive
position tracking control (APTC) scheme for a brushless DC
(BLDC) motor position tracking control on a field
programmable gate array (FPGA) chip. Using the FPGA to
implement, the APTC system can achieve the characteristics
of small size, fast execution speed, less memory. Then, the
effectiveness of the proposed APTC system is verified by
some experimental results. The major contributions of this
paper are: (1) the successful development of an APTC, in
which the Lyapunov stability theorem and gradient decent
is used to derive the online tuning algorithms. (2) the L

2

tracking performance can be achieved with a desired
attenuation level using the proposed learning mechanism.
(3) the successful applications of APTC to control a BLDC
motor. And, the proposed APTC methodology can be easily
extended to other motors. (4) the FPGA implementation
consumes less power, in terms of core IC power consumption
and especially in  terms of the board-level power
consumption, than the PC and DSP implementation.
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