
International Journal of Computational Intelligence in Control, 1(2), 2009, pp. 85-94

Video Detection, Tracking and Path Planning for
Ground Autonomous Systems

N. Aouf1, M. Kharbat2, Chun Liang, Lin3

1,2Department of Informatics and Sensors, Cranfield University
3Department of Electrical and Engineering, Chung Hsing University

Abstract: This paper presents an approach of motion detection, tracking and path planning for ground autonomous vehicles
using global environment visual data. Motion detection and tracking depends on the (Kanada-Lucas-Tomasi) KLT algorithm
but with selecting features in a more robust manner to suit our application and our environment constraints. The proposed
path planning technique is based on translating scene visual data into a graph network and optimizing it by enhancing the
distribution of the nodes and edges. An optimal feasible path is then obtained by finding the best trade-off between safety
and route shortness. Detailed experiments are conducted to validate the proposed methodology.

Keywords: Video Detection, Tracking, Path Planning, Autonomous Systems

1. INTRODUCTION

The problem of generating a safe path for robots has drawn
considerable attention in the past few years [1, 2]. The
majority of the proposed algorithms assume that the
environment is completely or partially known before the
robot begins its traverse. Most algorithms search an
environment using the distance transform [3] or heuristics
[4, 5] to find the lowest cost path from the robot’s start point
to the target point. Cost can be defined to be distance
travelled, energy spent, time in danger…etc. However, the
robot may be placed to navigate in an unknown environment
but equipped with sensors placed on board or remotely.
Approaches in this case can be grouped into two main
categories: local and global. The local approaches use on-
board sensors to sense the terrain locally, and while the
vehicle moves, it acquires sense of new parts of the
environment, either to discover more about its current
location or to discover more about the map. This way, the
vehicle keeps on investigating its surrounding environment
during the entire journey, and uses it as partial information
to obtain a safe path. Most local approaches result in
decisions which are not ideal and present many path planning
risks especially in a dynamic environment. On the other hand,
the global approaches use external sensors to build full
information of the whole environment and create a detailed
description of it so it can identify all its elements as the first
step, and then search for feasible collision-free paths. Some
global-like path planning techniques have been investigated
in the past such as Propagating Interface Technique [6] and
approximate cell decomposition [7]. The main challenge of
the global approach appears in its initial step building the
map. This process is often of high expense and
computationally heavy which makes it unattractive to use in

real-time applications and infeasible in dynamic
environments. In this paper, we tackle this problem and
propose an integrated, easy-to-implement and efficient
methodology to interpret the environment and design a safe
and short path for the robot to roam through, while keeping
that robot detected and tracked. In a coordinated Air/Ground
autonomous mission where aerial vehicles have a large view
of the land to be investigated by the autonomous ground
agents, guided ground operations could efficiently be
planned from air. We introduce an integrated methodology
for motion detection, tracking and path planning to guide
deployed ground vehicles using aerial visual data.

The paper starts by presenting, in section 2, our motion
detection and feature tracking methodology. In this
methodology, we first extract motion information from real
time image sequence. Then, we propose a detection/tracking
technique that builds up on the original version of the texture
correlation-based KLT feature tracker. Our technique is
based on selecting the best feature to be detected, and then
supplying it to the KLT algorithm after checking object
availability in the first two frames using Hu invariant
moments. In section 3, a path planner, using global
information of the ground configuration, is introduced to
allow the ground vehicle to move safely to any desired
location. We have access to an adequate amount of
information that covers the environment so we can identify
its elements pre vehicle departure and classify the geometric
areas whether they are free or occupied by objects
(obstacles).

Using an occupancy grid-based representation and a
connected graph interpretation of the world, we define an
optimal route to the ground agent in order to approach its
aimed destination while avoiding obstacles. Our path

International Journal of Computational Intelligence in Control
Vol. 12 No. 2 (July-December, 2020)

86 International Journal of Computational Intelligence in Control

planning technique is, in fact, based on translating the visual
environment data to a directed graph (network), by
identifying its nodes and edges using the free-space regions
available, to enable the use of Dijkstra’s algorithm later to
find the safest path. This path is then optimised, rising up a
compromise between safety and route distance. A weighting
factor, based on the vehicle geometry, is proposed to obtain
the best trade-off between safety and shortness.

The last section presents our methodology results based
on experiments conducted on mobile robots in our labs.
Testing and trials are based on a set of camera fixed on the
ceiling of the lab to emulate the large view obtained from
the aerial vehicles.

2. MOTION DETECTION AND TRACKING

Our detection and tracking technique consists of four main
stages: (1) motion detection (2) Hu moments calculation
(3) histogram-based feature selection (4) KLT tracking. Once
motion is detected, an object is identified and its Hu invariant
moments are calculated. Another frame is then taken and
the moments are calculated again and checked against the
first values, if no significant changes are found between both
measures and the difference does not exceed a threshold
value, it flags that we are having a moving object detected
and not noises. At that point, feature selection starts to find
appropriate features of the detected object and passes them
to the part of the KLT algorithm in which it tracks the object’s
detected features. The four stages of the detection and
tracking technique are shown in Fig. 1 and illustrated
hereunder.

2.1. Motion Detection

Assuming that the ground vehicle of interest is the only
moving part in our ground environment, the motion detection
works as follows:

• While continuous image grabbing, two time-spaced
snapshots are taken (Fig. 2(a) and Fig. 2(b))

• The last frame is subtracted from the previous one.

• The result image is analysed for pixels that would
indicate a vehicle movement. If there are no pixels,
then the two frames must be identical, thus no
vehicle is in the scene view and the loop restarts
taking the next two frames.

2.2. Hu Moments Calculation

The results of the step presented above could lead to detect
noises instead of the vehicle entering the scene. For this
reason we use some appearance-based measurements, such
as Hu invariant moments, to assure that we are following
the same object from a frame to another and thus detecting
the vehicle of interest and not noises.

Image moments are statistics characterizing geometrical
image information such as image centre of gravity and the
distribution of pixels about this centre of gravity called

respectively first order moment (the mean) and second order
moment (the variance). In this way, if we calculate the mean
and the variance of the object in the image, we also find the
location, orientation and the aspect ratio of the object in the
image. Using these moments, Hu derived a set of invariant
moments to translation, rotation, and scale changes [8]. Hu
moments use, basically, the second and third normalized
central moments of an image to form the seven equations
shown in Fig. 3. After the position of the detected object
candidate is obtained, a region of interest on the image is
set around the object in question to calculate its invariant
moments. Remark that in case we do not have a priori
information about our vehicle, the invariant moments are
calculated for the region of interest in the first difference
image frame and moments in the second difference image
frame are calculated against them. However, if we could get
that a priori detail of the vehicle, it would add more
robustness to the detection technique we are proposing.

2.3. Feature Selection

Obviously, no feature based tracking vision system can work
unless good features can be found for tracking from a frame
to another. Our main challenge is to have robust features

Figure 1: Motion Detection and Tracking Methodology

Figure 2: (a) An Obstacle in an Indoor Environment (b) New
Element Enters the Environment

(a) (b)

Figure 3: Hu Invariant Moments

Video Detection, Tracking and Path Planning for Ground Autonomous Systems 87

consistently, and as our ground vehicles has no specific
geometrical features we can rely on, the KLT auto feature
selection could easily fail to detect vehicle features and/or
lose tracking the vehicle in a short time. Thus, we propose
an alternative method, simple yet effective, to detect and
select one object feature to be tracked.

After detecting motion, an image is captured from the
last frame for the vehicle and a feature is extracted from it
as the following procedure:

• A threshold level technique is applied on the result
image of the vehicle to convert it to a binary image.
Each pixel is checked and set to one if it exceeds a
specific intensity or zero if otherwise.

• Fig. 4 (b)).
• A histogram based technique is applied on the

image where: each row and column is scanned for
its number of pixels that have a value of 1; this
number is considered as a histogram value. The
feature located at the coordinates at which we have
the highest histogram values corresponds to our
detected vehicle feature.

• Fig. 5 shows the pseudo code for this technique.
• The detected feature should be the visual vehicle

centre of gravity. This feature is input to the KLT
tracker as the main and only feature to track.

2.4. KLT Tracking

The KLT algorithm is a feature-based technique which
extracts local regions of interest (features) from the images
and identifies the corresponding features in each image of
the sequence [9]. It is based on the early work of Lucas and
Kanade [10], was developed by Tomasi and Kanade [11]

and was explained by Shi and Tomasi [9]. The tracking
process in the original KLT algorithm can be divided into
two major subtasks: feature extraction and feature tracking.
Features are extracted only in the first frame and then they
are searched for in the subsequent frames. If a feature is
lost, the user can optionally ask for finding another one to
keep the number of features constant. The main principle of
KLT tracking is to align a template image T(x) (the first
frame) to an input image I(x) (a subsequent frame). x is a
column vector containing image coordinates [x, y]T. The I(x)
could be also a small sub window within an image. The KLT
defines a measure of dissimilarity that quantifies the change
of appearance of the feature between the first and the current
image frame. A set of translational warps W(x; p), where
p = [p

1
, p

2
] is a vector of translation parameters is defined

as:

1

2

(,)
x p

y p

�� �
� � ��� �

W x p (1)

The best alignment minimises image dissimilarity:

2[((;)) ()]I T��
x

W x p x (2)

The stability of the tracking process in the original KLT
algorithm is mainly influenced by the selected features of
the template T(x). As derived and explained in [9], the
criterion of a good feature is a textured path with high
intensity variation in box x and y directions, such as a corner..

Denote the intensity function by I(x, y) and consider
the local intensity variation matrix

2

2
x x y

x y y

I I I
Z

I I I

� �
� � �
� �

(3)

A patch defined by a window (a square matrix of pixels)
is accepted as a candidate feature if in the centre of the
window both eigenvalues of Z : �

1
 and �

2
, exceed a

predefined threshold � (texturedness):

min(�
1
, �

2
) > � (4)

2.5. Camera Calibration

To obtain vehicle real world coordinates, camera
calibration is done. Assuming Camera projection is
modelled with a pinhole camera model, the objective is to
determine the internal camera optical characteristics
(intrinsic parameters) and position and orientation of the
camera frame relative to a chosen world coordinate system
(extrinsic parameters).

The camera calibration is conducted using Tsai
algorithm [12]. Tsai’s camera model is based on the pin-
hole model of 3D-2D perspective projection with 1st order
radial lens distortion. The model has 11 parameters: five
internal (also called intrinsic or interior) parameters, and six
external (also called extrinsic or exterior) parameters.

(a) (b)

Figure 4: Image Difference and Binary Image

INITIALIZATION
HIST_VALUES=0;
FOR ALL ROWS
 FOR ALL PIXELS OF ROW
 HIST_VALUE[ROW]=
 PIXEL_VALUE+HIST_VALUE[ROW]
 END FOR
END FOR

Figure 5: Pseudo Code for Applying Histogram Technique on
Rows

88 International Journal of Computational Intelligence in Control

In addition to the 11 variable camera parameters Tsai’s
model has six fixed intrinsic camera constants. The Internal,
external, and fixed intrinsic constants are shown in Table
1, Table 2 and Table 3, respectively while our test camera
values are available in the implementation and results
section.

Table 1
Internal Parameters of Tsai’s Camera Model

Parameter Description

f effective focal length of the pin-hole camera,

kappa1 1st order radial lens distortion coefficient

Cx, Cy Co-ordinates of centre of radial lens distortion

sx Scale factor to account for any uncertainty due to
imperfections in hardware timing for scanning and
digitisation scanline.

Table 2
External Parameters of Tsai’s Camera Model

Parameter Description

Rx, Ry, Rz Rotation angles for the transform between the world
and camera coordinate frames

Tx, Ty, Tz Translational components for the transform between
the world and camera coordinate frames.

Table 3
Intrinsic Constants of Tsai’s Camera Model

Parameter Description

Ncx Number of sensor elements in camera’s x direction
(in sels)

Nfx Number of pixels in frame grabber’s x direction (in
pixels)

Dx X dimension of camera’s sensor element (in mm/
sel)

Dy Y dimension of camera’s sensor element (in mm/
sel)

Dpx Effective X dimension of pixel in frame grabber (in
mm/pixel)

Dpy Effective Y dimension of pixel in frame grabber (in
mm/pixel)

The camera calibration procedure, given the above
intrinsic constants, will optimise the intrinsic and extrinsic
camera parameters building the camera mathematical
model. This optimization requires 3D world coordinates
of feature points (x, y, z) (in mm) and their corresponding
coordinates in the image plane (x

f
, y

f
) (in pixels). The

selected features used in this paper are the squares corners
of a chess pattern deployed on the scene of our
experimental setup.

3. PATH PLANNING

The main objective our path planning module is to get the
optimal vehicle path where a best trade-off between safety
and shortness is taken.

This module consists of two main parts: (1) safest path
(2) optimised path.

3.1. Safest Path

In this part and inspired by cell decomposition method, the
path planning technique that is proposed splits the environment
into a set of grid cells representing the areas of vacant spaces
distinguished from the obstacles (occupied areas).

Using this discrete environment mapping, we obtain a
network representation of the ground environment, which
permits to utilize the graph theory’s path algorithms to
achieve a safe path planning solution, as will be explained
hereunder.

The shortest path problem is one of the most common
problems in graph networks applications where we look after
a path P, which goes through a collection of graph edges E
and nodes N, to be the shortest. The total cost of P is the
sum of all individual costs of those edges where the cost,
c

un
, in our case is calculated relevant to the distance from

nodeu to node n. The shortest path problem is a special
case of the min-cost flow problem where it examines
transportation costs but not capacities: All edges’ capacities
are equal to 1, then the objective is to find the optimal
sequence of edges such that:

min ee E
C

�� (5)

Where E is the edges set, e is an individual cost, and C
e
 is

the cost corresponding to edge e.
In the context of path planning, the environment is

usually analyzed in terms of cost as mentioned earlier.
Obstacles in the viewed scene can be associated with an
infinite cost.

Obtaining the safest path is done by the following
procedure:
• Preparing the environment snapshot :

After detecting the vehicle of interest, a snapshot of the
ground environment is saved in memory and is subject
to the following four image processing techniques:

(a) Edge detection
Extracts the contours (detects edges) in grey-level
values (Fig. 9 (a)).

(b) Image threshold
Convert the greyscale image into a binary one as
has been explained in the feature selection method,
where each pixel is checked and set to one if it
exceeds a specific intensity or zero if otherwise
(Fig. 9 (b))

(c) Image filtering
Filter the noise out of the image depending on their
small size relative to the possible sizes of obstacles.

Video Detection, Tracking and Path Planning for Ground Autonomous Systems 89

(d) Bounding the obstacle candidates by rectangles
This will simplify the process of detecting regions
as will be explained below (Fig. 9 (c)).

• Detecting Regions

After preparing the environment picture, we start
scanning image pixels to identify free regions from
obstacles. To simplify identifying these regions, the four
corners of each obstacle candidate are found and then
treated as the boundaries of our regions along with the
corners of the whole picture (Fig. 6).

• Network Generation

At this stage, our environment picture is ready to be
translated into a network representation. A two-obstacle
example is shown below in Fig. 7 producing a network
G with a number of nodes N initially equals to 7, shown
in Fig. 9 The nodes clearly represent the centres of the
regions of free spaces and the directed edges represent
the allowed subsequent safe motion from region R

i
.

• Introducing new nodes

As mentioned earlier, the main objective of having a
network of nodes is to get a feasible path that can go
through them. However, a quick look at the concept
shows that some suggested paths could be infeasible
and could happen to go over obstacles if straight motion
between regions is adopted. Fig. 10 shows the case in
more details, it is apparent that a path that goes directly
between nodes R2 and R3 are not possible. To solve
this difficulty, we introduce a new set of intermediate
way-nodes, N�. The new nodes facilitate the travelling
between adjacent regions that pose risks of safety.
Fig. 11 shows how N� is obtained; horizontal and vertical
lines are drawn from the regions in question.

• Creating the adjacency matrix

Once an environment network is created, we are almost
ready to make use of the appropriate graph theory
algorithms to locate the paths between the different
regions. A final prerequisite is to form the adjacency
matrix A of the network, which is based on visual
distance measurements. Each element A

un
 of this matrix

is calculated depending on the distance between the two
nodes u and n if there is a viable path that goes between
them, otherwise, the cost of the element A

un
 is set to

infinity.

• Dijkstra’s Shortest path algorithm

Once a graph network G is modelled, all possible safe
regions within the environment are obtained, and all
travelling costs corresponding to the graph topology
are found, a graph theory algorithm is used. In this
paper, we propose to use the Dijkstra algorithm to find
the shortest path through the nodes and the safest
practical one from the source (initial vehicle position)
to the target (where the vehicle has to go). This
algorithm appeared in 1959 in [13], and since then, it

is probably the most widely used for graph shortest
path computation.

Figure 6: Detecting Regions

Figure 7: Regions Detected of an Environment of two Obstacles

R1

R2 R6

R3

R4 R7

R5

Figure 8: A Network G which Represents the Environment in
the Previous Figure

90 International Journal of Computational Intelligence in Control

Suppose we have a network G with N nodes and E edges.
Every edge has two ends represented by the notation (u, n)
and has a value assigned to it, a cost, represents the cost of
moving directly from vertex u to vertex n. The cost of an
edge can be thought of as the distance between those two
vertices. The cost of a path between two vertices is the sum
of costs of the edges in that path. For a given pair of vertices
s and t in N, the algorithm finds the path from s to t with
lowest cost.

The basic concept of the algorithm is edge relaxing
[14]. It works by traversing all edges going out of a certain
node and selects only the edge of the lowest cost to be part
of the path. By doing that for all nodes in an iterative way,
the shortest path would be obtained. The operation of
Dijkstra’s algorithm can be summarized by the following
steps:

• While the algorithm is running, we have two sets
grouping our nodes: U and S. As a start, we set U
contains all nodes and S is empty. When the shortest
path from an initial node to a subsequent node
towards the desired location is obtained, the initial
node is moved from set U to set S. The algorithm
keeps on running until all way nodes, required to
reach the destination node, move to set S.

• When Dijkstra’s algorithm visits a way node, it
relaxes it; that means it examines all edges going
out of it to choose the right subsequent way node
to use in the shortest path towards the desired
destination. A simple case shown in Fig. 12, where
we want to find the shortest path to go from a start
node to a target node, illustrates this concept. In
figure (a), the start node is relaxed, there are two
edges going out from it having the costs 10 and 5
and thus the edge of the lowest cost 5, in this case,
is chosen. In figure (b) the start node has been

moved to S and the second node is chosen to be

relaxed, before it is moved to S in the third graph
(c) where we reached the target.

Fig. 13 shows the result of the shortest path method for
safe regions applied on our set of nodes generated in Fig.
11 Starting from R1, the vehicle is trying to go to R2 through
R3. The generated additional intermediate two nodes assist
the vehicle to go through a path that is completely safe.

3.2. Path Optimization

The path we have achieved so far, as a result of the Dijkstra’s
algorithm, proves to be the safest path to manoeuvre through
regions since it goes in the centre of area of each free-space
region. However, such a path might not be the most selected
one in some cases when the safety factor can be flexible.
The path planning methodology optimises the path to reduce
the cost of it, which would let us achieve an optimum solution
in terms of shortness.

The methodology proposed here gives the flexibility to
modify the safest path already obtained to go closer to the
obstacle so it saves distance to get a shorter path as shown
in Fig. 14. However, since the technique here is designed
for a point object, a minimum clearance from the obstacle
is required and equals to maximum effective radius of the
vehicle. The optimization steps can be summarized as
follows:

• The first step is to detect if there is an obstacle
between the two main nodes (centres of regions),
if there is no such obstacle, the path formed is
simply a direct line between the two nodes avoiding
passing by any added intermediate node.

• If an obstacle exists around, its nearest corner is
found and a directive vector V

D
 is created

connecting the starting point with this corner to
work as a guide line for our desired optimum path
as shown in Fig. 16.

• Safest path vector V
SP

, obtained from the Dijkstra’s
algorithm, is identified and labelled on Fig. 15.

• Final vector, dashed in the figure, is calculated by
a linear combination with a weighting factor
0 � w � 1 applied to the two vectors: safest path
vector V

SP
 and the directive vector V

D
, as follows:

. (1).SP DR wV w V� � � (6)

The resultant, then, is controlled by the weighting factor;
it has a maximum magnitude equals to the safest vector’s
magnitude when w = 1 and a minimum equals to the directive
vector’s magnitude when w = 0.

The optimised path should guarantee that the vehicle
does not hit an obstacle while moving on it, which necessarily
means that the weighting factor in (4) should always grant
the path enough clearance for the vehicle away of all
obstacles based on the vehicle effective radius R

V
. Calculation

Figure 9: Preparing the Environment Snapshot

Figure 10: Unsafe Path

Video Detection, Tracking and Path Planning for Ground Autonomous Systems 91

of the minimum value of the weighting factor W
min

 can be

done by obtaining the distances ab and ac where

min

ab
W

ac
� (7)

ab and ac are found using the triangular calculations in

Table 4.

Table 4
Triangular Calculations Needed to Compute the

Weighting Factor

1
1 tan

de

ef
�� � 1

2 tan
ae

ec
�� �

�
3
 = � – �

1
 – �

2
3 1sin sin

fc bc
�

� �

Figure 11: Introducing New Nodes

Figure 12: The Execution of Dijkstra’s Algorithm

Figure 13: Dashed Lines for the Original Unsafe Path while Solid
Ones for the Safe Path

Figure 14: Optimised Path

Figure 15: Optimised Path

Figure 16: W
min

Calculation

92 International Journal of Computational Intelligence in Control

Figure 18: Vehicle’s Orientation in Two Frames

Figure 19: Successive Frames with KLT

Figure 20: Detected Regions of the Environment

4. IMPLEMENTATION AND RESULTS

This section presents results of actual experiments that we
held in our laboratory for the presented methodology. The
environment configuration for our experiments, shown in
Fig. 17, emulates an aerial view, using cameras fixed on lab
ceiling, providing discrete frames of the scenes on land. The
ground vehicle, which is a mobile robot, starts its journey
following the path provided and, hence, avoiding obstacles
to its desired location.

The first part of our experiments shows success
in detecting and tracking the object. Fig. 18 shows two
views with different orientations of our vehicle taken
from two consecutive frames. Table 5 presents the results
of the Hu invariant moments calculation of both views
and shows no significant difference in both values
giving a sharp indication that we are dealing with the same
object.

Table 5
Hu Moments for the Orientations in Fig. 16

h1* h2* h3* h4* h5* h6* h7*
10-3 10-7 10-10 10-11 10-22 10-16 10-21

(a) 1.74 1.40 1.92 3.43 -9.35 9.42 -2.62

(b) 1.72 1.40 1.91 3.08 -7.22 1.2* -2.65
10-15

The tracking part of the KLT algorithm was successfully
adapted to our application as shown, in Fig. 19, where two
successive frames are tracked using the selected vehicle
feature marked with a red dot.

Fig. 20 shows the detected regions of the aerial
environment scene with a number on the centre of each
region. Fig. 21 presents the binary reading of the frame
followed by Fig. 22 which introduces the new way nodes
beside the original ones. Fig. 23 shows the path between
two selected nodes with different values of the weighting
factor, while Fig. 24 shows the final path used by the
vehicle.

Figure 17: Our Test Environment Figure 21: Binary Reading of the Environment

Video Detection, Tracking and Path Planning for Ground Autonomous Systems 93

Figure 22: Nodes Generated for the Path, the Original Nodes are
Circled

Figure 23: Path Obtained between Two Nodes with

Figure 24: Final Path Followed by the Vehicle

5. CONCLUSIONS

In this paper, we have presented an integrated methodology
for robot’s detection, tracking and path planning in an
unknown environment. External video cameras on
cooperating aerial vehicles are deployed to provide a large
view over the ground. The robot agent is first detected and
then tracked throughout its journey. A fast, easy-to-
implement, and efficient path planning algorithm is
introduced to afford an optimised short and safe route from
the agent’s start point to its desired target.

The contributions of the paper are divided into two sub
parts. The first one is of detection and tracking. The tracking

technique builds on the KLT feature tracking algorithm which
has a solid theoretical foundation. The feature extraction
process is done in a new, simple yet effective, way that
proved high reliability in the experiments. The second
contribution part is in providing an optimal route for the
robot to traverse in the sense that the final path reflects a
combination of short distance and low risk of colliding with
obstacles. After the environment is interpreted into a graph
network, Dijkistra algorithm can find the shortest path but
the output result has to be optimised to take the geometry of
the robotic into consideration.

The methodology presented in this paper provides a set
of feasible and practical algorithms for a global solution of
path planning. The method’s performance limitation is
mainly related with the number of moving objects in the
scene. The future avenues of this work include investigation
of computing safe and short paths for multiple robotic agents
simultaneously.

References

[1] J. Barraquand, B. Langlois, and J. C. Latombe,
“Numerical Potential Field Techniques for Robot Path
Planning,” in Advanced Robotics, 1991. ‘Robots in
Unstructured Environments’, 91 ICAR., 1991, 2, 1012-
1017.

[2] A. Stentz, “Optimal and Efficient Path Planning for
Unknown and Dynamic Environments,” Carnegie
Mellon University 1993.

[3] R. A. Jarvis, “Collision-free Trajectory Planning using
Distance Transforms,” Mechanical Engineering Trans.
of the Institution of Engineers, Vol. ME10, 1985.

[4] P. Khosla and R. Volpe, “Superquadric Artificial
Potentials for Obstacle Avoidance and Approach
Superquadric Artificial Potentials for Obstacle Avoidance
and Approach,” in Robotics and Automation, 1988.
Proceedings., 1988 IEEE International Conference on,
1988, 1778-1784, 3.

[5] O. Khatib, “Real-time Obstacle Avoidance for
Manipulators and Mobile Robots.” 5: Sage Publications,
Inc., 1986, 90-98.

[6] H. Kao-Shing and J. Ming-Yi, “Global Path Planning of
Mobile Robots Based on Propagating Interface
Technique Global Path Planning of Mobile Robots Based
on Propagating Interface Technique,” in Systems, Man,
and Cybernetics, 1999. IEEE SMC ’99 Conference
Proceedings. 1999 IEEE International Conference on,
1999, 662-667, 4.

[7] B. Faverjon, “Object Level Programming of Industrial
Robots Object Level Programming of Industrial Robots,”
in Robotics and Automation. Proceedings. 1986 IEEE
International Conference on, 1986, 1406-1412.

[8] M. K. Hu, “Visual Pattern Recognition by Moment
Invariants Visual Pattern Recognition by Moment

94 International Journal of Computational Intelligence in Control

Invariants,” Information Theory, IEEE Transactions on,
8, 179-187, 1962.

[9] J. Shi and C. Tomasi, “Good Features to Track,” in IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR’94), Seattle, 1994.

[10] B. D. Lucas and T. Kanade, “An Iterative Image
Registration Technique with an Application to Stereo
Vision,” in IJCAI81, 1981, 674-679.

[11] C. Tomasi and T. Kanade, “Detection and Tracking of
Point Features,” Carnegie Mellon University 1991.

[12] R. Y. Tsai, “An Efficient and Accurate Camera
Calibration Technique for 3D Machine Vision.,” in IEEE
Conference on Computer Vision and Pattern Recognition
Miami Beach, 1986.

[13] E. W. Dijkstra, “A Note on Two Problems in Connexion
with Graphs,” Numerische Mathematik, 1, 269-271,
1959.

[14] T. H. Cormen, Introduction to Algorithms. Cambridge:
MIT press, 2001.

