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Abstract: This paper presentsan approach of motion detection, tracking and path planning for ground autonomous vehicles
using global environment visual data. Motion detection and tracking depends on the (Kanada-Lucas-Tomasi) KLT algorithm
but with selecting features in a more robust manner to suit our application and our environment constraints. The proposed
path planning techniqueis based on trandating scene visual data into a graph network and optimizing it by enhancing the
distribution of the nodes and edges. An optimal feasible path is then obtained by finding the best trade-off between safety
and route shortness. Detailed experiments are conducted to validate the proposed methodology.
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1. INTRODUCTION

The problem of generating a safe path for robots has drawn
considerable attention in the past few years [1, 2]. The
majority of the proposed algorithms assume that the
environment is completely or partially known before the
robot begins its traverse. Most algorithms search an
environment using the distance transform [3] or heuristics
[4, 5] tofind the lowest cost path from the robot’s start point
to the target point. Cost can be defined to be distance
travelled, energy spent, timein danger...etc. However, the
robot may beplaced to navigate in an unknown environment
but equipped with sensors placed on board or remotely.
Approaches in this case can be grouped into two main
categories: local and global. The local approaches use on-
board sensors to sense the terrain locally, and while the
vehicle moves, it acquires sense of new parts of the
environment, either to discover more about its current
location or to discover more about the map. This way, the
vehicle keeps on investigating its surrounding environment
during the entirejourney, and usesit as partial information
to obtain a safe path. Most local approaches result in
decisionswhich arenct ideal and present many path planning
risks especially in adynamic environment. On the other hand,
the global approaches use external sensors to build full
information of the whole environment and create a detailed
description of it soit can identify all itselementsasthefirst
step, and then search for feasible col lision-free paths. Some
global-like path planning techniques have been investigated
in the past such as Propagating Interface Technique[6] and
approximate cell decomposition [7]. The main challenge of
the global approach appearsin itsinitial step building the
map. This process is often of high expense and
computationally heavy which makesit unattractiveto usein

real-time applications and infeasible in dynamic
environments. In this paper, we tackle this problem and
propose an integrated, easy-to-implement and efficient
methodol ogy tointerpret the environment and design a safe
and short path for the robot to roam through, while keeping
that robot detected and tracked. In a coordinated Air/Ground
autonomous mission where aerial vehicles havealargeview
of the land to be investigated by the autonomous ground
agents, guided ground operations could efficiently be
planned from air. We introduce an integrated methodol ogy
for motion detection, tracking and path planning to guide
deployed ground vehiclesusing aerial visual data.

The paper startsby presenting, in section 2, our motion
detection and feature tracking methodology. In this
methodol ogy, wefirst extract motion information from real
timeimage sequence. Then, we propose adetection/tracking
techniquethat buildsup on the original version of thetexture
correlation-based KLT feature tracker. Our technique is
based on selecting the best feature to be detected, and then
supplying it to the KLT algorithm after checking object
availability in the first two frames using Hu invariant
moments. In section 3, a path planner, using global
information of the ground configuration, is introduced to
allow the ground vehicle to move safely to any desired
location. We have access to an adequate amount of
information that coversthe environment so we can identify
itselementspre vehicle departure and classify the geometric
areas whether they are free or occupied by objects
(obstacles).

Using an occupancy grid-based representation and a
connected graph interpretation of the world, we define an
optimal route to the ground agent in order to approach its
aimed destination while avoiding obstacles. Our path
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planning techniqueis, in fact, based on trand ating the visual
environment data to a directed graph (network), by
identifying itsnodes and edges using the free-space regions
available, to enable the use of Dijkstra’s algorithm later to
find the safest path. This path isthen optimised, rising up a
compromise between safety and route distance. A weighting
factor, based on the vehicle geometry, is proposed to obtain
the best trade-off between safety and shortness.

Thelast section presents our methodol ogy results based
on experiments conducted on mobile robots in our labs.
Testing and trials are based on a set of camera fixed on the
ceiling of the lab to emulate the large view obtained from
the aerial vehicles.

2. MOTION DETECTION AND TRACKING

Our detection and tracking technique consists of four main
stages: (1) motion detection (2) Hu moments cal culation
(3) histogram-based feature selection (4) KLT tracking. Once
motion isdetected, an object isidentified anditsHu invariant
moments are calculated. Another frame is then taken and
the moments are calculated again and checked against the
first values, if no significant changes are found between both
measures and the difference does not exceed a threshold
value, it flags that we are having a moving object detected
and not noises. At that point, feature selection startsto find
appropriate features of the detected object and passes them
tothe part of the KLT a gorithm inwhich it tracksthe object’s
detected features. The four stages of the detection and
tracking technique are shown in Fig. 1 and illustrated
hereunder.

2.1. Motion Detection

Assuming that the ground vehicle of interest is the only
moving part in our ground environment, the moti on detection
works as follows:

*  While continuousimage grabbing, two time-spaced
snapshots aretaken (Fig. 2(a) and Fig. 2(b))
* Thelast frameissubtracted from the previous one.

* Theresult imageis analysed for pixelsthat would
indicate avehicde movement. If thereareno pixels,
then the two frames must be identical, thus no
vehicle isin the scene view and the loop restarts
taking the next two frames.

2.2. Hu Moments Calculation

The results of the step presented above could |ead to detect
noises instead of the vehicle entering the scene. For this
reason we use some appearance-based measurements, such
as Hu invariant moments, to assure that we are following
the same abject from a frameto another and thus detecting
the vehicle of interest and not noises.

I mage moments are stati stics characterizing geometrical
image information such as image centre of gravity and the
distribution of pixels about this centre of gravity called
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respectively first order moment (the mean) and second order
moment (thevariance). In thisway, if we cal culate the mean
and the variance of the object in theimage, we alsofind the
location, orientation and the aspect ratio of the object in the
image. Using these moments, Hu derived a set of invariant
momentsto translation, rotation, and scale changes[8]. Hu
moments use, basically, the second and third normalized
central moments of an image to form the seven equations
shown in Fig. 3. After the position of the detected object
candidate is obtained, aregion of interest on the image is
set around the object in question to calculate its invariant
moments. Remark that in case we do not have a priori
information about our vehicle, the invariant moments are
calculated for the region of interest in the first difference
image frame and moments in the second difference image
frame are cal culated against them. However, if we could get
that a priori detail of the vehicle, it would add more
robustnessto the detection technique we are proposi ng.

2.3. Feature Selection

Obvioudly, nofeature based tracking vis on system can work
unless good features can befound for tracking from aframe
to another. Our main challenge is to have robust features
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consistently, and as our ground vehicles has no specific
geometrical features we can rely on, the KLT auto feature
selection could easily fail to detect vehicle features and/or
lose tracking the vehiclein ashort time. Thus, we propose
an alternative method, simple yet effective, to detect and
sel ect one object feature to be tracked.

After detecting motion, an image is captured from the
last frame for the vehicle and afeature is extracted from it
asthefollowing procedure:

» Athresholdlevel techniqueisapplied on theresult

image of thevehicleto convert it toabinary image.
Each pixel ischecked and set to oneif it exceedsa
specific intensity or zero if otherwise.

* Fig. 4 (b)).

* A histogram based technique is applied on the
image where: each row and column is scanned for
its number of pixelsthat have a value of 1; this
number is considered as a histogram value. The
feature located at the coordinates at which we have
the highest histogram values corresponds to our
detected vehicle feature.

»  Fig. 5shows the pseudo code for thistechnique.

*  The detected feature should be the visual vehicle
centre of gravity. Thisfeatureisinput to the KLT
tracker asthemain and only featureto track.

2.4. KLT Tracking

The KLT algorithm is a feature-based technique which
extractslocal regions of interest (features) from the images
and identifies the corresponding features in each image of
the sequence[9]. Itis based on the early work of Lucas and
Kanade [10], was developed by Tomasi and Kanade [11]

(@) (b)

Figure 4: Image Difference and Binary Image
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Figure 5: Pseudo Code for Applying Histogram Technique on
Rows

and was explained by Shi and Tomas [9]. The tracking
process in the original KLT algorithm can be divided into
two major subtasks: feature extraction and feature tracking.
Features are extracted only in the first frame and then they
are searched for in the subsequent frames. If a feature is
lost, the user can optionally ask for finding another one to
keep the number of features constant. Themain principle of
KLT tracking isto align a template image T(x) (the first
frame) to an input image 1(x) (a subsequent frame). x is a
column vector containing image coordinates[x, y]™. The l(x)
could be also aamall subwindow within animage. The KLT
definesameasure of dissimilarity that quantifiesthe change
of appearance of the feature between the first and the current
image frame. A set of trandational warps W(x; p), where
p = [p,, p,] isavector of trand ation parameters is defined

as.
X+ p
W (x,p) =
P LH' pj @)
The best alignment minimisesimage dissimilarity:
D IHW0sP) TP @

Thestability of thetracking processin the original KLT
algorithm is mainly influenced by the selected features of
the template T(x). As derived and explained in [9], the
criterion of a good feature is a textured path with high
intensity variationin box X and Y directions, such asacorner.

Denote the intensity function by 1(x, y) and consider
thelocal intensity variation matrix

S [,
T, 12 )

A patch defined by awindow (a square matrix of pixels)
is accepted as a candidate feature if in the centre of the
window both eigenvalues of Z : A and A, exceed a
predefined threshold A (texturedness):

min(A,, A,) > A 4

2.5. CameraCalibration

To obtain vehicle real world coordinates, camera
calibration is done. Assuming Camera projection is
modelled with a pinhole cameramodel, the objectiveisto
determine the internal camera optical characteristics
(intrinsic parameters) and position and orientation of the
cameraframerelative to a chosen world coordinate system
(extrinsic parameters).

The camera calibration is conducted using Tsai
algorithm [12]. Tsai's camera moddl is based on the pin-
hole model of 3D-2D perspective projection with 1st order
radial lens distortion. The model has 11 parameters: five
internal (also called intrinsic or interior) parameters, and Sx
external (also called extrinsic or exterior) parameters.
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In addition to the 11 variable camera parameters Tsai’s
model hassix fixedintring c cameracongtants. Thelnternal,
external, and fixed intrinsic constants are shown in Table
1, Table 2 and Table 3, respectively while our test camera
values are available in the implementation and results
section.

Table 1
Inter nal Parameters of Tsai's Camera M odel

Parameter Description

f effective focal length of the pin-hole camera,
kappal 1st order radial lens distortion coefficient

Cx, Cy Co-ordinates of centre of radial lens distortion

SX Scale factor to account for any uncertainty due to

imperfections in hardware timing for scanning and
digitisation scanline.

Table 2
External Parameters of Tsai's Camera M odel

Parameter Description

Rx, Ry, Rz Rotation angles for the transform between theworld
and camera coordinate frames

X, Ty, Tz Translational componentsfor the transform between

the world and camera coordinate frames.

Table 3
Intrinsic Constants of Tsai’'s Camera M odel

Parameter Description

Ncx Number of sensor elements in camera’s x direction
(in sels)

Nfx Number of pixelsin frame grabber’s x direction (in
pixels)

Dx X dimension of camera’s sensor element (in mm/
sel)

Dy Y dimension of camera’'s sensor element (in mm/
sel)

Dpx Effective X dimension of pixel in frame grabber (in
mm/pixel)

Dpy Effective Y dimension of pixel in frame grabber (in

mm/pixel)

The camera calibration procedure, given the above
intrinsic constants, will optimisetheintrinsic and extrinsic
camera parameters building the camera mathematical
model. This optimization requires 3D world coordinates
of feature points (X, y, z) (in mm) and their corresponding
coordinates in the image plane (x, y,) (in pixels). The
selected features used in this paper arethe squares corners
of a chess pattern deployed on the scene of our
experimental setup.
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3. PATH PLANNING

The main objective our path planning module isto get the
optimal vehicle path where a best trade-off between safety
and shortnessistaken.

Thismodule consistsof two main parts: (1) safest path
(2) optimised path.

3.1. Safest Path

In thispart and inspired by cell decomposition method, the
path planning techniquethat is proposed splitstheenvironment
into aset of grid cdlsrepresenting the areasof vacant spaces
digtinguished from the obstacl es (occupied aress).

Using this discrete environment mapping, we obtain a
network representation of the ground environment, which
permits to utilize the graph theory's path algorithms to
achieve a safe path planning solution, as will be explained
hereunder.

The shortest path problem is one of the most common
problemsin graph networks appli cationswherewe look after
apath P, which goesthrough a collection of graph edges E
and nodes N, to be the shortest. The total cost of P is the
sum of all individual costs of those edges where the cost,
c,, inour caseis calculated relevant to the distance from
nodeu to node n. The shortest path problem is a special
case of the min-cost flow problem where it examines
transportation costs but not capacities: All edges’ capacities
are equal to 1, then the objective is to find the optimal
sequence of edges such that:

miny" _C, (5)
Where E isthe edges set, eis an individual cost, and C_ is
the cost corresponding to edge e.

In the context of path planning, the environment is
usually analyzed in terms of cost as mentioned earlier.
Obstacles in the viewed scene can be associated with an
infinite cost.

Obtaining the safest path is done by the following
procedure:

*  Preparing the environment snapshot :

After detecting thevehicle of interest, asnapshot of the

ground environment is saved in memory and is subject

to thefollowing four image processing techniques:

(a) Edgedetection
Extractsthe contours (detects edges) in grey-level
values(Fig. 9 (a)).

(b) Imagethreshold
Convert the greyscale image into a binary one as
hasbeen explained in thefeature sel ection method,
where each pixel is checked and set to one if it
exceeds a specific intensity or zero if otherwise
(Fig. 9(b)

(c) Imagefiltering
Filter the noise out of theimage depending on their
small sizerelativeto the possible sizes of obstacles.
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(d) Bounding the obstacle candidates by rectangles
Thiswill ssimplify the process of detecting regions
aswill be explained below (Fig. 9 (c)).

»  Detecting Regions

After preparing the environment picture, we start

scanning image pixels to identify free regions from

obstacles. To simplify identifying theseregions, the four

corners of each obstacle candidate are found and then

treated asthe boundaries of our regions along with the

corners of thewhole picture (Fig. 6).

*  Network Generation

At this stage, our environment picture is ready to be
translated into anetwork representation. A two-obstacle
exampleis shown below in Fig. 7 producing a network
G with anumber of nodes Ninitially equalsto 7, shown
in Fig. 9 The nodesclearly represent the centres of the
regions of free spaces and the directed edges represent
the allowed subsequent safe motion from region R.

*  Introducing new nodes

As mentioned earlier, the main objective of having a
network of nodes is to get afeasible path that can go
through them. However, a quick look at the concept
shows that some suggested paths could be infeasible
and could happen to go over obstaclesif straight motion
between regions is adopted. Fig. 10 shows the case in
more details, it isapparent that a path that goes directly
between nodes R2 and R3 are not possible. To solve
this difficulty, we introduce a new set of intermediate
way-nodes, N'. The new nodes facilitate the travelling
between adjacent regions that pose risks of safety.
Fig. 11 showshow N’ isobtained; horizontal and vertical
lines aredrawn from theregionsin question.
»  Creating the adjacency matrix
Oncean environment network is created, we are amost
ready to make use of the appropriate graph theory
algorithms to locate the paths between the different
regions. A final prerequisite is to form the adjacency
matrix A of the network, which is based on visual
distance measurements. Each element A of thismatrix
iscal culated depending on the di stance between thetwo
nodesu and nif thereisaviablepath that goes between
them, otherwise, the cost of the element A is set to
infinity.
» Dijkstra’s Shortest path algorithm

Once agraph network G ismodelled, all possible safe
regions within the environment are obtained, and all
travelling costs corresponding to the graph topol ogy
are found, a graph theory algorithm is used. In this
paper, we proposeto usethe Dijkstraagorithm to find
the shortest path through the nodes and the safest
practical onefrom the source (initial vehicle position)
to the target (where the vehicle has to go). This
algorithm appeared in 1959 in [13], and sincethen, it

is probably the most widely used for graph shortest
path computation.
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Figure 6: Detecting Regions
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Figure 7: Regions Detected of an Environment of two Obstacles
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Figure 8: A Network G which Represents the Environment in
the Previous Figure
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Figure 9: Preparing the Environment Snapshot
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Figure 10: Unsafe Path

Supposewe haveanetwork G with N nodesand E edges.
Every edge has two ends represented by the notation (u, n)
and has avalue assigned to it, a cost, represents the cost of
moving directly from vertex u to vertex n. The cost of an
edge can be thought of as the distance between those two
vertices. The cost of a path between two verticesis the sum
of costs of theedgesin that path. For agiven pair of vertices
sandtin N, the algorithm finds the path from sto t with
lowest cost.

The basic concept of the algorithm is edge relaxing
[14]. It worksby traversing all edges going out of a certain
node and sel ects only the edge of the lowest cost to be part
of the path. By doing that for all nodesin an iterative way,
the shortest path would be obtained. The operation of
Dijkstra’s algorithm can be summarized by the following
steps:

*  Whiletheagorithm isrunning, we have two sets
grouping our nodes: U and S As astart, we set U
containsall nodesand Sisempty. When the shortest
path from an initial node to a subsequent node
towardsthe desired location is obtained, theinitial
nodeis moved from set U to set S. The algorithm
keeps on running until al way nodes, required to
reach the destination node, moveto set S

*  When Dijkstra’s algorithm visits a way node, it
relaxes it; that means it examines all edges going
out of it to choose the right subsequent way node
to use in the shortest path towards the desired
destination. A simple case shown in Fig. 12, where
we want to find the shortest path to gofrom a start
node to a target node, illustrates this concept. In
figure (a), the start node isrelaxed, there are two
edges going out from it having the costs 10 and 5
and thus the edge of the lowest cost 5, in thiscase,
is chosen. In figure (b) the start node has been
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moved toS and the second node is chosen to be
relaxed, beforeit ismoved to S in the third graph
(c) wherewe reached the target.

Fig. 13 showstheresult of the shortest path method for
safe regions applied on our set of nodes generated in Fig.
11 Starting from R1, the vehicleistrying to go to R2 through
R3. The generated additional intermediate two nodes assist
the vehicleto go through a path that is completdy safe.

3.2. Path Optimization

The path wehave achieved so far, asaresult of the Dijkstra's
algorithm, provesto be the safest path to manoeuvre through
regionssinceit goesin the centre of areaof each free-space
region. However, such a path might not bethe most selected
one in some cases when the safety factor can be flexible.
The path planning methodol ogy optimi ses the path to reduce
the cogt of it, which would | et usachieve an optimum solution
in termsof shortness.

The methodology proposed here givesthe flexibility to
modify the safest path already obtained to go closer to the
obstacle so it saves distance to get a shorter path as shown
in Fig. 14. However, since the technique here is designed
for apoint object, a minimum clearance from the obstacle
is required and equals to maximum effective radius of the
vehicle. The optimization steps can be summarized as
follows:

* The first step is to detect if there is an obstacle
between the two main nodes (centres of regions),
if there is no such obstacle, the path formed is
simply adirect line between thetwo nodes avoiding
passing by any added i ntermediate node.

* |If an obstacle exists around, its nearest corner is
found and a directive vector V, is created
connecting the starting point with this corner to
work asaguidelinefor our desired optimum path
asshownin Fig. 16.

+  Safest path vector V, obtained from the Dijkstra's
algorithm, isidentified and labelled on Fig. 15.

» Final vector, dashed in the figure, iscalcul ated by
a linear combination with a weighting factor
0 <w< 1 applied to the two vectors: safest path
vector V, and the directive vector V,, asfollows:

R=wVg +(1-W)V, (6)

Theresultant, then, iscontrolled by theweighting factor;
it has a maximum magnitude equals to the safest vector’s
magnitude when w= 1 and aminimum equalsto the directive
vector's magnitude when w= 0.

The optimised path should guarantee that the vehicle
does not hit an obstacle while moving oniit, which necessarily
means that the weighting factor in (4) should always grant
the path enough clearance for the vehicle away of all
obstacles based on the vehicle effectiveradiusR . Calculation
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of the minimum value of the weighting factor W_. can be
done by obtaining the distances gp and ac where

W =

min

Bl &

(")

ab and a¢ arefound using the triangular calculationsin
Table 4.

Table 4
Triangular Calculations Needed to Compute the
Weighting Factor

de
0, =tan" = 0, tan+ 2€
ef ec
fc bc
0,=11-6,-6,

sino, sno,
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4. IMPLEMENTATION AND RESULTS

This section presents results of actual experiments that we
held in our laboratory for the presented methodology. The
environment configuration for our experiments, shown in
Fig. 17, emulatesan aerial view, using camerasfixed on lab
ceiling, providing discrete frames of the sceneson land. The
ground vehicle, which isamobile robot, starts its journey
following the path provided and, hence, avoiding obstacles
toitsdesired location.

The first part of our experiments shows success
in detecting and tracking the object. Fig. 18 shows two
views with different orientations of our vehicle taken
from two consecutive frames. Table 5 presents the results
of the Hu invariant moments calculation of both views
and shows no significant difference in both values
giving a sharp indication that we are dealing with the same
object.

Table 5
Hu Moments for the Orientationsin Fig. 16

h1* h2* h3* h4* h5* h6* h7*

10-3 10-7 10-10 10-11 10-22 10-16 10-21

(a) 1.74 1.40 1.92 343 -9.35 9.42 -2.62

(b) 1.72 1.40 1.91 3.08 -7.22 1.2* -2.65
10-15

Thetracking part of the KLT algorithm was successfully
adapted to our application as shown, in Fig. 19, where two
successive frames are tracked using the selected vehicle
feature marked with ared dot.

Fig. 20 shows the detected regions of the aerial
environment scene with a number on the centre of each
region. Fig. 21 presents the binary reading of the frame
followed by Fig. 22 which introduces the new way nodes
beside the original ones. Fig. 23 shows the path between
two selected nodes with different values of the weighting
factor, while Fig. 24 shows the final path used by the
vehicle.

End
Point

Figure 17: Our Test Environment
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(a) (b)

Figure 18: Vehicle's Orientation in Two Frames

Figure 20: Detected Regions of the Environment

Figure 21: Binary Reading of the Environment




Video Detection, Tracking and Path Planning for Ground Autonomous Systems 93

Q@

Figure 22: Nodes Generated for the Path, the Original Nodes are
Circled

(a) w=0.3

(b) w=0.7

Figure 23: Path Obtained between Two Nodes with

I 1 4
[} L] .l
L] l.’ i
! Ir_),li—l .
(7!_,1—1_”1;% : 5
. I . : . .
Il
w=0.5

Figure 24: Fina Path Followed by the Vehicle

[
L]
[
/

E L — &

i T
~

g )

5. CONCLUSIONS

In thispaper, we have presented an integrated methodol ogy
for robot’s detection, tracking and path planning in an
unknown environment. External video cameras on
cooperating aerial vehicles are deployed to provide alarge
view over the ground. The robot agent is first detected and
then tracked throughout its journey. A fast, easy-to-
implement, and efficient path planning algorithm is
introduced to afford an optimised short and safe route from
the agent’ s start point toits desired target.

The contributions of the paper are divided into two sub
parts. Thefirst oneisof detection and tracking. Thetracking

technique buildson the KLT featuretracking a gorithm which
has a solid theoretical foundation. The feature extraction
process is done in a new, smple yet effective, way that
proved high rediability in the experiments. The second
contribution part is in providing an optimal route for the
robot to traverse in the sense that the final path reflects a
combination of short distanceand low risk of colliding with
obstacles. After the environment isinterpreted into agraph
network, Dijkistraalgorithm can find the shortest path but
the output result hasto be optimised to takethe geometry of
the roboticinto consideration.

The methodol ogy presented in this paper providesa set
of feasible and practical algorithmsfor aglobal solution of
path planning. The method’'s performance limitation is
mainly related with the number of moving objectsin the
scene. Thefuture avenues of thiswork include investigation
of computing safeand short paths for multipl e robotic agents
simultaneously.
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