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Abstract: Service encapsulation of processes in manufacturing should facilitate a natural and rapid response to machine
failure or replacement and to changesin required product types and quantities. Such situations are traditionally addressed
by offline modifications in the schedul e of the entire line; the search space of the optimal solution varies with each change.
Alternative answers are needed for the cases characterized by unknown input job mix and online equipment changes. This
paper proposes that the device selection be based on a search in the model of the physical system. Transportation services
can be selected based on a search in the state space of the physical syssem. This way the search space remains independent
from the process needs of the pallets entering the line. Information about the cycles of the physical layout graph and their
average cycletime, together with real time data of the line will assist the decision taking process. A method to compute the
node sequences of the cyclesin a graph is presented to serve asa tool for quantification of possible pallet routes in the line.
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1. INTRODUCTION

The bridging of the Service Oriented Architecture (SOA)
paradigm and the factory automation world is envisioned to
address frequent changing market demands and time to
market pressure[3]. Theloose coupling provided by services
ensures changesin one part of the system do not affect other
parts of the system. Dynamic discovery of new services not
known beforehand is attainable with SOA. Moreover,
ontologies provide computer interpretable descriptions of
services that make it possible to achieve automatic
composition.

From a SOA perspective, a manufacturing lineis seen
asa set of service encapsulations of provided and requested
processes. The provided processes are the equipment skills.
The requested processes are the product needs. Each product
can bedescribed in terms of its orchedtrator. The orchestrator
specifiesthe order of execution (the flow) of its needs—the
services that should operate upon the raw product to get it
toafinished gatus. When entering theline, apallet discovers
the devices that offer the services requested by its
orchestrator. Selections of each device to execute upon it
are made gradually, asthe orchestrator executes. Each time
adeviceisselected for execution, the transportation services
needed to carry the pallet to its chosen destination are
subjected to discovery and selection as well.

The production process in a line should be highly
adaptabl e to changes. Machinefailures or replacementsand
changesin | ot sizes should berecognized and responded to
naturally. These goals can bereached if factory automation
isseen from a SOA perspective. However, the loose coupling
provided by services will not fully support fast reconfigur

ability and adaptability unless satellite issues such as
scheduling and planning are re-considered from this
viewpoint.

Traditionally, the scheduling problem isformulated as
the finding of an optimal input sequence of jobs and resource
usagefor agiven job mix [1] [2]. Toscheduleasystemit is
absolutely necessary to have beforehand knowledge of all
due product types and device capabilities. Each time a
change occurs, a new schedule has to be derived offline. A
wide variety of methods can be used for this purpose [1].
Among other methods, Petri Net (PN) based scheduling has
been successfully used for manufacturing systems, because
the formalism can finely describe shared resources,
synchronization and lot sizes. A PN based schedule is
heuristically searched in the state space of the complete
model of the system. This type of scheduling is deadl ock
free and event driven. However, with this approach it can
happen that the search space becomestoo large for complex
systems. The scheduling speed strongly depends on the
selected heuristic search function. The optimality of the
obtained schedules is also influenced by this choice, and
cannot be always guaranteed.

Traditional scheduling approaches rely on the
assumption of offline equipment changes and known input
job mix. The limitations of the traditional vision are clear:
First, it isnot possible to build a new schedule, on-the-fly,
in case of machine breakdown. The same appliesin case a
machineis reconfigured to provide an enriched or dightly
different set of operations, or when the line is added
equi pment. Second, variationsin theinput job sequence are
unavoidable, mainly dueto human error. Theimplemented
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schedule cannot deal with thistype of situations. Theinput
sequence of the jobs must be the assumed input sequence
when initially building theschedule. I ndirectly, thislimitation
isrelated to sizable multiple lot size scheduling problems,
which are especially difficult to solve optimally in a
reasonable amount of time and space.

The encapsulation of processes within services achieves
the objective of having arunning production linewith online
device modifications and unknown sequencing of requested
product types. This evolution from a traditional system is
desirable, yet it imposes significant constraints on the
assumptions that scheduling techniques rely on. To meet
these constraints, new methods for finding optimal routes
for each pallet entering the system must be eval uated.

PN scheduling techniques work on the state space of
the entire system. The system is modelled by merging the
PN sub-model s of each (possibly) requested job (sequence
of operations). All possible allocations of resourcesfor each
operation of a job and for material handling have to be
incorporated initsmodel. Multiplelot sizes arerepresented
by the amount of tokens held within the start places of each
sub-model. Flexible routes can be conveniently expressed
through choice structures, at the expense of an increased
search space. This approach impaoses (possibly large)
modifications in the search space each time any type of
change occurs.

The notion of ‘job’ differs from the earlier defined
concept of ‘orchestrator’. A job is assigned all possible
devices that may perform its composing operations before
being input to the line. An orchestrator discovers digible
devices while it executes. An orchestrator does not impose
temporal constraintson theactivitieswithin aline, and can
re-adjust in case of machinefailure or online replacement.
If one machineis no longer able to offer a certain service,
an orchestrator will search and discover other devices
compatible with its needs. Unless this type of situation is
explicitly incorporated in theinitial schedule, ajobwill not
adapt to such asituation.

In the new, serviceoriented context, resourceall ocation
(device selection) is a problem of finding the best of all
possible paths within the modd of the physical layout of the
system, for each orchestrator. The search for transportation
devices should be performed on the state space of the
physical system. Thisway the search spaceremainsthe same
no matter what are the orchestrators within theline, unless
additions to the line occur. The search should take into
cond deration existing possibilitiesfor the other orchestrators
in theline, in addition to the makespan of each pallet.

This paper anayzesthe mind shift required towork with
service encapsulations of manufacturing processes. The
usage of formal representations of each orchestrator and the
physical layout of the system to optimally all ocate resources
and select transportation devicesisinvestigated.

The paper is structured as follows: Section 2 describes
the modelling assumptions of this discussion and the used
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formalism. Section 3 highlights the relations between the
state space of each orchestrator and the physical layout of
the system. Section 4 explores possible solutions to the
problem of finding the best routes of each orchestrator in
theline - a new algorithm to compute the cyclesin a graph
is defined in its general form. Section 5 addresses related
work, and Section 6 presentsthe conclusions.

2. MODELING ASSUMPTIONS

Thiswork uses for modelling a Petri Net (PN) [4] derived
formalism called Timed Net Condition Event Systems
(TNCES) [5][6]. TNCES enhances the expression
capabilities of PNswith typed modularity, and adds to the
originally defined el ements of a PN the notions of event arcs
and condition arcs. Event arcsreport changes in the state of
the system, while condition arcs carry state information.
TNCES can model simultaneous start, has aclear notion of
interfacesand amodular hierarchy. An exampleof asimple
TNCESmoduleisdepicted in Figure 1.
TNCES may be defined by the following tuple:

TNCES={name, type, P, T, F, my, v, CN, EN, DC} (1)

where;

* name—a unique string id of a module used to
differentiate the modul es at the same hierarchical leve
of the composite TNCES module.

e type—aunique string id of a module to allow reusing
themodulein hierarchical models.

« P={p,p,....p} isafiniteset of places;
 T={t,t,...,t }isaset of trangtionsdigoint with P;

e Fc(PxT)u(TxP)isafiniteset of flow arcs between
placesand transitions;

¢ m,isaninitial marking;

* Wisinput/output structure of TNCES module;
e CNc (PxT)isafinite set of condition arcs;
e ENc (TxT)isafiniteset of event arc.

The input/output structure of TNCES module is
represented by the following tuple [6]:

A Modube

ail 4

Figure 1: TNCES Module example
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y ={Cin EN" C, E Bc, Be, Cs, Dt} 2
where;
e Chnisafinite set of TNCES module condition input
signals;

« EMisafinitesat of TCNES moduleevent input signals;

« C™jsafinite set of TNCES module condition output
signals;

« E™jsa finite set of TCNES module event output
signals;

* Bcc Cnx Tisaset of TNCESmoduleinput condition
arcs;

e Bec E"x Tisaset of TNCES module input event
arcs;

e Csc P x C™isTNCESmodul eoutput condition arcs;

e Dtc Tx E™isase of TNCES module output event
arcs.

Timeintervalsmay beassigned tothe pre-trangtion flow
arcs (F- < P x T), which imposes time constrains to the
firing of thetransition [6]:

DC={DR,DL, D} (3
defines a set of delay times:

* DR representing the minimum times that the token
should spent at particular place beforethetrangtion can
fire

* DL istheset of limitation timethat definesthe maximum
time that the place may hold a token (if all the other
conditionsfor transition firing are met);

* D, istheinitial set of the clocks associated with the
places.

Themain e ementsof thetuple of themodulein Figure
1 are name =type="A Module’; P={p1, p2}, p3}; T =
{t1,t2,t3}; F ={(pL, t2), (t2, p2), (p2, t1), (11, p1), (p2, t3),
(t3, p3)}; Cin={cil}; En={eil}; C={col, co2}; E=
{eol}; Bc={(cil, t1)}; Be={(eil, t3)}; Cs= {(p1, col),
(p3, co2)}; Dt={(t1, eol)}; D,(P)={0, 0, O} ; DR(P) ={0,
2,-}; DL(P) ={, 10,—}. The formalismis hierarchical,
modular and composable. Its typed nature facilitates the
tracking of the blocks associated with each module in the
markings of the state space. Condition and event arcsenrich
Petri Netswith possbilitiesto carry information about states
and changes of states. These extensions can be fully
expressed mathematically, so verification techniquesarenot
traded for higher modelling power.

The physical layout of the system is modelled following
the general guidelinesfor modelling flexible manufacturing
systems [1][2]. The modelling of service orchestration is
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Figure 2: Fragment of the Petri Net model (bottom-left) of the Physical layout of a Line (Top-right)
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approached in a modular manner: a set of TNCES models
has been defined to cover eight flow descriptors capable of
expressing multithreading, synchronization, looping and
sequencing. Separate modulesto addressthe formal models
of the Boolean conditions that come in conjunction with
looping constructs have been created as asatellite set [13].
The set of basic flow descriptors was taken from the list of
control constructs specified by the OWL-SW3C Note [7].
The end atomic services are treated as black boxes
characterized by a time interval, to specify the upper and
lower boundaries of the admiss ble execution of the process.
The formal modd of each orchestrator can be expressed as
interconnected TNCES modules.

Figure 2 illustrates afragment of the PN model of the
physical layout of a system consisting of fiverobotic cells
and a conveyor system. Pallets can either occupy a
workstation of a cell or bypass it through an auxiliary
conveyor. If the workstation is occupied, lifters situated
beneath its main conveyor assist therobot in reaching the
pallet. The shown fragment istheformal representation of
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the layout of two of the cells within the line. The right-
most cell can be input pallets by the adjacent cells or
through an extra conveyor. Examples of possible
orchestrators that are input to this line are shown in
Figs.3& 7.

The models of the orchestrators and the equi pment offer
an explicit state view of the servicesto be requested/to finish
in future. The markings of each orchestrator map to
corresponding groups of state possibilitiesin the reachability
graph of theequipment model. An update of all markingsas
the pallets go through the line should make inferences on
potential evolutions of line activity possible. These
inferences are valuabl e because the actual mapping to the
physical devices is done gradually, as each orchestrator
executes. Decisions have to be taken in case several
orchestrators competefor the same device, or whenever the
same serviceis offered by two different devices. Knowledge
of the set of path possibilities within the state space of the
equipment, for all orchestrators, can assist the optimal
selection of devices.

orchestrator

Sequence

pl (pStartSeq)

startSen

91_;\:;@“

p3(s_1_star)

end_s_

sE_W

P32

start

start_s_1
B
pl (p1)
— L 1B_av
sta
art_s_2 p2)
™ -gnd
endSequence

Figure 3: TNCES Orchestrator Model: Sequence of Two Atomic Services
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3. RELATIONS BETWEEN THE STATE SPACES OF
ORCHESTRATOR MODELS AND THE PATHS OF
THE PHYSICAL SYSTEM

Based on the nature of the basi c flow representations used
at modelling stage, it is posd bletoidentify re ations between
pairsof statesin theresulting state space of each orchestrator.
A group of such relations for one orchestrator is denoted
here by theterm ‘stamp’. Timing can beassociated with each
stamp if the knowledge about the equipment capable to
providethe needed servicesistaken into consideration. Each
path/cyclein the reachability graph (RG) of an orchestrator
correspondsto several path/cyclepossibilitiesin the mode
of the physcal layout of the system, depending on therdated
number of possible device-process mappings. A stamp can
assist in detecting the changing, over time, of the degree of
desirability of each ongoing path. Thus it can support
decision making about the evolution of the system.

This section analyzes, first, the stamps of TNCES
model s of three basic flow descriptors. Further on, asystem
resulting from interconnecting elements of the basic set is
analyzed to generalizetheinitial statements.

3.1. Sate Spaces of Basic Modules

An example of a Sequence TNCES module engaging two
participant services A and B is illustrated in Figure 3.
Trangition t, of the Sequence module is enabled and may
fire only upon receiving the event startSeq. There are two
atomic servicesA and B, whose internal functionality is not
included in the model. The only information concerning the
atomic servicesthat isavail able to the other TNCES modules
is related to their busy/idle status and possibly their time
intervals. The TNCES representation of the Sequence
specifiesthe entire orchestration of thissimple system.
Figure 4 depicts the reachability graph of the model
shown in Figure 3. Rows numbered 1 to 6 host the marking
vectors corresponding to each state of the logical RG The
row labeled ‘P.nr.” keeps arecord of the flat numbers of the
places within the overall model. Thereare 12 placesin the
flat modd. The first 6 belong to the Sequence TNCES
module. Places 7 and 8 (respectively 9 and 10) correspond
tothe functionality within the atomic TNCES representation
of serviceA (respectively B). Finally, places 11-12 are part
of an ‘init' TNCES modulethat is part of the overall model
but is not shown asit istechnically irrelevant for the present
discussion (itspurposeisto ensurethe start of the execution
of the Sequence module when building the reachability
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Figure 4: RG of the Model of Figure 3

graph). Thefirst element of the marking vector isthefirst
element of the Sequence block: atoken in p, corresponds
to the initiation of activity in the Sequence module. The
sixth element of the Sequence block correspondsto thelast
place of the Sequence module, so m(p,) = 1 marks the end
of activity within the module. The relation imposed by the
Sequence on the state space of thefinal orchestrator is 1R6.
Timeisimposed on thisrelation by the equipment capable
to provide services A and B. If thereismorethan one piece
of equipment capable to provide the same service, the
annotation with timemay be governed by the dlowest device.

An optimal scenario from the viewpoint of the
orchestrator isa situation in which the pallet does not wait
for a long time to have the devices operate on it. This
corresponds to a full execution of the Sequence in the
amount of timethat is necessary for al needed services to
complete, in case the dowest eligible device is chosen in
each case. This corresponds, in the above described situation
(thereasoning issimilar if anumber of participantsthat is
greater than 2 is considered), to the temporal distance
between state 6 and state 1

Tgo € [61 = 1h; 6h—11] 2
wherel and h denote the lower and respectively higher time
instants at which the corresponding state may bereachedin
an optimal situation from the orchestrator’s perspective.
Once date 1 is visited, 61 — 1h; (6h — 1l) is the lower
(respectively higher) boundary of the needed optimal time
rangefor the orchestrator to reach state 6.

Transportation services depend on the position of the
pallet in thephysical system and of the chosen devi ce-process
mappings, and are not considered in this reasoning.
Temporally, the Sequence typed modul eis equivalent to the
AnyOrder typed module. Consequently, this analysis can
be extended to AnyOr der similarly.

Thedetailed RG of amodel of an orchestrator involving
aSplit + Join construct in conjunction with two participating
atomic services A and C is depicted in Figure 5. The first
five places correspond to the block describing the activity
in the Split + Join module. An example of a Split + Join
mode with two participants can be seen in Figure 7, as part
of a more complex model. The beginning of the activity in
thismoduleis marked by the presence of tokensin placesp,
and p, (state 2). Termination of activity in the module is
announced by the presence of tokensin p, and p.. Therelation
RG Detailed markings of the RG
Split + Join A C
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Figure 5: RG of aTNCES Orchestrator Model: SJ of Two Atomic
ServicesA and C
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imposed by the Split + Join on the state space of the
final orchestrator is 2R5. Time isimposed on thisrelation
by the equi pment capableto provide servicesA and Cin the
line.

Based on knowledge about the equipment, a temporal
distance may be defined quantitatively between states
5and 2:

T, €[5 —2h; 5h-21] 4
wherel and h have the same meanings as above.

Figure6illustratesthe RG of amodel of an orchestrator
involving a Choice between two participating atomic
services A and B. Places 7 to 10 in each marking vector
correspond to theactivity of the Choice modulein the overal
system model. Therelation imposed by Choice on the state
space of the orchestrator is 79%8. The temporal distance
between states 2 and 1 (in this order on the time line) is
given by:

T, € [ =2h; 1h-21] (5)
Quantitatively thisdistanceisgiven as:

[min(T.(A), T,(B)), max(T_,(A), T_.(B))] (6)

Each of the constructs occupies a clearly delimited
segment of the marking vector. For instance, the activity of
the Split + Join module (Figure5) is specified by thefirst 5
places of the vector. The activity of the Choice module
(Figure 6) is described by the last 4 placesin the vector.
The identification of the places that mark start and end of
activity in each of thetyped TNCES modulewithin the basis
can be performed automatically. This is achievable if the
(flat) numbers of the places are known. For instance, each
Sequence of N services used in the overall model of the
system requires 2N + 2 elementsin its corresponding block
in the vector of markings. Thefirst dement in the block is
the start of that particular Sequence. Element 2N + 2in the
block corresponds to the end of the activity of the module.
For each Split + Join of N services, a block of 1 + 2N
elements is necessary in the marking vector. In this case,
tokensin elements2to N + 1 of the block mark the start of
activity of the construct. The end of the Split + Join activity
isidentified by presence of tokensin elementsN + 2 to 2N
+ 1 of theblock. Thisresult isobtained in case the numbering
isperformed first for the placess_ j_ start, and then for the
placess_j_end. Thisreasoning can be easily extended to
all TNCES modd swithin thebasis.

Detailed markings of the RiG

A B Choice
P.nr: |1 203 4[5 6|7 8 9 10
1: 1 0|1 ofl1 o1l o o o
2: 1 0|1 oflo 12{o[1] o o
3: 1 0/0o 1|0 1|0 0 0 1
4: o 111 olo 1/0 0 1 o

Figure 6: RG of a TNCES Orchestrator Model: Choice of Two
ServicesA and B
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The stamp of an orchestrator may be defined by
inspecting the typed blocks of its marking vectors that
correspond to the basic modules forming it.

3.2. Sate Spaces of Orchestrator Models Obtained as
I nterconnections of Basic M odules

Consider aproduction sysem involving three atomic services
A, B and C, which are to be completed in order to obtain a
final product (Figure 7). Theorder in which thethreetasks
must take placeinvolvesfirst initiation of both tasksA and
B. After task A iscompleted task C must beinitiated. The
final product is obtained when both B and C arefinished.

Figure 8 illustrates the logical flow between the
markings of the reachability graph and the detailed marking
vectors describing each state within the RG. Places1to 5
define the segment in the marking vector that characterizes
the activity within the Split + Join construct. To infer the
states that should be in a temporal relation in the optimal
case, the Split + Join block should be analyzed to define
the groups of states (the regions) characterizing the start and
end of activity within the block. A possible initiation of
activity is thus indicated in five separate cases (region R
corresponding to states 2, 3, 5, 7 and 9). Only one state
(region R, i.e. state 13) isapossibletermination of activity
within the construct. The relation imposed by Split + Join
on the state space of the orchestrator is R?RRY. In an
optimal scenario, the temporal distance between the two
found regions is a function of the temporal constraints
associated with all possible physical participantsto the flow
module.

T, € [RPI - R¥h; RP’h— R¥I] (7)
Thisrelation may be refined tofiner levelsif each region
isinvestigated separately to ook for its possible source/ sink
gtates. In this case, the source state of the region concerned
with the start of activity - RY - is state 2. R¥does not need to
berefined toits sink stateas it contains only one state. The
relation imposed by Split + Join on the state space of the
orchestrator becomes 1312, and itstemporal distance:

T, € [131 - 2h; 13h-2I] (8)

The logical regions marking the start and end of the

activity in the Sequence module are R™? = {1, 11, 13} and

R ¥°={9, 12} . Thetemporal distance between theregions

isdefined similarly:
SEQ SEQp. PSEQ SEQ

Teo € [RTT=R7h R™=“h =R 9

and may be further refined to states 11 (the source state of

RT™?) and 12 (thesink state of R%"?). Therelation becomes:

Teo € [121 - 11h; 12h - 111] (20)

Thetemporal relationsdefined in Eq. 8 (between states

2 and 13) and Eq.10 (between states 11 and 12) areinferred

through inspecting the basic modul es used to build thefinal

model of the orchestrator. The temporal stamp associated

with the model of Figure 7 is represented by the group of
relations 12811 and 13R2.
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Figure 7: TNCES Orchestrator Model: Interconnections of Split + Join and Sequence Constructs

Once an orchestrator is introduced in the system it
should work towards achieving/minimizing its temporal
stamp. Increasesof theinferred temporal distancesare either
correlated with amalfunction of one of the atomic services,
or with the waiting for one of the services to become
availablefor execution. Thefirst caseisnot of concern here,
asitisassumed that all atomic servicesincorporate an inner
fault handling mechanism, characterized by time boundaries
as well. The second case is analogous to the situation in
which a controlled valueremains within control limits, but
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Figure 8: Markings for the Model of Figure 7

the overall processisout of control: each atomic processis
executing correctly once started, and yet the overall
orchestrator doesnot follow its optimal temporal congtraints
accurately.

The stamp of each orchestrator may be reflected
temporally once or several timesin the state space of the
physical layout of the system.

This depends on the amount of devicesthat are capable
to provide the needed services. The inferred temporal
relations can be used together with real time observations
of the running system to detect the situations in which the
system loops in a state cycle whose degree of desirability is
decreasing with time.

A trivial exampletoillustratethispoint isthe situation
of Figure 7: a certain temporal distance characterizes the
orchestrator state cycles containing states 2 and 13 (and
respectively 12 and 11). Thistemporal distanceis dictated
by the equipment that is able to perform the services
requested by the orchestrator. The cyclesin question can be
mapped to cyd epossibilitiesin the state space of the physcal
layout. This evaluation can be performed for each
orchestrator, and intersections between the possi bl e groups
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of paths inferred. Future evolutions of the physical layout
can bethuseval uated to select theroutesthat aremost likely
to satisfy the optimal time needs of each orchestrator. In this
way situationsthat are found to be potentially critical in the
future can beresolved at an early stage.

4. QUANTIFICATION OF POSSIBLE ORCHESTRATOR
PATHS—AN APPROACH TO COMPUTE THE
CYCLESOF A GRAPH

The main steps of the proposed algorithm are depicted in
Figure 9. Thegraph isfirst subjected to structural reduction.
The reduced graph serves as an input to an encoder who
performs a search on the graph and outputsavector encoding
an entire set of cycles. Second, the coded vector isinput to
adecoder. The output of the decoder consists of an array of
vector representations of both compl ete and partial ly covered
(incomplete) cycles. The complete cycles are retained,
whereas each partially covered cycewill beinput once more
to the encoder for further processing. The procedure ends
when there are no more incompl ete cycles to be processed.
Detail son each of the steps described aboveare given below.

4.1. Sructur al Reduction of the Reachability Graph

To illustrate the structural reduction procedure, a small
example of an RG containing 7 states (Figure 10a) shall be
considered. Thegraph isreduced to so-called ‘ crosspoints
(i.e. states with more than one outgoing state) and the
corresponding transitions.The results of cycle computation
would not be affected by this type of reduction. Figure 10
illustrates on the right side the reduced graph. A record of
all sequences of states emerging from one crosspoint and
ending in another iskept.

For ingtance, crosspoint number 2in Figure 10b should
keep arecord of the sequence{2, 5, 2}, although node 5 is
removed in the reduced graph. The cycles for node 5 may
be easily computed based on the cyclesobtained for the start
crosspoint (crosspoint 2) of the sequence. In order to retrieve
the actual cycle {2, 5, 2} from the crosspoint cycles,

—— Reachability Graph

|

Structural reduction

|

Coded Vector

‘ Decoder

Partially covered
cycles =

Complete cycles

Figure 9: Computation of Cycles in a Graph. General Approach
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Figure 10: (@) Initial Graph (Example); (b) The Corresponding
Structurally Reduced Graph

trimming may be performed for thefirst and last branches
in the cycle. The state space may be safely reduced thisway.

Further cleanup is performed in two steps, in order to
eliminateall crosspointsthat are sureto resultin a deadl ock.
First, the crosspoints with no incoming crosspoints are
eliminated (as they are sure to be part of no cycle). The
crosspoints found to have al incoming crosspoints among
the ones already eliminated are removed from the reduced
graph as well, iteratively. Second, the reduced graph is
checked with respect to the sets of outgoing crosspoints of
each crosspoint. Once a set isfound to be fully included in
the set of previoudy eiminated crosspoints, the owner of
the setisremoved aswell from the state space. Thiscleanup
is performed for all remaining crosspoints iteratively each
time eliminations are detected to have occurred, until no such
detectionsare signaled. The graph is thus reduced to the set
of crasspoints prone to be a part of one or more cycles.

4.2. Encoding Algorithm

In order tofind all cyclesstarting and endingin a particular
crosspoint, a Depth First Search isperformed. Each e ement
in the coded vector keeps a record of two data structures:
the number of successors and the incomplete cycles. The
number of successors of an e ement denotes the number of
outgoing crosspoints of the element that appear further in
the coded vector. An incomplete cycle is a search direction
that was stopped for reasons related to the consistency of
the coded vector, but needs further investigation.

The general steps of the encoding algorithm are shown
in Table 1. The needed data structures are outlined bel ow:
* avector codedVector that stores the elements output

by the encoding procedure. Each e ement in the coded

vector isrepresented by:

e an integer codedElementNo: the number of the
corresponding crosspoint in the reduced reachability
graph.

e an integer noSuccessors: the number of outgoing
crosspoints of the crosspoint with the number
codedElementNo, that are stored further in the
codedVector.

* aBoolean variable final: to mark the noSuccessors as
non-modifiablein thefuture
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Table 1
Encoding Algorithm-General Seps

Procedure ENCODE (Reduced RG, CrossPoint cp)

1. currentElement.codedElementNo « cp.no,
currentelement.incompleteCycles «—
NULL,currentElement.nosuccesors < —1;

2. if codedVector.length > 1 and cp.no = sourceNo
then append currentElement to the codedVector fi, return;

3. if cp.no tempFinal then append cp.no to the incompleteCycles
of the last element in temp fi;

if cp.no e temp then return; fi;

if cp.no ¢ codedVector then

append currentElement to the codedVector;

increment noSuccessors for the last element in temp;

for childCp e outgoingCrosspoints do

temp < NULL, tempFinal <~ NULL;

10. for i = codedVector.length downto O do

11. if codedVector(i). final then

12. append codedVector(i) to tempFinal;

13. else append codedVector(i) to temp fi; od;

14. ENCODE(RG, childCp); // apply the algorithm for the child
15. if childCp = the last element in outgoingCrosspoints then

© ©o N o 0 &

16. currentElement.final <« true fi od; fi.

Besides the codedVecor some auxiliary data structures
are used:

» alistincompleteCycles containing integersthat store
the search directionsthat areyet to be explored.

* aset tempFinal of the elements in the coded vector
with the number of successorsset tofinal.

* asettemp of all elementswithin the coded vector that
do not have the number of successors set to final yet.

e a dtructure representation reducedRG of a reduced
reachability graph.

e aninteger sourceNo: the number of thefirst dementin
the coded vector, for which the cycle computations are
to be performed.

» alist outgoingCrosspoints: the outgoing crosspoints
of the crosspoint with the number equal to
codedElementNo.

Thesmall exampleof Figure 10 shall be used henceforth
to illustrate the steps of the encoding procedure. Table 2
shows the sets of outgoing crosspoints for each of the 5
crosspoints of the reduced graph of Figure 10b. The steps
of the encoding algorithm applied to searching al cycles
emerging and ending in crosspoint number 2 are outlined
below. Table 3 shows the encoded vector output after the
algorithm isapplied once.

Depth First Search is started on crosspoint 2.
The crosspoint is found to have 4 outgoing crosspoints:

Table 2
Sets of Outgoing Crosspoints for the Example Graph
of Figure 9

Crosspoint No Outgoing Crosspoints

1 2 3

2 3 6 2 7

3 2 1

6 1 2

7 1

Table 3
Example of a Coded Vector

Coded eement 2 3 2 1 2 6 2 2
No. successors 4 2 4 1 4 1 4 4 0
Incomplete cycle numbers - - - - - 1 - -

{3, 6, 2, 7}. Thefirst outgoing state number (3) isadded to
the coded vector, and its children are searched further.

Crosspoint 3 isfound to have the set of children {2, 1}.
2 is added to the coded vector, and its children are not
searched further asits number is equal to thenumber of the
first ement in the coded vector (a cycle end was detected).
The number of successors of e ement 3 isincremented and
itsnext child (i.e. 1) issearched for.

Crosspoint 1 is detected to not have been added
previously in the vector, so it is added and the number of
successors of element 3 is incremented. Crosspoint 1 has
two outgoing crosspoints: 2 and 3. 2 is added to the coded
vector, and the number of successors of element 1 in the
coded vector isincremented. The next child of lement 1is
3. Crosspoint 3isnot added to the coded vector nor searched
further, as inspection on the structure of the coded vector
results in detecting the fact that an inner 2 - {3 -1 -3}
loop was reached. Details on detection of loops are given
later in this subsection. As there are no more children to
inspect for eement 1, its number of successorsof element 1
ismarked to befinal.

Similarly, the number of successors of element 3 is
marked to be final. The next child of the source crosspoint
(i.e 6) isinvestigated. Element 6 isadded to the coded vector
and the set of itsoutgoing crosspoints ({ 1, 2} ) isinvestigated.
Element 1 isdetected to be part of the coded vector already,
and verification of the existence of a possibleinner loop is
performed. 1 is added to the list of incomplete cycles for
element 6, and the next child of element 6 is searched for.
Sinceitisa2, it isadded to the coded vector, the number of
successorsfor element 6 isincremented and also set asfinal
(there are no more children to investigate).

The number of successors of the source crosspoint is
incremented, and its next children (2 and 7) aretaken into
cond deration for processing. Element 2 isadded to the coded
vector and the number of successorsisincremented. Finaly,
element 7 is added to the coded vector, and since its only
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child (1) hasalready been added to the coded vector, its set
of incomplete cyclesis added element 1.

The number of successors of the source crosspoint is
incremented and set asfinal, and the procedure terminates.

Detection of theloopsis done based on the structure of
the encoded vector, by means of a simple verification on
whether the element to be added can be found among the
elements already existing in the coded vector, with the
number of successors not set to be final yet.

4.3. Decoding Algorithm

Decoding is performed backwards on the coded vector.

The general stepsof thedecoding algorithm are outlined in

Table 4. The needed data structures are asfollows:

* Input: a vector codedVector storing the encoded
elements.

e Output: an array of vectors allCycles: to store the
decoded cycles.

e An integer sourceNumber: the number of the first
element in the input codedVector.

Table 4
Decoding Algorithm—General Steps

Procedure DECODE (coded\ector)

1. allCycles «— NULL, sourceNumber < the number of the first
eement in the input codedVector, counter «<— 0;

for i = codedVector.length downto 0 do
decodedElement «— codedVector(i);

if decodedElement.codedElementNo = sourceNumber OR
decodedElement.noSuccessors = 0 then

5. append decodedElement.codedElementNo to allCycles
[counter];

increment counter; fi;

if decodedElement.codedElementNo = sourceNumber and
decodedElement.no Successors = 0 then

counterSuccessors < 0,

noSuccessors <« decodedElement.noSuccessors,
10. cyclelndex < counter — 1,
11. previousNumber « — 1.
12.  while counter Successors < noSuccessors + 1 do

13. int elementNo « the codedElementNo of the last element in
allCycles[cyclelndex];

14. if previousNumber dementNo OR eementNo = sourceNumber
then

15. increment counterSuccessors fi

16. append decodedElement to allCycles|cyclelndex];
17. decrement cyclelndex; od; fi;

18. if size of decodedElement.incompleteCycles = 0 then
19. append decodedElement to allCycles[counter];

20. increment counter; fi;

21. od.
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* Aninteger counter for iterating through all Cyclesarray.

» Local integer variables counter Successors,
noSuccessor s, cyclel ndex, previousNumber .

The decoder reads the coded vector backwards. The
allCycles array, whose role is storage of the vectors
representing decoded cycles, isinitialized.

A new vector isinitialized and added to the allCycles
array each time the decoder encounters either an element
with the number equal to the number of the source crosspoint
for which the encoding was performed or an element with
thefinal number of successorsset to 0. The former represents
the end of a coded cycle, whereas the latter represents a
partially covered path which was coded until an inner loop
wasfound. If the decoder encountersan element with afinal
number of successorsgreater than 0 and an el ement number
different from the source crosspoint’s number, then this
element has to be added to the decoded cycles. The number
of successors of the element (noSuccessors) is the decision
maker for how many cyclesin theall Cydesarray the element
hasto beappended to. Theall Cyclesarray isread backwards,
and a counter is incremented from O up to noSuccessors
whenever achangein the number of thelast element of the
vector in allCyclesarray is detected, or when this number is
found to be equal to the number of the source crosspoint.
The element isadded to the vectorsin theal | Cyclesarray as
long as the counter does not exceed noSuccessors.

Initialization and addition of anew vector to the set of
all cycles occurs also when the decoder encounters an
element with anon void set of incomplete cycles.

Thefinal stepisreversing the order of the lementsin
each vector found inthe array of al cycles.

The coded vector of Table 3 will be used to illustrate
the decoding procedure. The output of the decoder is
illustrated in Table 5. The decoded cycles are denoted here
by the lettersA to G The first eement encountered by the
decoder iselement 7, which hasafinal number of successors
set to 0 and a set of incompl ete cycles containing only one
element—dement 1.

The first vector to be added to the allCycles array
contains the number of the element 7. The second vector
retains the information related to the incomplete cycles
attached to element 7 aswell.

Table 5
Decoded Cycles for the Coded Vector of Tablel Il

‘All Cycles' Array

A 2 7
B 2 7(1)
C 2 2
D 2 6 2
E 2 6 (1)
F 2 3 1 2
G 2 3 2
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The second element read by the decoder is element 2,
whose number isequal to the number of thefirst element in
the coded vector (the source crosspoint). Therefore a new
vector isinitialized and added to the array of all cycles.

The third element encountered by the decoder is
processed similarly.

The fourth element to be decoded is 6, which has one
successor and one incomplete cycle, ending in element 1.
Crosspoint 6 is appended only to the last vector added to
the array of allCycles, sincethe last element found in this
vector is 2 (the end of a cycle). To retain the information
related to the incomplete cycle of 6, a new vector is
subsequently initialized and added to the array of all cycles.

Thefifth el ement encountered in the decoding process
is 2, which istreated the same as the second and third.

Next item to beread iselement 1, whoisfound to have
one successor, so it is appended to the last decoded vector
inthearray.

A new vector isinitialized and added to the array of all
cyclestoretain the seventh e ement read by the decoder.

Element 3 has 2 successors, sothearray of allCyclesis
read backwards and eement 3 is appended to the vectors
{2} and{2, 1}.

Thelast encountered element (the source) is appended
similarly to obtain thefull output of the decoder.

Finaly, all decoded cycles are reversed to abtain the
results shown in Table 5.

4.4. Separation between Complete and Incomplete
Cycles. Feeding the Encoder with Incomplete Cycles

The output of the decoder isfurther separated into arrays of
complete and respectively incomplete cycles. Complete
cyclesarethevectors whosefirst and last el ement numbers
are equal tothe number of the source crosspoint (e.g. cycles
C, D, F and G of Table 5). Incomplete cycles are decoded
vectorsending in an d ement whose set of incomplete cycles
isnonvoid (e.g. cyclesB and E of Table 5). Theencoder is
fed again with the partially covered cycles until none are
found in the pool of incomplete cycles.

Auxiliary parameters (i.e. noSuccessors and
incompleteCycles) for the elementsin an incomplete cycle
are reset before feeding the encoder again with the cycle.
Each element’s number of successorsis set to be final and
1, whereas each e ement’s set of incomplete cyclesis set to
bevoid. Thelast element in the incomplete cycleretainsthe
information related to the search directions that are yet
unexplored, sothisinformation hasto betemporarily stored
before resetting the parameters.

The coded vector is initialized to be the decoded
incomplete cycle, and the encoder is fed the new coded
vector and the number of the unexplored search direction.
In case of thefirst decoded incomplete cyclein Table 5, the
coded vector becomes{ 2, 7}, and theencoder starts adding
coded el ementsto the coded vector by appending element 1
and searching its outgoing crosspoints.

5.5. Retrieval of the Actual Cyclesfrom the Craosspoint
Cycles

The complete cycles output by the decoder contain the
information related to the sequence of crosspoints
encountered in that cycle. Each crosspoint stores all
sequences of states (branches) emerging from it and ending
in the same or ancther crosspoint. The actual cyclescan be
retrieved from the decoded complete cycles as sequences

of combinations U B,':Th”, wherei =0: L -2 (L =thelength
i

of thecompletecycle) istheindex iterating over the elements
in the complete cycle, m is the number of the crosspoint
element at index i in the complete cycle, nisthe number of
the crosspoint element at index i + 1 in the complete cycle
and k_, is the index of the selected branch connecting
crosspoints mand n.

Computation of all cycles for a node that is not a
crosspoint isdlightly different from the procedure described
above, in the sense that first identification of the crosspoints
containing branches that include the state of interestisto be
performed. The search is thus reduced to finding all cydes
for each of the identified crosspoints. Finally, trimmingisto
be performed for thefirgt and last branchesin thecycle at the
stage of retrieving theactual cyclesfrom the crosspoint cycles.

4.6. Benefits of the Proposed Algorithm

If actual vertex sequences forming a cycle are needed,
methods for calculating all cyclesin agraph generally rely
on the filling of atree based on the graph, together with
either breadth first search or depth first search algorithms
applied on thetree. Filling atree based on the graph is subject
to memory constraints, as it is impossible to know
beforehand how many nodes the tree will have in the end
(the resulting tree may include the samenode several times
on different branches). Additionally, al nodes in the tree
haveto keep track of all their ancestors, to make detection
of loops possible whilefilling thetree.

Using the proposed approach is beneficial with respect
to the memory size needed to keep track of the elements
within acycle. By structurally reducing the state space, and
by the nature of the encoding procedure, a smaller number
of objects is needed in order to represent the information
describing a set of cycles. The length of the coded vector
will always be less than the number of encoded complete
cycles, plusthe number of crosspointsin the reduced RG.

The actual cycles obtained from the decoded compl ete
crosspoint cycles may simply be stored in arrays of integers.
Partially covered paths leading to a loop are no longer
considered for storage after each encoding-decoding step
takes place. The encoded elements do not need to have
knowledge of all their ancestors (or descendants), as
detection of loops is done online, based on the structure of
the coded vector. Therefore the amount of information to be
retained by each encoded el ement issmaller.
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6. RELATED WORK

Farrow and colleagues [9] wereinterested in quantifying the
information regarding both cycle and transient structure of
a network. This was achieved by means of developing the
scalar equation approach to Bool ean network models. The
authors proposed i nvestigations on designing an algorithm
to systematically find all possible types of scalar equations
of Boolean network equations as future research.

Manivannan [10] designed an algorithm for detection
of knotsand cyclesin a distributed graph. The method relies
on exchange of messages between the vertices within the
graph. If theinitiator vertex is part of aknot, the exact nodes
that are involved in the knot will be found. Otherwise, the
algorithm outputs the set of nodeswhich aresuretobeina
cyclewith theinitiator.

In order to deal with the state space explosion problem,
several graph reduction techniques were proposed in the
literature. Muhanna [11] mentioned the recursive removal
of all sourceand snk nodesfrom the graph (sncethey cannot
be involved in a cycle). Further reduction in the size of the
graph was achieved by partitioning the graph intoits strong
connected components. Koppol [12] suggested grouping
certain observational equivalent states into a single
condensed state, followed by removal of the states found to
be satisfying specified conditions. Elimination of redundant
paths, while preserving observational equiva ence, was also
taken into consideration.

5. CONCLUSION

Service encapsulation of processes can achieveahigh level
of reconfigurability and adaptability of manufacturing lines.
Alternatives to scheduling should be researched to ensure
natural responseto machinefailuresor replacementsand to
changesin required product types and quantities. Possible
solutions should take advantage of the relations between the
state spaces of each orchestrator and the physical layout of
the system. An explicit state view of the line and its
participants is obtained through formally representing all
orchestrators and the physical layout. It is thus possible to
have knowledge of executed/pending processes for each
orchestrator, their positioning in the line and the activities
of theneighboring devices. Quality criteria can be el aborated
based on the updated formal modelsto ass st decision taking.

For each orchestrator, the selection of the next device
can be redefined as a search problem in the model of the
physical layout of the system. The decision on the needed
transportation services is a problem of search in the state
space of the physical layout of the model. Traditional
scheduling approaches rely on known input job mix and
modelsthat represent all possible device-process mappings
for the given jobs. A different model and search space is
constructed every time a change occurs in the line. The
proposed solution structureis beneficial with respect to the
search space, which is the same for every possible
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orchestrator entering the line, unless additions to the
equi pment are made.

Each orchestrator faces severa options at the point of
device selection for its requested processes. Although the
selection is done gradually, the selection criteria may and
should take into consideration (some of) the subsequent
needed services, and the locations where they can be
physically performed in the line. These options are the
potential orchestrator routes in the physical layout of the
system. Device selection may be performed for one device
at a time only, but each time this selection is done the
orchestrator can register itsintention to follow acertain route
in the physical system that may best satisfy itsneeds. In case
of machine failure or replacement, the orchestrator will
recognize the new surrounding situation, because the
discovery process is performed continuoudy. Therefore it
may unregister from the initially planned route and the
evaluation of new routes may begin once more. The
registering of an orchestrator’sintentionsisvaluable as each
path may support physically a certain amount of palletsonly.
The number of orchestrators that intend to use a certain
itinerary together with the physical congraintsof theitinerary
constitute important decision criteria when selecting the
devices.

For path quantification, an algorithm to compute all
cydesin agraph ispresented in itsgeneral form. Themethod
extracts the exact sequences of nodes within each cycle at
the expense of alower memory cost than other approaches
known by the authors. The cycles of interest for the presented
problem are the paths in the physical layout of the system
that correspond to each orchestrator’s requirements.
Informati on about these cycles and their average cycletime,
together with real time data from the physical model will
help the system adjust itself to incoming pallets, no matter
what process sequencing is requested by each.

Cycle computation can be performed offline, as the
search space remains the same unless the machines are
physically removed or added. In the case of machine
removal, the corresponding cycles may be deleted from the
exigting cycle set. Machine addition can be addressed by
analyzing the newly imposed physical constraints (the
relationship of the introduced equipment to the already
exi gting devices), and making the necessary modifications
on the cycle set directly (without the need to compute once
more the entire set). Machine replacements will not affect
the existing cycle set—the routes will be the same, however
they will be considered only by the orchestratorsthat need
the newly advertised services.
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