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Abstract: The circadian regulatory network is one of the main topics of plant investigations. The intracellular interactions
among genes in response to the environmental stimuli of light arerelated to the foundation of functional genomicsin plant.
However, to determine what genes and how much they influence each other through transcriptional binding or physical
interaction using biological assaysisnot easy. In this study, we detected the interactive rel ationships of genesin the circadian
regulatory network via a systematically stochastic modeling analysisin silico. After the successful construction of the circadian
regulatory network, we would analyze the stochastic system under different assumed biological conditions by performing
dry experiments and discover the essential robustness (or sensitivity) characteristics of the circadian regulatory network by
biological perturbations. In short, we can construct and analyze a genetic regulatory pathway of circadian network from

the systems biology viewpoint.

1. INTRODUCTION

Biological phenomena at different organismic levels have
implicitly revealed some sophisticated systematic
architectures of cellular and physiological activities. These
architectures were built upon the biochemical processes
before the emergence of proteome and transcriptome
(Kettman et al., 2001; Scheel et al., 2002). Under the
molecular machinery, thebiochemical processes are mostly
interpreted as frameworks of connectivity between
biochemical compounds and proteins, which are synthesized
from genes to function as transcription factors bound to
regulatory sites of other genes, such as enzymes catalyzing
metabolic reactions or components of signal transduction
pathways (Harkin, 2000). This implies that, in order to
understand the molecular mechanism of genesin the control
of intracellular or intercellular processes, the scope should
be broadened from DNA sequences coding for proteins to
the systems of genetic regulatory pathways determining
which genesareexpressed, when and wherein the organism
and to which extent (Yanovsky and Kay, 2001). In the
experience of engineering field, the systematic architecture
and dynamic modd could analyze the characteristics of
signaling regulatory networks. Therefore, from the system
structure point of view how to construct the dynamic model
of asignaling regulatory network is an important topic of
systems biology. Most biological phenomena such as
metabolism, stressresponse (Motaki et al., 2003), and cell
cyclearedirectly or indirectly influenced by genes and have
been well studied on the molecular basis. Thus, the
identification of a signal transduction pathway could be

traced back to the genetic regulatory level. The rapid
advances of genome sequencing and DNA
microarray technology make possible the quantitative
analysis of signaling regulatory network besides the
gualitative analysis (Hughes et al., 1999). Furthermore, the
embedded time-course feature of microarray data would
improve the system analysisof genetic regulatory networks
aswell.

In addition to northern blots and reverse transcription-
polymerase chain reaction (RT-PCR), which study a small
number of genes in a single assay, transcriptome analysis
(Velculescu et al., 1997) has, via DNA microarray
technology, achieved high-throughput monitoring of the
almost genome-wide MRNA expression levelsin living cells
or tissues. Two types of available microarrays, the spotted
cDNA (Schena et al., 1995) and in situ synthesized
oligonucleotide chips (Lipshutz et al., 1999) are used in
different experimental requirements and stocked in the
databases on net, such as Stanford Microarray
Database (SMD) (Sherlock et al., 2001), Gene Expression
Omnibus (GEO) (Edgar et al., 2002) in NCBI, and
ArrayExpress (Brazma et al., 2003) in EBI. Microarray
experiments are now routingly used to collect large-scale
time series data that facilitate quantitative genetic regulatory
analysis while qualitative discussion is the traditional
thinking (Spellman et al., 1998; Harmer et al., 2000;
Causton et al., 2001).

Several analytic methods have been proposed to infer
genetic interrelations from gene expression data. In the
coarse-scale approach of clustering, the underlying
conjecture is that the co-expression is indicative of the
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co-regulation, thusthe d ustering methods may identify genes
that have similar functions or are involved in the related
biological processes (Soukaset al., 2001; Gasch and Eisen,
2002; Tanay et al., 2005). The most widely used method is
the unsupervised hierarchical clusters(Eisen et al., 1998).
Thisapproach hasan increasing number of the nested classes
by the similarity measurement and resembl es a phyl ogenetic
classification. Other algorithms such asthe neural-network-
based self-organizing maps (SOM) (Tamayo et al., 1999),
singular value decomposition (SVD) or principal component
analysis (PCA) (Alter et al., 2000), and fuzzy clustering
methods (Gasch and Eisen, 2002) also have their own
advantages and limitations. Alternative supervised clugering
algorithm of support vector machine (SVM) (Brown et al.,
2000), which uses prior biological information of cluster
for training, would enhance the performance of clustering.
However, the nature of clustering algorithms is gene
grouping and could not be easily used to uncover the causal
interactions between genes. Regarding the causality of
pathways, the clustering analysis needs to cooperate with
the sequence motif detection (Tavazoie et al., 1999).
It is also important to note that models using
clustering analysis are static and thus can not describe
the dynamic evolution of gene expression, even in
the type of time-course microarray data. Time series
analysis with state space models in the context of
genetic networks has been well used in human T-Cell
(Rangel et al., 2004; Beal et al., 2005) and yeast cell cycle
(Wu et al., 2005).

Recently, a statistical model of Bayesian network
(Friedman et al., 2000) was proposed to model genetic
regulatory networks. Basically, the technique used a
probabilistic scoreto eval uate the networ ks with respect to
the expression data and searches for the network with the
optimal score. An algorithm of Boolean networks (Huang,
1999) was also employed to model the dynamic evolution
of gene expression, where the state of a gene can be
simplified as either active state (on, 1) or inactive state
(off, 0). The probabilistic nature of Bayesian networks is
capable of handling noise inherent in both the biological
processes and the microarray experiments. This makes
Bayesian networks superior to Boolean networks, which
are deterministic in nature. A dynamic mode based on
the first-order differential equation is proposed for yeast
cel cyde(Chen et al., 2004). In their model, atranscriptional
regulation of a target gene is detected for tracing
back upstream regulators. Then these upstream regulators
are considered as target genes to trace back their
upstream regulators to construct their regulatory network
iteratively.

In this study, the stochastic system approach was
employed to model how atarget gene's expression profile
is regulated by its upstream regulatory genes from the
system causality viewpoint. The AutoRegressive with
eXternal input (ARX) model, which has been widely used
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to model many physical stochastic systems with several
good characteristics, isproposed to model thetime-profile
evolutional behavior of a target gene under interactive
regulations and a random noise environment. Using the
interactive ARX model and the microarray data, we can
identify the circadian regulatory network from the
interactive stochastic system viewpoint.

The interactive ARX stochastic system approach is
applied tothe circadian regulatory pathway of Arabidopsis
thaliana (Yanovsky and Kay, 2001; Staiger., 2002) with
microarray data sets publicly available on the net (Harmer
et al., 2000; Schaffer et al., 2001). Thecircadian system is
an essential signaling network that alowsorganismsto adjust
cellular and physiological processes in anticipation of
periodic changes of light either in the normal environment
or in theflowering time. A well known signaling pathway in
circadian rhythms of Arabidopsisis isolated by mutation
method either inthe normal environment or in theflowering
time (Somerset al., 1998; Alabadi et al., 2001; Schaffer et
al., 2001; Toth et al., 2001; Yanovsky and Kay, 2001; Stai ge,
2002; Hayama and Coupland, 2003; Mass et al., 2003). 16
gene pathway (shown in Table 1) in circadian pathway are
well roughly constructed in Arabidopsis (Yanovsky and Kay,
2001; Hayama and Coupland, 2003). In this study, we use
the well isolated probably genetic regul ation mechanismin
these 16 genesas abiological filter in our dynamic modeling
to construct the circadian pathway by using time course
microarray measured in constant condition in Arabidopsis
(Harmer et al., 2000). According to the synchronoudy
dynamic evolution of microarray data, we have successively
identified the core signaling transduction from light receptors
of phytochromes (Casal, 2000) and crytochromes
(Fankhauser and Staiger, 2002) to the endogenous biol ogi cal
clock (Alabadi et al., 2001), which iscoupled to control the
correlatively physiological activity with paces on a daily
basisin our interactive stochastic system model. With the
stochastic system approach, not only theregulatory abilities
and random noise effect, but also the oscillatory frequency
and the delays of regulatory activity were specified. In
addition, the robustness (or sensitivity) analysisisimportant
topic to see more insight into system characteristics of the
gene regulatory network (Chen et al., 2005). However, the
robustness of the circadian system isonly at the steady state
case. In this study, based on the stochastic model
constructed executed by microarray data, a sensitivity
analysisisdevel oped for different parameter variationsfrom
the dynamic system viewpoint. In this situation, the
sensitivities of system genesto different perturbation effects
such as Input light, Trans level, and Cis level are also
deduced. Moreover, we design several smulation assayswith
the biological sensesto mimic the biological experiments.
These quantitative characteristics and assays will help
investigate the intrinsic connectivity of the circadian
regulatory network in Arabidopsis, from the stochastic
system viewpoint.
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Table 1
The Dynamic Equation Set of the I dentified Upstream Regulators and their Regulatory Relationships to the Specific System Genes
in the Pathway of Circadian Regulatory Network of Arabidopsis Thaliana. Totally 16 System Genes (X, ~ X ) are Represented
with their ARX Dynamic equations. The estimated 1.0-hr Activation Delay of the ARX(1) is also shown for each Upstream
Regulator, i.e. Z(k_ri) Denotes X (k) with the Delay <, and through a Sigmoid Function in equation (1.2). U(k-1,) Denotesthe
Input Light with a Delay T, Affecting X (k). It is seen that X, (k) to X (k) are Directly Affected by Light and X, (k) to X (k)
are not Affected Directly by Light

(1) X, (k) = 0.95523- X, (k —0.5) +0.062396 - U (k)
(2) X,(k) =10115- X, (k —05) +0.12859- X, (k — 0.5) — 0.15496 - X , (k — 0.5) +0.026677 - X (k — 0.5) + 0.043613 X, (k —0.5) —0.02881- X, (k — 0.5) + 0.069679 - X, (k —0.5) + 0.038535 - X 1, (k — 0.5) — 0.07327 - U (k)
(3) X4 (k) = 0.96536- X, (k —0.5) +0.038346 - X, (k —0.5) ~0.02186 - X, (k —0.5)— 0.02185 - X, (k —0.5) - 0.03783- X, (k —0.5) -0.12463- X, (k —05) —0.05918 - X ,, (k —0.5) +0.257 - X, (k —0.5) +0.053959 - U (k)

(4) X,(K) = 0.86142- X, (k —0.5) +0.044109- X, (k —0.5) +0.010912 - X, (k —0.5) + 0.033129 - X, (k —0.5) —0.09248 - X (k —0.5) +0.002625 - X, (k —0.5) + 0.065395 - X ., (k —0.5) —0.08182- X, (k ~0.5) +0.17747 -U (k)
(5) Xg(k) = 1.0621- X, (k —0.5) +0.067196 - X, (k — 0.5) +0.000164 - X, (k —0.5) +0.015546 - X, (k —0.5) — 0.02668 - X, (k —0.5) —0.04628 - X, (k —0.5) +0.052805 - X ., (k —0.5) —0.05938 - X, (k —0.5) —0.05647 -U (k)
(6) Xq(k) = 0.98671- X, (k —0.5) +0.009117 - X, (k —0.5) +0.017871- X, (k — 0.5) — 0.01325 - X, (k — 0.5) + 0.021482 - X, (k —0.5) +0.026652 - X, (k —0.5) +0.063417 - X, (k — 0.5) — 0.06054 - X, (k — 0.5) - 0.02682-U (k)
(7) X, (k) = 1.126 - X, (k — 0.5) +0.033057 - X, (k — 0.5) +0.053598 - X, (k — 0.5) — 0.08615 - X5 (k — 0.5) —0.16828 - X, (k — 0.5) —0.13794 - X, (k — 0.5) —0.22659- X 1, (k — 0.5) —0.19554 - X 1, (k — 0.5) +0.29971-U (k)

(8) Xg(k) =0.9932- X (K —0.5) +0.01061-U (K)

(9) X, (k) =0.96214- X, (k —0.5)+ 0.05387 -U (k)

(10) X,o(K) = 0.94208- X, (k —0.5) — 0.00783 - X, (k — 0.5) + 0.006922 - X, (k — 0.5) +0.054391 - X, (k — 0.5) + 0.012162 - X5 (k — 0.5) — 0.02955 - X, (k —0.5) +0.00604 - X, (k —0.5)

(11) Xy (k) = 0.98314- X,, (k —05) +0.009773- X, (k —0.5) —0.04943- X, (k — 0.5) +0.048507 - X, (k — 0.5) + 0.039943 X, (k — 0.5) + 0.049841- X, (k — 0.5) —0.05489- X 1, (k — 0.5) +0.015015 - X ., (k — 0.5)

(12) X,(K) = 1.2126- X, (k —0.5) +0.018817 - X, (k —0.5) + 0.07522 - X, (k —0.5) — 0.25376 - X, (k —0.5)

(13) Xy, (k) = 0.84627 - X 1, (k — 0.5) —0.0523- X, (k —0.5) +0.049786 - X, (k — 0.5) +0.082987 - X, (k —0.5)

(14) X,,(k) = 1.0101- X, (k —0.5) +0.012403- X, (k —0.5) —0.01484 - X, (k —0.5) —0.05309 - X, (k —0.5) +0.037975 - X, (k —0.5)

(15) X,5(K) = 1.0008- X 5 (k — 0.5) — 0.05948- X, (k — 0.5) + 0.008273 - X, (k —0.5) —0.11432 - X, (k —0.5) + 0.097237 - X, (k — 0.5) + 0.053412 - X, (k —0.5)

(16) Xy (K) = 1.1657 - X 45 (k —0.5) + 0.012415 - X, (k — 0.5) + 0.045795 - X ;, (k —0.5) —0.09915 - X, (k —0.5) — 012059 - X, (k —0.5)

X1 X2 X3 X4 X5 X6 X7 X8
System Genes Fkfl Cryl Cry2 PhyA PhyB PhyD PhyE E1f3
XQ XlO Xll X12 X13 X14 X15 X16
Gi Pif3 Tocl sLhy Ccal Papl Chs Co
Table 2
The Assays in Silico of the Circadian Regulatory Network in Arabidopsis
Type of assay A Parameters Sensitivity computation Smulation assays
Input Light Light fluences (Amplitude) 150%(+50%) +50%
50% (-50%) -50%
Trnas level Trans-sensitivity rate (y) +100% Average of +100% and —100%
—100%
Trans-expression threshold (M) +100% Average of +100% and —100%
—100%
Cis level The genetic kinetic parameter +1.0 and —1.0 of initial Average from +100% to —100%

d ., i=1,2,...16 for the specific gene j

N gene expression with 5% interval di,N =0,i=12,..,16

for the specific gene j

2. STOCHASTIC SYSTEM M ODEL AND

nonlinear sigmoid activation to describe the expression

IDENTIFICATION METHOD

The proposed circadian regulatory network in this study
would bedivided intotwo steps. In thefirst sep, a stochastic
system is developed from the interactive ARX mode with

profile data as output and the upstream genetic signals as
input to denotetheimplicit characteristics of each genewith
some parameters. With the help of the optimal estimation
method, we can identify the parametric Sructureof the ARX
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interactive stochastic model, which reveal s the interactive
relationships in a network. After modeling the circadian
genetic regulatory system, we then perform the system
sengitivity analysis to assess robustness of the circadian
network from three aspects of biological perturbations,
including the Input, Trans, and Cis levels, in silico as the
mimic biologica assaysinvivo and in vitro. Wewill unravel
the molecular mechanism of the circadian network from the
stochasti ¢ system viewpoint.

3. STOCHASTIC SYSTEM DESCRIPTION OF

CIRCADIAN REGULATORY MODEL

An ARX model iswell used in the description of stochastic
system evolved from the ontology of causality. However, it
isonly used to model a stochastic system without interactions
with others. We can consider any gene expression profileas
asystem response or output stimulated by someinputs from
other gene expressonsand environmenta stimuli. Therefore,
an interactive ARX model is employed to describe a gene
expression through interactive regulations among genes
in a circadian regulatory network. According to this
description, let X (k) denote the expression profile of the
i-th gene at time point k. Then the following nonlinear
ARX interactive equations are proposed to model the
expression level of the i-th gene as the synthesis of n

upstream regulatory signals Z(k), i=1 2, ..,n

and an external input light signal u under their t delays,
(seeFigurel)

X(K) = dl,ilz(k_Ti)+dl,izs(\;(k_'fi)+“'+
d X (k=) ++dy, X, (k=7,)+
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k=27,)+dy;, X, (k=21,)+ - +

k—ZTi)+m+d2vin5(Vn(k—2q)+
k—Qri)+dq'i25(V2(k—Qri)+~-+
k—Q’ti)+~'+dq’inS(\;(k—Q’Ci)+

(1.2)

where X, (k-q-7,),j=12,,n;q=12,Q ae the
upstream interactive signals transformed by Xj(k) with
the g-th order of t, delay and through a nonlinear
sigmoid activation function to denote the binding of
transcription factor on gene i, and the genetic kinetic
parameter dq’ij (i # j) denotes the regulation ahilities of
transcription factor 5(VJ (k) on genei. Meanwhile, u(k—t, ),
which denotes the external input light with a delay t,, and
correlateswith the output genetic expression X (k) with the
input kinetic parameters b..¢ (K) is the stochastic noise of
current microarray dataor theresidue of themodel. Herer,
and 1, which areessential to the activation-time estimation,
should bedetermined previously and will be discussed |ater.
Oscillationsexist in acircadian regul atory network through
the interactions with other genes if these interactions are
limited by nonlinear sgmoid functionstoavoid their unstable
propagations, which will be discussed by the describing
function method of nonlinear limit cyclesin control theory
(Slotineand Li, 1991) in the sequel.

It should be noted that with the combination of
biological knowledge about the transcription factors, protein
phosphorylation, and post-transcriptional and specific
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Figure 1:
Regulatory Signal, X;(k—qr,), forj=2andq=1

Illustration of the Dynamic System Scheme using the ARX (1) Model. Block A Represents the Transformation of the Genetic
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enzyme regulations, lots of verified regulatory genes X
correlated with the target genes X viathis biological filter
are considered to determinewhether the kinetic parameters

q.- =12 ..,Q;n=12, .. and b should be set to zero
previ ouslywnhout estimation. In thisway, we determineall
the kinetic parameters of the filtered genesthat are possible
correlated with the output gene biologically.

According to the biological or biochemical principle,
the genetic interactions such astranscriptional binding and
protein activation start on athreshold of the expression leve.
Therefore, it is reasonable to confine the effect from the
upstream regulation X to X, which is why we induce the
upstream genetic regulatory signal X through a sigmoid
activation function tobe X .

For the limited influence expression of X (k-aq.t)
(seeBlock A in Figure 1), the sigmoid function is chosen to
express the nonlinear ‘on’ or ‘off’ activities of physically
genetic interactions with parameters 0, = {v, M, T} as
follows,

1
1 (X;k=a5) M)

Xik-q-7)= (12)

1+e

Whereyj isthetrans-sengitivity rate, and M isthetrans-
expression threshold derived from the mean of thej-th gene’s
profile. Y, could determinethe transition time of activation
between the states of ‘ off’ or *on’ from X to X, for which a
larger Y, iswith alesstransition time, to mimicthetransient
dtate of the genetic interaction on the trans level. M, can
determinethe threshold of the half activation level of X to
X, for which alarger M iswith alessactivating ab|l|ty, to
mi mic the Seady state of the genetic interaction on thetrans
level.

In this study, we use the mRNA expression data of 8200
genes measured in the replicate hybridization of 12 samples
harvested every 4 hoursover 2 days. The system time delay
g.t, we choose must be small than 4 hours. In addition, for
the biological reason of small activation delay on mRNA
level and lessmodeling complexity, we can reducethe order
of theARX moddl tonomorethan 2, Q=1 (i.e. ARX(1)) or
Q=2(i.e ARX(2)) in equation (1.1). Wewill determinean
adequate order and delay for our interesting system later.
And now we take the second order ARX nonlinear model
for illustration asfollows,

X(K) = dy iy Xo (k=7 )+, X, (k-
d X (K= 1)+ +dy ) X, (k=7,)+
i Xy (K= 27, )+ dy 1, X, (=27, ) 4o +
dy i X (k=27 )+ -+ dyyp X, (K= 21, )+
b-u(k)+e(k),i=L12-,n (1.3)
Through equation (1.3) is a second order ARX

stochastic system, due to several nonlinear feedbacks
through other genes, all of the circadian regulatory network

T )4

could be equivalent to avery high order nonlinear difference
equation which maybe exist several oscillations in the
circadian regul atory network.

To make the stochastic model effective, the stochastic
dynamic equation in equation (1.3) should meet the
expression profileat all time pointsk=k, k,, ..., k_andis
then arranged in avector differenceform. Consequently, the
vector underlined in thisequation is applied to mtime points
in order.

X =dl,ilxlr, + +d1,ii X . +d1,inxn ot
d2,i1Xl.21, +otdy Xi,2(, + +d2,inxn,2r, +h ut+eg (1.4)
where

X; (k) X, (k.—q) X, (k. —a)
X - Xi(:kz) K- X, (k-a) | X, - X, (ko —a) |
X, (k) X, (k,—q) X, (kn—0)
u(k,) 8i(k1)
u= u(t<2) & = K (:kz) , and m denotes the number of
u(k,) & (ko)

time points. t, isthe specific activation delay.
In the next step, to estimate the kinetic parameters
qln,q 1,2;n=12,..andb, theformulaequation (1.4)
should be trand ated mto the d|fference matrix equation as
follows,

=AQ +E,i=12..n (1.5)
where Y =X, Q =[d,..dy, dpy..dy, b and
E =¢, arein vector forms, while
A=[_>Z

X X . X u Jisamatrix.

Xig = Koo

We assume that each element in the stochastic noise
vector, g(k), | = {1, ..., m}, is an independent random
variable with a normal distribution with zero mean and
variance o which is unknown and needs to be estimated.

Thus, we estimate the parameter (Aq using the maximum
likelihood method. The likelihood function of Y, is defined

as

The log-likelihood function for given mdata pointsis
then described by

221,27 Zn, 2y =Ty

-AQ T [Y -

20,

2 1 Y,
Y |0, 07 = -
p(Y [ 0%) Jor? exp{

m

I [Y-AQ]
(1.7)

L(Q,672) = —gln[chiz]

i ':1
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The necessary condition for the maximum likelihood
egtimation of ¢? and Q, is to find ¢? and Q, to maximize
L(©,, 6%). We can obtain the maximum likelihood estimate

oL(Q,6°%) oL(Q,6°%)

of ¢ and Q, by =0 and, =0 which

(¢)
are solved as (Johansson, 1993)

s=o3[v-aa] [¥-a2]  qg

Q =(A'A)'AY, i=12..n
We could solve Q, first and then substitute (Aq into

(1.9)

equation (1.8) to find &”. Here, the modeling error could

be concluded into E, as the noise of the gene-expression
profile or the microarray chips. So the consideration of
modding error in equation (1.5) approaches more thereality.
We also illustrate the stochastic system approach using a
stochastic model ARX interactivemodel in Figure 1. After

the parameter estimation in equation (1.9), substituting (Aq
in equation (1.9) into stochastic model in equation (1.3) lead
to the estimated circadian regulatory network equationsin
Table1.

4. BIOLOGICAL ASSAY OF ARX SYSTEM MODEL

The biological assaysof theARX system model aredivided
into four categories. The first is the confirmation of the
oscillation frequency of circadian regul atory network by the
oscillatory characteristics of the stochastic circadian
regulatory model. The second isthe sensitivity analysiswith
respect toinput stimulus changes, thethird isthe sensitivity
anaysisunder transdisturbance, and thelast isthe sensitivity
analysis about the cis perturbation. Before these assays, it
isnecessary to define some measureindexesto evaluate the
system characteristics. We considered three most essential
features of circadian regulatory networks, i.e. similarity,
period, and mean expression. For the measure of sSimilarity,
the Pearson correlation coefficient isawiddy used similarity
metric. For biological assay of the ARX modd, we calculated
the Pearson correlation coefficient between the genes mRNA

expression profiles of X (k) in vivo and fi(k) in silico at
al timepointsk=Kk, k,, ..., k_asfollows.

S DRI R0
DX (k)X (k) -|
r<xi'2)= [ 2 2
n [meﬂ L [szﬁ
ZXiZ(K)—HT in (k) - -
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To measure the period of the time-course expression
profile, the power spectrum, which hasdifferent magnitudes
in different frequencies (the reciprocal of periods), is
employed to detect which frequency has the largest
magnitude. First, we should take the Discrete Fourier
Transform of X (k) for k=k, k,, ..., k_asfollows,

Xi(@) =Y X (k)& (2.2)
1=1
where o isthe radian frequency.

Then we detect the frequency with the maximum

magnitude,

o, =argmax|X; ()| =%
where T, isthe period of X (k) and can be determined from
the reciprocal of the detected frequency o,. The oscillation
frequency o, detected by equation (2.3) will be used to assess
the oscillation frequency of our stochastic mode of the
network in the sequel. Furthermore, the measure of mean
expression of X(k) is important for distinguishing the
deviation of expression profile under different assays as
follows,

(2.3)

1 m
Mi :E; Xi (k1) (2-4)

5. DETERMINATION OF SYSTEM ORDER AND
ACTIVATION DELAY OF CIRCADIAN SYSTEM

In this study, the formulated ARX model should be first
assigned with a proper modeling order and an activation
delay to analyze the experimental expression data of
microarray. According to equation (1.1), we compared the
first-order (Q=1) ARX modd (i.e ARX(1)) and the second-
order (Q = 2) ARX model (i.e. ARX(2)) with different
activation delayst as shown in Figure 2a. We exploited the
mean similarity between the raw expression and the
simulation of all 16 system genes we concerned in the
circadian network of Arabidopsis thaliana, which is
measured by Pearson correlations, to evaluate the
performance of the network model. Owing to the least
difference at 0.5-hr delay between ARX (1) and ARX(2), we
would prefer themore flexible ARX(1) model with a0.5-hr
activation delay as the system model for the circadian
regulatory network. Consequently, the simulation
expressions of the derived circadian network model are
shown in Figure 2b and exhibit agreeable dynamic data
fitting, thus creating a basi sfor thefollowing system analyss.

On the other hand, the quantitatively regulatory abilities
among the system genes in the circadian system can be
estimated asthe genetic and input kinetic parameters of the
sysem model in equation (1.3). The kinetic parameters of
ARX(1) are displayed in Table 1, where the positive value
means activation and the negative one means inhibition.
Although the upstream genes are selected according to the
biological knowledge of rdevance such as transcriptional
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by genes ather than light stimulus (see Eq. (1) in Table 1).
Thedetection of the static structural characteristicswill help
construct their hidden significance of cis connectivity asin
the signaling transduction network of Figure 3.

5. Senditivity Analysisof Circadian System

The sensitivity measure of the circadian system for the
analysis of robustness can also be derived from the whole
system model, i.e, we should integrate n ARX models
together. For illustration, wewould rearrange equation (1.3)
into the following difference matrix equation by which its
sensitivity will beinvestigated later,

{a) 1.2-
oo drees ARX(T)
. 8- ARX(2)
oo R
=
Q
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Figure 2: ARX System Modeling with Determination of System
Modeling Order and Activation Delay. (a) The Average
Similarity (Measured by Pearson Correlation) of all
System Genes under different Activation Delays.
Therefore, ARX (1) Model with Delay t = 0.5 hr is an
Adequate Model with Small Order and Less Delay.
(b) The Dynamic Data Fitting of 16 Genes in the
Circadian Network with ARX (1) Model and 0.5-hr
Activation Delay

binding, phosphorylation, and complexes, this quantitative
influence could reveal the significance of upstream geneslike
the ARX dynamic equation set in Table 1. For instance, the
mutual interactions of Cryl1 [X,] and PhyA [X,] have their
basis on phaosphorylation (Ahmad et al., 1998) (see Eq. (2)
and Eq. (4) in Table 1), and we identify that Cryl has the
strongest positive influence on PhyA with activation delay.
Meanwhile, Cryl and PhyA aresignificantly regul ated by Lhy
[X ] and Ccal [X ] known as biological clock genes, which
are negative regulated reciprocal, as shown in
Eq. (2) and Eq. (3) of Table 1, to highlight their feedback
regulatory roles on crytochrome and phytochrome,
respectively (also seeEqg. (2) and Eq. (4) in Table 1). In this
way, we can even recognize the regulatory ability from the
input-light signal. In particular, Fkf1[X ] that hasnoregul ated

Y(k) = D,Y (k—1)+ D,Y (k—1) + Bu(k) (3.1
where
I O d1,12 d1,1n |
d1,21 O d1,23 :
D=| ! dgp o,
: : dl,(n—l)n
L dl,nl dl, n(n-1) O i
X, (k) X (k-1,)
X, (k X, (k—
vy =| 28| yog=| Xk
X, (k) X, (k-1,)
17-141\\ fg}\ (%‘ﬂ\\
. e 4 (o) &y ")
Lo \F -
N = .
I
) _‘\/%.?\e i
) (=)
(&) @ -@
: =
Legends i | ¢
H -~
‘ w1 |
i =
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Figure 3: Signaling Transduction Network of System Genes and
Input Light in the Circadian Network of Arabidopsis.
The Colored Circles Indicate the System Genes with
their Names and Notations of X, ~ X,
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[ X, (k-1)
Xy (k-1,) b u(k)
Yk-9=| _  |e=|%|u="],
X (k_ ) 3 u(-k)
| X, (k=1,) ]

and nisthe number of genes.

A. Circadian Clock Frequency Assay

By the existence condition of limit cycle (oscillation) in an
interactive stochastic dynamic system with sigmoid
(or saturation) interactive feedbacks, we will compare the
limit cycles of the interactive stochastic system with the
oxcillation frequencies cal cul ated by equation (2.2) and (2.3)
by Fourier transform of the raw gene expressionsto validate
the accuracy of the proposed dynamic model in the sequel.

Using the ARX system model as equation (1.3) or
equation (3.1) and the definition of measure indexes, our in
silico biological assays of the circadian regulatory system
in Arabidopsis thaliana are described in the following. A
dynamic system with saturation (or sigmoid function)
nonlinear feedback will lead to oscillation (limit cycle)
(Slatineand Li, 1991). This oscillation phenomenon can be
interpreted by the theory of the describing function, which
has been widely used to interpret oscillation in nonlinear
saturation feedback systems and will be used to describe
the circadian regulatory network of Arabidopsis thaliana.
According to equation (3.1), we get

(1 -27D,)Y(k) = DY (k—1) + Bu(k) (3.2)
z® 0 0
where 77 = Z 2 , and z " denotes the
0 e 0 z™
delay operator of T,

Y(K)=(1-2"D,)*DY(k-1)+(I -z °D,) "Bu(k) (33)
If the oscillation (limit cycle) occurs in circadian

network, then the sigmoid function, Y(K), in equation

(1.2) can be approximated by the describing function N(A)
as(Slotineand Li, 1991)

Y0
Yo -| 2

~ N(AY(K) (34)

Y.
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where the describing function matrix

N(A) O O
T I
0 0 N(A)

N.(A) denotes the describing function of the i-th gene of
oscillation and A denotes the amplitudeof oscillation of the
i-th gene. If a gene j is free of oscillation, then the
corresponding NJ(AJ) = 0. From (3.3) and (3.4), we can
approximate thecircadian network as

Y(K) = (1 ~z"D,) *DN(A)z"Y(K) + (I - 2" D,)* Bu(K)

(3.5)

There are two rhythms, one is circadian rhythm and
another isdiurnal rhythm. Thefirst term with gain equal to
1 on the right hand side of equation (3.5) responds for
circadian rhythm; and the second term for diurnal rhythm,
which iscontrolled by diurnal cycling of light and dark u(k).
Some photoreceptor genes are of second case. Since the
oscillation existsin the circadian network, by control theory
(Slotine and Li, 1991), the closed loop gain should be
lossless during these periods in order to support the
oscillation, i.e.

(I-z°D,)*'D,N(A)z " =1 (3.6)
or D,N(A)=z"-D, (3.7)
At frequency domain, we can get
e -D, =D,N(A) (3.8)
e’jV\ﬁtl 0 .. 0
. -~ Wot,
where e = O © ,O )
: 0 . 0
0 0 g

and w is the oscillation frequency of the i-th gene. By the
equality of thediagonal termsfor each gene, we can get

eJWTi - d2,ii = Zdl,ij N] (AJ)

j#i

(3.9)

By the above describing analysis of nonlinear oscillation
(Slotine and Li, 1991), the intersection point of the

e -d,; and de N;(A) inequation (3.9) impliesthe
j#i

occurrence of oscillation with amplitude A and frequency

w inthei-th gene. If nointersection existsin equation (3.9),

thereisnooscillation in thei-th gene. For example, for gene
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PhyE, we get its oscillation frequency 0.45 from equation
(3.9) which approxi matesthe measured oscill ation frequency
0.52 by discrete Fourier transform in equation (2.3). For gene
Lhy, we get its oscillation frequency 0.21 from equation
(3.9), which is near to the oscillation frequency 0.2 by
discrete Fourier transform in equation (2.3). These
estimation errorsin oscillation frequency may bedueto the
fact that describing function is only alinear approximation
of nonlinear operator and the discrete Fourier transform
X(w) in equation (2.3) has some error because the number
of data pointsis small and the steady state is not achieved
yet. However, the describing function method will provide
an estimation method to roughly assess the existence of
oscillations and their frequencies in nonlinear interactive
network.

The physical meaning of equation (3.6) is that if a
sigmoid function can limit the increase of feedback
interactions such that theloop gain in the circadian regul atory
network isequal to 1 to supply theloss of the network due
to the degradation of proteins, and then the circadian network
will continueto oscill ation. The biological meaning is that
the concentrations of MRNA of genesin circadian network
will continue to oscillate if they are activated to enough
supply their degradations by the feedback regulations
through the other genesin the network.

B. Input-light Perturbation Assay

In general, the circadian regulatory network isindependent
of the external light except the photoreceptor, i.e. the
expression profiles of genes in the circadian network are
less senditive to the variation of external light except the
genes with the role of photoreceptor. Therefore, based on
the dynamicmodel of circadian network, a sensitivity assay
toinput-light perturbation isdiscussed in thefollowing. The
input signal is the white light containing versatile wave
lengths from red light to blue light. The original constant
light profile startsat 8:00 A.M. in themorning, and ends at
4:00 A.M. after 44 hours (Harmer et al., 2000). Thus, we
assumethat theillumination of light asvalue 1 and the dark
state as value 0 to mimic the light profile. The system
sensitivity with respect totheinput light can bederived from
equation (3.1) asfollows,

Dg+B

AY AY AY
e D — = 5
AU

=D—=-—+ 3.10
AU DAy AU (3.10)
where A meansthe perturbations. From eguation (3.10), we

can formul ate the sensitivity from the AU to AY as follows,

~\-1
A _[1-p,-p2Y| B (3.11)
AU AY

where | is the identity matrix. Then we can measure the
sensitivity of the circadian regulatory network with

respect to the input-light stimulus. To demonstrate the

validity of equation (3.11), we compare the realisti c output
perturbation AY with the estimated output perturbation

-1
B{I -D,-D, %J BAu to confirm the validation of the

network dynamic model as in Figure 4, which represents
the system response to the perturbation of the environment.
The realistic AY for each system gene is close to the
computed values so that the sensitivity equation like
equation (3.11) could well uncover the sensitivity of the
system characteristics. Furthermore, we manipulate a
simulation asfollows.

Amplitude Simulation of Light: We change the
amplitude of light from 100% to 150% (+ 50%) and 50%
(—50%) respectively asinput to the circadian system and
derive the average measure indexes with the sensitivity
for each system gene, which are shown in Figures 5, 6 and
Table 3A. Further discussion will be given in the next
section.

C. Trans-perturbation Assay

Owing to the saturation of activity of genetic interactions,
we employ the sigmoid function to characterize the trans
expression of upstream genesin equation (1.2). Asin the
description of equation (1.2), y is the trans-sensitivity rate
whichisrelated tothetransition time of trans-activation and
M is the trans-expression threshold that determines the
saturating transformation leve of expresson. Wealsoinduce
the corresponding sensitivity in the following,

AY o AY
=bi 3.12
AF  *AF (3.12)
——  The realitic AV
| Tmpndxmda'y'}
e rkF] 2 . oyi] 2 cyz] 2 PhyA
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Figure 4: Comparison of the Predicted output Perturbation of AY
with the Realistic One to Validate the System in
Response to the Environmental Perturbations
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Genes X, ~ X,
where
AY | Y.elw AY  —y-e™
L = {'Y' _} A__ ; — - - 2 y ar] — ; — B ~ 2
Y (l+ez(XM)) AM (1+e1<1M))

Hence we could discuss the sensitivity on the trans
level like the input sensitivity. By the analysis of these
two parameters, we can manipulate two smulations as
follows.

Trans-sensitivity Ratey Smulation of Gene

Inasimilar way asin input perturbation, we changed y from
100% to 0% (— 100%) and 200% (+ 100%) of system genes
in pathway to comparewith their sensitivitiestoy, asshown
in Table 3B. We al so average the three measure indexes of
each gene, which are shown in Figures7.1, 7.2 & 9.

Trans-expression Threshold M, Smulation of Gene

Wevaried M, to 100% lower (— 100%) and higher (+ 100%)
than the original mean expression of the j-th gene
respectively and compared with their sensitivities of M;,
which are shown in Table 3C; and their average measure
indexes areshown in Figures7.3, 7.4 & 9.

D. Cis-perturbation Assay

In equation (1.3), the genetic kinetic parameter dq’ij can be
taken as the influence values of upstream gene on the
transcriptional binding or physical interaction with the output
gene, which is similar to the cis activation. Thus, we can
discuss the influence of the variations in genetic kinetic
parameters, which can be estimated from equation (1.9),
using the circadian network. We also inducetheir equation
of sensitivity likethe trans case as follows,
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for each Measure under Perturbation. (d), (f) and (h)
and after these Perturbation Assays Corresponding to
System Genes X, ~ X

AY _q_p,yip AL (3.13)
AY' AY'
AY .efz(X'*M)
where —=—=———and AY is the genetic

AY' (1+ g 1M )

expressions of the perturbation. Hence, we could also
discussthe sensitivity on the cis level, at which theinitial
genetic expressions are perturbed to + 1.0 and — 1.0 for
the original amount of each system gene and shown in
Table 3D.

Variation Smulation of cis Parametersd_
For a specific genej in the circadian network, we would
alter all the connectivity d o1 =12, ... from 0%
(— 100%) to 200% (+ 100%) W|th 5% mterval to mimic
perturbations of the cis circuit and averagethethree measure
indexes for each genein Figures 8.1, 8.2 & 9.

are the Coordinate Representations of these Three Measures before
(c), (e), (g), Respectively. Gene No. Indicates the Notations of the

Mutation Smulation of cis Parameters dq’ij
There is a conspicuous perturbation of the cis circuit, i.e.
the mutation assay. For a specific genej in the circadian
network, we also mimic the mutation of all its cis
connectlwtyd I,|— 1, 2, ..., nat the same time by setting
their val u%aso Using thesamewayasbefore we average
their three measure indexes to evaluate the system
performance, which are shown in Figures 8.3, 8.4 & 9.

5. RESULTS

Analysis of Data Set

Thefamous modeling organisms, Arabidopsisthaliana, have
been well biologically studied and their microarray assays
are abundant. Theplant behavior in responseto the external
light, i.e, thecircadian regulatory network, which isessentia
in the physiology and metabolism of plant, has been widely
investigated. In this study, we adopted the data set from
the works of Harmer (2000) and used the ARX model
to construct the circadian pathway and perform the
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sendtivity (or robustness) analysisof the circadian regul atory
network.

For cells grown in the constant light condition,
Harmer and his colleagues used highly reproducible
oligonucleotide-based arrays representing about
8200 different genesto determine the steady-state mMRNA
levels in Arabidopsis thaliana that are measured in the
replicate hybridization of 12 samples harvested every 4 hours
over 2 days. With their investigation of the circadian
regulatory system, Harmer et al., have provided an
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abundance of correlated genes from which we choose 16
core genes of the circadian network with their time-course
microarray data for our dynamic system identification and
analysis.

Analysis of Circadian Network M odel

For the discussion of the circadian network modeled by the
stochastic ARX model, we have designed several assays as
in the above section, likethe biological experimentsin the
wet laboratory, to discover the genetic responses and
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elucidate the robustnessor sensitivity of the 16 genesin the
circadian network.

A. Rhythm Frequency Estimation from Circadian
Regul atory Network

The Rhythm existsin the circadian regul atory network via
feedback regulations. It can be estimated by equation (3.9)
from theidentified circadian regulatory network in Table 1.
This result can be confirmed by the frequency directly
detected by equation (2.3) from microarray data.
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B. Smulation of Input-light Perturbation

The paces of the circadian clock are synchronized by
environmental cues such aslight. Thegimulusof theexternal
light could be divided into red light and blue light, which
can be absorbed by phytochromes (PhyA [X,], PhyB [X,],
PhyD [X,], and PhyE [X_]) (Martinez-Garciaet al., 2000)
and crytochromes (Cry1 [X,] and Cry2 [X,]) (Casal, 2000),
respectively. Hereby we model the white light with an
amplified perturbation on the fluence or amplitude as in
Figure 5a. In Figures 5¢c and 5d, the simil aritiesof the 150%
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(+ 50% perturbation) light fluence for system genes show
deviation implying a strong influence of light perturbation
on theamplified amplitude. However, when considering the
periods of expression in Figures 5e and 5f, the significant
decrement of period appears in Cryl [X] and Cry2 [X,]
(Somers et al., 1998), indicating its potent dependence on
light quantity. There are the elevated mean expressions of
Cryl [X,] and Cry2 [X,] in Figure 5g consistent with the
extreme sensitivity in Figure 5b and Table 3A (Somers et
al., 1998). Moreover, the coherent reductionsin period can
be observed in photoreceptors ([X,] ~ [X.]). However, Chs
[X,] isfound to have the largest sensitivity (see Figure 5b
and Table 3A) to both blue and UV light (Deikman and
Hammer, 1995). In addition, the attenuated amplitude
of light fluence (- 50%, see Figure 6a) will reduce
most of the similarities of gene expressions as in the
Figures 6¢ & 6d.

C. Smulation of Trans Perturbation

In the perturbation of trans-sensitivity rate (y), we will
discuss whether the transition rate, which determines the
transition time of one gene binding to or interacting with
another one, affects the system gene's expression in this
model system. It seems that the similarity (Figure 7.1a)
remains unchanged for most system genesexcept Cry1[X ],
PhyA [X,], PhyD [X], and PhyE [X ] (Aukerman et al.,
1997). In addition, the results of PhyB [X.] and PhyD [X ]
(Figure 7.1a) are much the same as the provided
evidence that the role of PhyD [X ] issimilar to PhyB [X,]
(Aukerman et al., 1997). If weconsider the periodic variation
inFigure7.1b, Cry2’s[X,] periodislengthened about 10%,
whilst that of Cryl1 [X,] and Papl [X,,] areshortened about
20%, respectively. The diversity and sensitivity of period
due to perturbation of the transition time are evident asin
Figure 7.1c. The mean expressions of system genes are
almost unaltered but PhyE [X_] (Devlin et al., 1998) is
reduced. Further, the results of Figure 7.2 exhibit the
robustness of the similarity and mean expressions of the
system genes. Therefore, the mimic assay of transition time
by the perturbation of trans-sensitivity rate has revealed that
the period is the only susceptible characteristic in contrast
to the similarity and mean expression. From the result of
Table 3B, we also found three genes of Cryl [X ], PhyD
[X,], and Tocl [X ] with significant sengtivitieswith respect
tothe perturbation of the trans-sensitivity rate. Becausethe
largest difference in the mean sensitivity of each gene of
Table3B isabout 0.025, we would concludethat the trans-
sensitivity rate, which determines the transition time
indicating the transient state of trans activation, has less
influence on the circadian system.

In another perturbation of trans-expression threshold
M, wewould realize theinfluence of activation threshold of
gene expression on the trans level, which determines the
activating abilities of upstream genes. There arefive genes
of Cryl [X,], Cry2 [X], PhyD [X], Pif3 [X ] and Tocl

[X,] with perceptible variations, which have the same
behavior in themeasures of smilarity and period (see Figure
7.3a and 7.3b). However, almost all mean expressions of
system genes decay in Figure 7.3c. Thus, we suspect that
their deviation in similarity istheresult of changesin periods
and means of expression profiles. As shown in Figure 7.4,
the similarity and mean expression havemore deviationsin
contrast to the period due to the wider distribution on the
vertical axis. Nevertheless, the perturbation of Fkf1[X ] has
different behavior of the stable similarity and mean. This
robustness means lower correlation with the regul ations of
other genes in the circadian network. In the measure of
sengitivity in Table 3C, there are three apparent genes of
PhyE [X_], Lhy [X_,], and Co [X ] with crucially positive
sensitivities, whilst Cryl [X,] and Tocl [X ] have
significantly negative ones. Owing thelargest differencein
the mean sensitivity of each gene of Table 3C being closeto
0.29, the circadian network is more sensitive to the
perturbation of the trans-expression threshold M and the
activation level of steady state, rather than the trans-
sengitivity ratey.

D. Smulation of Cis Perturbation

In theassay of cis perturbation, we attempt to alter thevalues
of the regul atory abilities of the genetic kinetic parameters
dq’ij in the ARX system mode. This could be considered as
thevariationsin thecislevel. In Figure8.1a, thesimilarities
of the system genes are mostly the same. Neverthel ess, the
diagonal hasfew variationsin thesimilarity to demonstrate
the essential role of the genetic kinetic parameter for each
gene in the network. We also found that Pif3 [X ] has a
significant decrement in period. As in Figure 8.2, the
stabilization of the similarity and mean expression is
manifested, especially in the perturbation of the biological
clock genes of Tocl [X,], Lhy [X ], and Ccal [X_]
(Maset al., 2003). Hence, the single perturbation of these
three geneswill not affect the circadian system dueto their
well-known closeinterconnectionswith potential robustness.
This can be demonstrated by the lower sensitivities in
Table 3D consistent with Tables 3B and 3C.

In addition to the cis perturbation, the mimic genetic
mutation on thecislevel isalsoacrucia strategy of study,
which isvery popular in thetraditional biological assay. The
mutation of each network gene in order has revealed the
uncovered deviation of gene expression in the diagonal of
thethreeinsets in Figure 8.3. Obvioudly, in Figure 8.4, the
cis mutations of EIf3 [X,], Papl [X ], Chs[X,], and Co
[X,] could not affect the system genes but their periods.
However, the mutants of the remaining genes result in
significant deviations of their gene expressions.

In the overview of the perturbation of geneson thetrans
and cislevels, we showed these four types of perturbations
consistently in Figure 9. The fact that the most diversity
appears in the cis mutation indicates that the ability of cis
activation is essential tothecircadian system network. The
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other threeperturbations are more robust. We presume that
thetransition timeconcerning the transient state on thetrans
level isless effective on geneticinteractions. The complexity
of thecircadian network will resist the perturbations of genes
on thecislevel except the cismutation, which is consistent
with the results of sensitivitiesin Tables 3B-3D.

6. DISCUSSION

Microarray analysis using the stochastic system approach
offers an opportunity to generate the interpretation of
functional influence on a specific genetic regulatory network.
The crucial ontology behind using stochastic system
techniquesisthat the framework of the interactivity between
gene expression profiles could be recognized quantitatively
according to the stochastic process such asARX underlying
a dynamic system under a noisy environment. Therefore,
because the microarray data were harvested with time
progression (Harmer et al., 2000), the simultaneoudy varied
gene expressions implicated in the circadian regulatory
network of Arabidopsis thaliana would be detected via
interactive stochastic modeling in silico in spite of the
versatileinteractions such astranscriptional control, protein
phosphorylation, or specific complex interaction etc.

The clustering method (Soukas et al., 2000 and 2001;
Tamayo et al., 1999) answers the problem of what is the
functional catal ogue of a specific gene by theidentification
of resembling patterns of gene expressions. Similarly, the
co-regul ations of upstream genesin our method alsoimply
their concurrent functions. In contrast to the clustering

algorithm, the causality of time-course data has been
smoothly drawn by our dynamic method. The Bayesian
networks (Friedman et al., 2000) were used merely for
forward probabilistic estimation with the time transition
lacking in thefeedback linkages. Thisunidirectional problem
would not happen in our a gorithm. Owing to the quantitative
regulatory abilities of our model, we have a greater
diversity of regulatory influence than the Boolean networks
(Huang, 1999), which are deterministic with merely two
states.

In our stochastic system approach applied to the
circadian network using stochastic ARX, we nat only can
identify theregulatory abilitiesviainteractive ARX(1) model
with activation delays, but also indicate the regulatory
grength from theinput-light signal. In termsof theregul atory
abilities, the comparison between the upstream regulatory
genes of a target gene can inspire us to ask which one is
significant biologically and whether it is a positive or
negative influence on the investigated gene as shown in
Figure 3. Further, the speculation of activation delays
benefits the experimental reference by providing us when
the upstream regul atory genes might interact with their target
genes in the circadian regulatory network. The greatest
importance of the proposed stochastic model is the
convenience of the consegquent system analysis, for example,
sensitivity analysis, to gain moreinsight about the circadian
regulatory network. From the result of Table 3, the
photoreceptor genes and their down stream target genesin
circadian regulatory network are more senstivetoinput light



System Identification and Robustness Analysis of the Circadian Regulatory Network via ARX Stochastic Interactive Model 53

perturbations; and the circadian regulatory networks are
more sendtiveto cisperturbationsthan to trans perturbations.
Furthermore, the activation or repression relationships
inferred via microarray data would distinctly uncover the
overal effect of regulatory interactions among system genes
in the circadian regulatory network on the transcriptional
level.

In addition to the stochastic system modeling of the
circadian regulatory network in silico, the system analysis
of the circadian regulatory network by perturbation assays
will reveal the practice of systems biology. Especialy, we
measure systematically the simulation output profiles by
threeindexes of similarity, period, and mean expression. In
the investigation of 16 genes of the circadian regulatory
network, we have demonstrated that the period of Chs is
very sensitiveto the perturbation of input light implying its
essentiality among photoreceptors. If we perform the
perturbation on the trans level, we will discover that the
activation threshold of trans gene expression is crucial to
the circadian system. Cryl, PhyD, PhyE, and Chs are
significantly sensitive to the perturbation of the trans-
expression threshold. Thisimpliesthat the trans-expression
threshold, like the activation degree of the protein, should
be confined to avoid the disturbance of the genetic system.
The robustness of the circadian system is shown in the cis
perturbation while the cis mutation will cause more lethal
in the gene expression. The less sensitive genes are Lhy,
Ccal and, Tocl on the cis perturbation or mutation due to
their core functionsof the initiation of the biological clock.
Thisiswhy the period of the circadian geneswill be altered
facilely after the perturbation. From the analysis of the
circadian network by system modeling approach in silico,
we can operate many genetic assayswith the external light
stimulus that will not be performed easily in reality to
discover the responses among the involved genes in the
circadian system.

There are some shortcomings in our study. First,
although the time-cour se microarray data are available, its
lower samplings will distort the real changes of gene
expressions, especially for fast dynamic evolution. A more
sampling experiment with respect to the intrinsic turnover
rate is expected for a more precise analysis. Second, we
formulate our ARX circadian network model using the
biological knowledge of the correlations between the
circadian genes. In this situation, we should know the exact
interactive partners of the system genes. Hence, the more
proper knowledge of the correl ations can provide, the more
accurate the stochastic system model is. In the circadian
regulatory network, it is enough for us to construct the
stochastic system because of its simulation similarity
approaching 0.99 in Figure 2a. Third, a larger network
contai ning morethan one hundred geneswill make modeling
and discussion difficult due to computation complexity.
Finaly, the activation profiles under the proteome should
be highly correlated with the transcriptional profiles to

improve the interpretation ability of our system moddl. In
general, the synchronous time-course microarray assay is
more suitabl e to detect the transcriptional binding among
genes, so that an inference of physical interactionsin the
post-transcriptional level will become morefeasiblein our
study.

In the near future, the most pressing task istoinvestigate
our presumed characteristics of thecircadian network in the
laboratory. Asthe stochastic system modeling algorithms are
further devel oped, we expect this stochastic system approach
to have immense impact in elucidating the underlying
molecular mechanismsof network in avariety of organisms
besides the circadian network in Arabidopsis thaliana,
especially after the maturation of the protein chips.
Ultimately, we envision that biologistswill perform routine
system analysis in silico to seek some novel genetic
characteristics and to identify the robust or sensitive links
of system genes.
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