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Abstract: The circadian regulatory network is one of the main topics of plant investigations. The intracellular interactions
among genes in response to the environmental stimuli of light are related to the foundation of functional genomics in plant.
However, to determine what genes and how much they influence each other through transcriptional binding or physical
interaction using biological assays is not easy. In this study, we detected the interactive relationships of genes in the circadian
regulatory network via a systematically stochastic modeling analysis in silico. After the successful construction of the circadian
regulatory network, we would analyze the stochastic system under different assumed biological conditions by performing
dry experiments and discover the essential robustness (or sensitivity) characteristics of the circadian regulatory network by
biological perturbations. In short, we can construct and analyze a genetic regulatory pathway of circadian network from
the systems biology viewpoint.

1. INTRODUCTION

Biological phenomena at different organismic levels have
implicitly revealed some sophisticated systematic
architectures of cellular and physiological activities. These
architectures were built upon the biochemical processes
before the emergence of proteome and transcriptome
(Kettman et al., 2001; Scheel et al., 2002). Under the
molecular machinery, the biochemical processes are mostly
interpreted as frameworks of connectivity between
biochemical compounds and proteins, which are synthesized
from genes to function as transcription factors bound to
regulatory sites of other genes, such as enzymes catalyzing
metabolic reactions or components of signal transduction
pathways (Harkin, 2000). This implies that, in order to
understand the molecular mechanism of genes in the control
of intracellular or intercellular processes, the scope should
be broadened from DNA sequences coding for proteins to
the systems of genetic regulatory pathways determining
which genes are expressed, when and where in the organism
and to which extent (Yanovsky and Kay, 2001). In the
experience of engineering field, the systematic architecture
and dynamic model could analyze the characteristics of
signaling regulatory networks. Therefore, from the system
structure point of view how to construct the dynamic model
of a signaling regulatory network is an important topic of
systems biology. Most biological phenomena such as
metabolism, stress response (Motaki et al., 2003), and cell
cycle are directly or indirectly influenced by genes and have
been well studied on the molecular basis. Thus, the
identification of a signal transduction pathway could be

traced back to the genetic regulatory level. The rapid
advances of genome sequencing and DNA
microarray technology make possible the quantitative
analysis of signaling regulatory network besides the
qualitative analysis (Hughes et al., 1999). Furthermore, the
embedded time-course feature of microarray data would
improve the system analysis of genetic regulatory networks
as well.

In addition to northern blots and reverse transcription-
polymerase chain reaction (RT-PCR), which study a small
number of genes in a single assay, transcriptome analysis
(Velculescu et al., 1997) has, via DNA microarray
technology, achieved high-throughput monitoring of the
almost genome-wide mRNA expression levels in living cells
or tissues. Two types of available microarrays, the spotted
cDNA (Schena et al., 1995) and in situ synthesized
oligonucleotide chips (Lipshutz et al., 1999) are used in
different experimental requirements and stocked in the
databases on net,  such as Stanford Microarray
Database (SMD) (Sherlock et al., 2001), Gene Expression
Omnibus (GEO) (Edgar et al., 2002) in NCBI, and
ArrayExpress (Brazma et al., 2003) in EBI. Microarray
experiments are now routinely used to collect large-scale
time series data that facilitate quantitative genetic regulatory
analysis while qualitative discussion is the traditional
thinking (Spellman et al., 1998; Harmer et al., 2000;
Causton et al., 2001).

Several analytic methods have been proposed to infer
genetic interrelations from gene expression data. In the
coarse-scale approach of clustering, the underlying
conjecture is that the co-expression is indicative of the
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co-regulation, thus the clustering methods may identify genes
that have similar functions or are involved in the related
biological processes (Soukas et al., 2001; Gasch and Eisen,
2002; Tanay et al., 2005). The most widely used method is
the unsupervised hierarchical clusters (Eisen et al., 1998).
This approach has an increasing number of the nested classes
by the similarity measurement and resembles a phylogenetic
classification. Other algorithms such as the neural-network-
based self-organizing maps (SOM) (Tamayo et al., 1999),
singular value decomposition (SVD) or principal component
analysis (PCA) (Alter et al., 2000), and fuzzy clustering
methods (Gasch and Eisen, 2002) also have their own
advantages and limitations. Alternative supervised clustering
algorithm of support vector machine (SVM) (Brown et al.,
2000), which uses prior biological information of cluster
for training, would enhance the performance of clustering.
However, the nature of clustering algorithms is gene
grouping and could not be easily used to uncover the causal
interactions between genes. Regarding the causality of
pathways, the clustering analysis needs to cooperate with
the sequence motif detection (Tavazoie et al., 1999).
It is also important to note that models using
clustering analysis are static and thus can not describe
the dynamic evolution of gene expression, even in
the type of time-course microarray data. Time series
analysis with state space models in  the context of
genetic networks has been well used in human T-Cell
(Rangel et al., 2004; Beal et al., 2005) and yeast cell cycle
(Wu et al., 2005).

Recently, a statistical model of Bayesian network
(Friedman et al., 2000) was proposed to model genetic
regulatory networks. Basically, the technique used a
probabilistic score to evaluate the networks with respect to
the expression data and searches for the network with the
optimal score. An algorithm of Boolean networks (Huang,
1999) was also employed to model the dynamic evolution
of gene expression, where the state of a gene can be
simplified as either active state (on, 1) or inactive state
(off, 0). The probabilistic nature of Bayesian networks is
capable of handling noise inherent in both the biological
processes and the microarray experiments. This makes
Bayesian networks superior to Boolean networks, which
are deterministic in nature. A dynamic model based on
the first-order differential equation is proposed for yeast
cell cycle (Chen et al., 2004). In their model, a transcriptional
regulation of a target gene is detected for tracing
back upstream regulators. Then these upstream regulators
are considered as target genes to trace back their
upstream regulators to construct their regulatory network
iteratively.

In this study, the stochastic system approach was
employed to model how a target gene’s expression profile
is regulated by its upstream regulatory genes from the
system causality viewpoint. The AutoRegressive with
eXternal input (ARX) model, which has been widely used

to model many physical stochastic systems with several
good characteristics, is proposed to model the time-profile
evolutional behavior of a target gene under interactive
regulations and a random noise environment. Using the
interactive ARX model and the microarray data, we can
identify the circadian regulatory network from the
interactive stochastic system viewpoint.

The interactive ARX stochastic system approach is
applied to the circadian regulatory pathway of Arabidopsis
thaliana (Yanovsky and Kay, 2001; Staiger., 2002) with
microarray data sets publicly available on the net (Harmer
et al., 2000; Schaffer et al., 2001). The circadian system is
an essential signaling network that allows organisms to adjust
cellular and physiological processes in anticipation of
periodic changes of light either in the normal environment
or in the flowering time. A well known signaling pathway in
circadian rhythms of Arabidopsis is isolated by mutation
method either in the normal environment or in the flowering
time (Somers et al., 1998; Alabadi et al., 2001; Schaffer et
al., 2001; Toth et al., 2001; Yanovsky and Kay, 2001; Staiger,
2002; Hayama and Coupland, 2003; Mass et al., 2003). 16
gene pathway (shown in Table 1) in circadian pathway are
well roughly constructed in Arabidopsis (Yanovsky and Kay,
2001; Hayama and Coupland, 2003). In this study, we use
the well isolated probably genetic regulation mechanism in
these 16 genes as a biological filter in our dynamic modeling
to construct the circadian pathway by using time course
microarray measured in constant condition in Arabidopsis
(Harmer et al., 2000). According to the synchronously
dynamic evolution of microarray data, we have successively
identified the core signaling transduction from light receptors
of phytochromes (Casal, 2000) and crytochromes
(Fankhauser and Staiger, 2002) to the endogenous biological
clock (Alabadi et al., 2001), which is coupled to control the
correlatively physiological activity with paces on a daily
basis in our interactive stochastic system model. With the
stochastic system approach, not only the regulatory abilities
and random noise effect, but also the oscillatory frequency
and the delays of regulatory activity were specified. In
addition, the robustness (or sensitivity) analysis is important
topic to see more insight into system characteristics of the
gene regulatory network (Chen et al., 2005). However, the
robustness of the circadian system is only at the steady state
case.  In this study, based on the stochastic model
constructed executed by microarray data, a sensitivity
analysis is developed for different parameter variations from
the dynamic system viewpoint. In this situation, the
sensitivities of system genes to different perturbation effects
such as Input light, Trans level, and Cis level are also
deduced. Moreover, we design several simulation assays with
the biological senses to mimic the biological experiments.
These quantitative characteristics and assays will help
investigate the intrinsic connectivity of the circadian
regulatory network in Arabidopsis, from the stochastic
system viewpoint.



System Identification and Robustness Analysis of the Circadian Regulatory Network via ARX Stochastic Interactive Model 39

Table 1
The Dynamic Equation Set of the Identified Upstream Regulators and their Regulatory Relationships to the Specific System Genes

in the Pathway of Circadian Regulatory Network of Arabidopsis Thaliana. Totally 16 System Genes (X1 ~ X16) are Represented
with their ARX Dynamic equations. The estimated 1.0-hr Activation Delay of the ARX(1) is also shown for each Upstream

Regulator, i.e. � � �i iX k �  Denotes X
i
(k) with the Delay 

i
 and through a Sigmoid Function in equation (1.2).  ( )iuU k �  Denotes the

Input Light with a Delay 
iu

 Affecting X
i
(k). It is seen that X1(k) to X9(k) are Directly Affected by Light and X10(k) to X16(k)

are not Affected Directly by Light

2. STOCHASTIC SYSTEM MODEL AND
IDENTIFICATION METHOD

The proposed circadian regulatory network in this study
would be divided into two steps. In the first step, a stochastic
system is developed from the interactive ARX model with

nonlinear sigmoid activation to describe the expression
profile data as output and the upstream genetic signals as
input to denote the implicit characteristics of each gene with
some parameters. With the help of the optimal estimation
method, we can identify the parametric structure of the ARX

Table 2
The Assays in Silico of the Circadian Regulatory Network in Arabidopsis

Type of assay � Parameters Sensitivity computation Simulation assays

Input Light Light fluences (Amplitude) 150%(+50%) +50%
50% (–50%) –50%

Trnas level Trans-sensitivity rate (�) +100% Average of +100% and –100%
–100%

Trans-expression threshold (M) +100% Average of +100% and –100%
–100%

Cis level The genetic kinetic parameter +1.0 and –1.0 of initial Average from +100% to –100%
d

i,N
, i = 1,2,...16 for the specific gene j gene expression with 5% interval d

i,N
 = 0, i = 1,2,...,16

for the specific gene j
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interactive stochastic model, which reveals the interactive
relationships in a network. After modeling the circadian
genetic regulatory system, we then perform the system
sensitivity analysis to assess robustness of the circadian
network from three aspects of biological perturbations,
including the Input, Trans, and Cis levels, in silico as the
mimic biological assays in vivo and in vitro. We will unravel
the molecular mechanism of the circadian network from the
stochastic system viewpoint.

3. STOCHASTIC SYSTEM DESCRIPTION OF
CIRCADIAN REGULATORY MODEL

An ARX model is well used in the description of stochastic
system evolved from the ontology of causality. However, it
is only used to model a stochastic system without interactions
with others. We can consider any gene expression profile as
a system response or output stimulated by some inputs from
other gene expressions and environmental stimuli. Therefore,
an interactive ARX model is employed to describe a gene
expression through interactive regulations among genes
in a circadian regulatory network. According to this
description, let X

i
(k) denote the expression profile of the

i-th gene at time point k. Then the following nonlinear
ARX interactive equations are proposed to model the
expression level of the i-th gene as the synthesis of n

upstream regulatory signals �( )iX k , i = 1, 2,  . ..,  n

and an external input light signal u under their � delays,
(see Figure 1)

X
i
(k) = � � � � � �, 1 1 1, 2 21 i i i id X k d X k� � � � � � ��

� � � � �1, 1,ii i i in n id X k d X k� � � � � � ��

� � � � � �2, 1 1 2, 2 22 2i i i id X k d X k� � � � � � ��

� � � � �2, 2,2 2ii i i in n id X k d X k� � � � � � ��

� � � � � �, 1 1 , 2 2q i i q i id X k Q d X k Q� � � � � � ��

� � � � �, ,q ii i i q in n id X k Q d X k Q� � � � � � ��

� �( ) , 1, 2, ,i iu ib u k k i n� � � � � � � (1.1)

where � � � , 1, 2, , ; 1, 2, ,j iX k q j n q Q� � � � �� �  are the

upstream interactive signals transformed by X
j
(k) with

the q-th order of �
i
 delay and through a nonlinear

sigmoid activation function to denote the binding of
transcription factor on gene i, and the genetic kinetic
parameter d

q, ij
 (i � j) denotes the regulation abilities of

transcription factor � � �jX k  on gene i. Meanwhile, u(k – �
iu
),

which denotes the external input light with a delay �
iu
 and

correlates with the output genetic expression X
i
(k) with the

input kinetic parameters b
i
.�

i
(k) is the stochastic noise of

current microarray data or the residue of the model. Here �
i

and �
iu
, which are essential to the activation-time estimation,

should be determined previously and will be discussed later.
Oscillations exist in a circadian regulatory network through
the interactions with other genes if these interactions are
limited by nonlinear sigmoid functions to avoid their unstable
propagations, which will be discussed by the describing
function method of nonlinear limit cycles in control theory
(Slotine and Li, 1991) in the sequel.

It should be noted that with the combination of
biological knowledge about the transcription factors, protein
phosphorylation, and post-transcriptional and specific

Figure 1: Illustration of the Dynamic System Scheme using the ARX(1) Model. Block A Represents the Transformation of the Genetic

Regulatory Signal, � ( ),  for 2 and 1j iX k q j q� � � �
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enzyme regulations, lots of verified regulatory genes X
j

correlated with the target genes X
i
 via this biological filter

are considered to determine whether the kinetic parameters
d

q, ij
, q = 1, 2, ..., Q; n = 1, 2, ... and b

i
 should be set to zero

previously without estimation. In this way, we determine all
the kinetic parameters of the filtered genes that are possible
correlated with the output gene biologically.

According to the biological or biochemical principle,
the genetic interactions such as transcriptional binding and
protein activation start on a threshold of the expression level.
Therefore, it is reasonable to confine the effect from the
upstream regulation X

j
 to X

i
, which is why we induce the

upstream genetic regulatory signal X
j
 through a sigmoid

activation function to be �jX .
For the limited influence expression of X

j
 (k – q.�

i
)

(see Block A in Figure 1), the sigmoid function is chosen to
express the nonlinear ‘on’ or ‘off’ activities of physically
genetic interactions with parameters �

j
 = {�, M

j
, �

i
} as

follows,

� 1( )
( ( ) )

1

X k qj i X k q Mj j i je

� �� �
�� � �� �

�

(1.2)

Where �
j
 is the trans-sensitivity rate, and M

j
 is the trans-

expression threshold derived from the mean of the j-th gene’s
profile. �

j
 could determine the transition time of activation

between the states of ‘off’ or ‘on’ from X
j
 to  X

i
, for which a

larger �
j
 is with a less transition time, to mimic the transient

state of the genetic interaction on the trans level. M
j
 can

determine the threshold of the half activation level of X
j
 to

X
i
, for which a larger M

j
 is with a less activating ability, to

mimic the steady state of the genetic interaction on the trans
level.

In this study, we use the mRNA expression data of 8200
genes measured in the replicate hybridization of 12 samples
harvested every 4 hours over 2 days. The system time delay
q.�

i
 we choose must be small than 4 hours. In addition, for

the biological reason of small activation delay on mRNA
level and less modeling complexity, we can reduce the order
of the ARX model to no more than 2, Q = 1 (i.e. ARX(1)) or
Q = 2 (i.e. ARX(2)) in equation (1.1). We will determine an
adequate order and delay for our interesting system later.
And now we take the second order ARX nonlinear model
for illustration as follows,

X
i
(k) = � � � � � �1, 1 1 1, 2 2i i i id X k d X k� � � � � � ��

� � � � �1, 1,ii i i in n id X k d X k� � � � � � ��
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� � � � �2, 2,2 2ii i i in n id X k d X k� � � � � � ��

� �( ) , 1, 2, ,i ib u k k i n� � � � � (1.3)

Through equation (1.3) is a second order ARX
stochastic system, due to several nonlinear feedbacks
through other genes, all of the circadian regulatory network

could be equivalent to a very high order nonlinear difference
equation which maybe exist several oscillations in the
circadian regulatory network.

To make the stochastic model effective, the stochastic
dynamic equation in equation (1.3) should meet the
expression profile at all time points k = k

1
, k

2
, ..., k

m
 and is

then arranged in a vector difference form. Consequently, the
vector underlined in this equation is applied to m time points
in order.

� �
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��
, and m denotes the number of

time points. �
i
 is the specific activation delay.

In the next step, to estimate the kinetic parameters
d

q, in
, q = 1, 2; n = 1, 2, ... and b

i
, the formula equation (1.4)

should be translated into the difference matrix equation as
follows,

, 1, 2, ...i i i iY A E i n� � � � (1.5)

where 1, 1 1, 2, 1 2,, ... ...
T

i i i i in i in iY X d d d d b� �� � � � � and

i iE � �  are in vector forms, while

1, , 1,2 ,2... ...
i i i i iun nA X X X X u� � � � �� �� � �

� � � �  is a matrix.

We assume that each element in the stochastic noise
vector, �

i
(k

l
), l = {1, ..., m}, is an independent random

variable with a normal distribution with zero mean and
variance �2

i
, which is unknown and needs to be estimated.

Thus, we estimate the parameter �i�  using the maximum
likelihood method. The likelihood function of Y

i
 is defined

as

� � � �2

22

1
( , ) exp

22

T

i i i i i i
i i i

ii

Y A Y A
p Y

� �� � � �� �� � � �� �
��� � ���

(1.6)

The log-likelihood function for given m data points is
then described by

� � � �2 2

2
1

1
( , ) ln[2 ]

2 2

m
T

i i i i i i i i i
ii

m
L Y A Y A

�

� � � � �� � � � � �
�
�

(1.7)
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The necessary condition for the maximum likelihood
estimation of �2

i
 and �

i
 is to find �2

i
 and �

i
 to maximize

L(�
i
, �2

i
). We can obtain the maximum likelihood estimate

of �2
i
 and �

i
 by 

2

2

( , )
0

L� � �
�

��
 and, 

2( , )
0

L� � �
�

��
 which

are solved as (Johansson, 1993)

2

1

1 ˆ ˆˆ
Tm

i i i i i i i
l

Y A Y A
m �

� � � �� � � � � �� � � �� (1.8)

1ˆ ( ) , 1, 2, ...T T
i i i i iA A A Y i n�� � � (1.9)

We could solve �
i
 first and then substitute �i�  into

equation (1.8) to find 2ˆ i� . Here, the modeling error could

be concluded into E
i
 as the noise of the gene-expression

profile or the microarray chips. So the consideration of
modeling error in equation (1.5) approaches more the reality.
We also illustrate the stochastic system approach using a
stochastic model ARX interactive model in Figure 1. After

the parameter estimation in equation (1.9), substituting �i�
in equation (1.9) into stochastic model in equation (1.3) lead
to the estimated circadian regulatory network equations in
Table 1.

4. BIOLOGICAL ASSAY OF ARX SYSTEM MODEL

The biological assays of the ARX system model are divided
into four categories. The first is the confirmation of the
oscillation frequency of circadian regulatory network by the
oscillatory characteristics of the stochastic circadian
regulatory model. The second is the sensitivity analysis with
respect to input stimulus changes, the third is the sensitivity
analysis under trans disturbance, and the last is the sensitivity
analysis about the cis perturbation. Before these assays, it
is necessary to define some measure indexes to evaluate the
system characteristics. We considered three most essential
features of circadian regulatory networks, i.e. similarity,
period, and mean expression. For the measure of similarity,
the Pearson correlation coefficient is a widely used similarity
metric. For biological assay of the ARX model, we calculated
the Pearson correlation coefficient between the genes’ mRNA

expression profiles of X
i
(k) in vivo and �( )iX k  in silico at

all time points k = k
1
, k

2
, ..., k

m
 as follows.

�� �

�
�

�

�

1 1

1

2 2

22 1 1

1 1

( ) ( )
( ) ( )

,

( ) ( )

( ) ( )

m m

i l i lm
l l

i l i l
l

i i
m m

i l i lm m
l l

i l i l
l l

X k X k
X k X k

m

r X X

X k X k

X k X k
m m

� �

�

� �

� �

� �
� �
� ��
� �
� �
� ��

� � � �� � � �
� � � �� � � �

� � � �� � � �� �� � � �
� � � �
� � � �� � � �

� �
�

� �
� �

(2.1)

To measure the period of the time-course expression
profile, the power spectrum, which has different magnitudes
in different frequencies (the reciprocal of periods), is
employed to detect which frequency has the largest
magnitude. First, we should take the Discrete Fourier
Transform of X

i
(k) for k = k

1
, k

2
, ..., k

m
 as follows,

1

( ) ( )
m

j k
i i l

l

X X k e� �

�

� � �� (2.2)

where � is the radian frequency.
Then we detect the frequency with the maximum

magnitude,

2
arg max ( )i i

i

X
T�

�
� � � � (2.3)

where T
i
 is the period of X

i
(k) and can be determined from

the reciprocal of the detected frequency �
i
. The oscillation

frequency �
i
 detected by equation (2.3) will be used to assess

the oscillation frequency of our stochastic model of the
network in the sequel. Furthermore, the measure of mean
expression of X

i
(k) is important for distinguishing the

deviation of expression profile under different assays as
follows,

1

1
( )

m

i i l
l

M X k
m �

� � (2.4)

5. DETERMINATION OF SYSTEM ORDER AND
ACTIVATION DELAY OF CIRCADIAN SYSTEM

In this study, the formulated ARX model should be first
assigned with a proper modeling order and an activation
delay to analyze the experimental expression data of
microarray. According to equation (1.1), we compared the
first-order (Q = 1) ARX model (i.e. ARX(1)) and the second-
order (Q = 2) ARX model (i.e. ARX(2)) with different
activation delays � as shown in Figure 2a. We exploited the
mean similarity between the raw expression and the
simulation of all 16 system genes we concerned in the
circadian network of Arabidopsis thaliana, which is
measured by Pearson correlations, to evaluate the
performance of the network model. Owing to the least
difference at 0.5-hr delay between ARX(1) and ARX(2), we
would prefer the more flexible ARX(1) model with a 0.5-hr
activation delay as the system model for the circadian
regulatory network. Consequently, the simulation
expressions of the derived circadian network model are
shown in Figure 2b and exhibit agreeable dynamic data
fitting, thus creating a basis for the following system analysis.

On the other hand, the quantitatively regulatory abilities
among the system genes in the circadian system can be
estimated as the genetic and input kinetic parameters of the
system model in equation (1.3). The kinetic parameters of
ARX(1) are displayed in Table 1, where the positive value
means activation and the negative one means inhibition.
Although the upstream genes are selected according to the
biological knowledge of relevance such as transcriptional
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binding, phosphorylation, and complexes, this quantitative
influence could reveal the significance of upstream genes like
the ARX dynamic equation set in Table 1. For instance, the
mutual interactions of Cry1 [X

2
] and PhyA [X

4
] have their

basis on phosphorylation (Ahmad et al., 1998) (see Eq. (2)
and Eq. (4) in Table 1), and we identify that Cry1 has the
strongest positive influence on PhyA with activation delay.
Meanwhile, Cry1 and PhyA are significantly regulated by Lhy
[X

12
] and Cca1 [X

13
] known as biological clock genes, which

are negative regulated reciprocal,  as shown in
Eq. (2) and Eq. (3) of Table 1, to highlight their feedback
regulatory roles on crytochrome and phytochrome,
respectively (also see Eq. (2) and Eq. (4) in Table 1). In this
way, we can even recognize the regulatory ability from the
input-light signal. In particular, Fkf1 [X

1
] that has no regulated

by genes other than light stimulus (see Eq. (1) in Table 1).
The detection of the static structural characteristics will help
construct their hidden significance of cis connectivity as in
the signaling transduction network of Figure 3.

5. Sensitivity Analysis of Circadian System

The sensitivity measure of the circadian system for the
analysis of robustness can also be derived from the whole
system model, i.e., we should integrate n ARX models
together. For illustration, we would rearrange equation (1.3)
into the following difference matrix equation by which its
sensitivity will be investigated later,

�
1 2( ) ( ) ( ) ( )Y k D Y k D Y k Bu k� � � � � � � (3.1)

where

1,12 1,1

1,21 1,23

1,321
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1, 1 1, ( 1)
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n n n

d d

d d

dD
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d d
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� �
� �
� �
� ��
� �
� �
� �� �

� �

� �

� � � �

� � � �

� �

1 1 1

2 2 2

( ) ( )

( ) ( )
( ) , ( )

( ) ( )n n n

X k X k

X k X k
Y k Y k

X k X k

� �� � � �
� � � �� �� � � �� � � �
� � � �
� � � �

� �� � � �� � � �

� �

Figure 2: ARX System Modeling with Determination of System
Modeling Order and Activation Delay. (a) The Average
Similarity (Measured by Pearson Correlation) of all
System Genes under different Activation Delays.
Therefore, ARX(1) Model with Delay � = 0.5 hr is an
Adequate Model with Small Order and Less Delay.
(b) The Dynamic Data Fitting of 16 Genes in the
Circadian Network with ARX(1) Model and 0.5-hr
Activation Delay

Figure 3: Signaling Transduction Network of System Genes and
Input Light in the Circadian Network of Arabidopsis.
The Colored Circles Indicate the System Genes with
their Names and Notations of X

1
 ~ X

16
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� � � � � �
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and n is the number of genes.

A. Circadian Clock Frequency Assay

By the existence condition of limit cycle (oscillation) in an
interactive stochastic dynamic system with sigmoid
(or saturation) interactive feedbacks, we will compare the
limit cycles of the interactive stochastic system with the
oscillation frequencies calculated by equation (2.2) and (2.3)
by Fourier transform of the raw gene expressions to validate
the accuracy of the proposed dynamic model in the sequel.

Using the ARX system model as equation (1.3) or
equation (3.1) and the definition of measure indexes, our in
silico biological assays of the circadian regulatory system
in Arabidopsis thaliana are described in the following. A
dynamic system with saturation (or sigmoid function)
nonlinear feedback will lead to oscillation (limit cycle)
(Slotine and Li, 1991). This oscillation phenomenon can be
interpreted by the theory of the describing function, which
has been widely used to interpret oscillation in nonlinear
saturation feedback systems and will be used to describe
the circadian regulatory network of Arabidopsis thaliana.
According to equation (3.1), we get

2 1( ) ( ) ( ) ( )I z D Y k D Y k Bu k��� � � � �� (3.2)

where 

1

2

0 0

0

0

0 0 N

z

z
z

z

��

��
��

��

� �
� �
� �� � �
� �
� �� �

�

� �

� � �

�

, and iz��  denotes the

delay operator of �
i

1 1
2 1 2( ) ( ) ( ) ( ) ( )Y k I z D D Y k I z D Bu k�� � �� �� � � � � �� (3.3)

If the oscillation (limit cycle) occurs in circadian

network, then the sigmoid function, ( )Y k� , in equation
(1.2) can be approximated by the describing function N(A)
as (Slotine and Li, 1991)

1

2

( )

( )
( ) ( ) ( )

( )n

Y k

Y k
Y k N A Y k

Y k

� �
� �
� �� �� �
� �
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�

�
�

�
�

(3.4)

where the describing function matrix

1 1

2 2

( ) 0 0

0 ( ) 0
( )

0 0

0 0 ( )n n

N A

N A
N A

N A

� �
� �
� ��
� �
� �
� �� �

�

�

� �

�

, and

N
i
(A

i
) denotes the describing function of the i-th gene of

oscillation and A
i
 denotes the amplitude of oscillation of the

i-th gene. If a gene j is free of oscillation, then the
corresponding N

j
(A

j
) = 0. From (3.3) and (3.4), we can

approximate the circadian network as
1 1

2 1 2( ) ( ) ( ) ( ) ( ) ( )Y k I z D D N A z Y k I z D Bu k�� � �� �� �� � � �

(3.5)

There are two rhythms, one is circadian rhythm and
another is diurnal rhythm. The first term with gain equal to
1 on the right hand side of equation (3.5) responds for
circadian rhythm; and the second term for diurnal rhythm,
which is controlled by diurnal cycling of light and dark u(k).
Some photoreceptor genes are of second case. Since the
oscillation exists in the circadian network, by control theory
(Slotine and Li, 1991), the closed loop gain should be
lossless during these periods in order to support the
oscillation, i.e.

1
2 1( ) ( )I z D D N A z I�� � ��� � (3.6)

or 1 2( )D N A z D�� � (3.7)

At frequency domain, we can get

2 1 ( )jwe D D N A� � � (3.8)

where

1 1

2 2

0 0

0 0

0 0

0 0 n n

jw

jw
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e

e
e

e

� �

� �
�

� �

� �
� �
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� �
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�

�

� �

�

and w
i
 is the oscillation frequency of the i-th gene. By the

equality of the diagonal terms for each gene, we can get

2, 1, ( )i i

n
jw

ii ij j j
j i

e d d N A�

�

� � � (3.9)

By the above describing analysis of nonlinear oscillation
(Slotine and Li, 1991), the intersection point of the

2,
i ijw

iie d� �  and 1, ( )
n

ij j j
j i

d N A
�
�  in equation (3.9) implies the

occurrence of oscillation with amplitude A
i
 and frequency

w
i
 in the i-th gene. If no intersection exists in equation (3.9),

there is no oscillation in the i-th gene. For example, for gene
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PhyE, we get its oscillation frequency 0.45 from equation
(3.9) which approximates the measured oscillation frequency
0.52 by discrete Fourier transform in equation (2.3). For gene
Lhy, we get its oscillation frequency 0.21 from equation
(3.9), which is near to the oscillation frequency 0.2 by
discrete Fourier transform in equation (2.3). These
estimation errors in oscillation frequency may be due to the
fact that describing function is only a linear approximation
of nonlinear operator and the discrete Fourier transform
X

i
(w) in equation (2.3) has some error because the number

of data points is small and the steady state is not achieved
yet. However, the describing function method will provide
an estimation method to roughly assess the existence of
oscillations and their frequencies in nonlinear interactive
network.

The physical meaning of equation (3.6) is that if a
sigmoid function can limit the increase of feedback
interactions such that the loop gain in the circadian regulatory
network is equal to 1 to supply the loss of the network due
to the degradation of proteins, and then the circadian network
will continue to oscillation. The biological meaning is that
the concentrations of mRNA of genes in circadian network
will continue to oscillate if they are activated to enough
supply their degradations by the feedback regulations
through the other genes in the network.

B. Input-light Perturbation Assay

In general, the circadian regulatory network is independent
of the external light except the photoreceptor, i.e. the
expression profiles of genes in the circadian network are
less sensitive to the variation of external light except the
genes with the role of photoreceptor. Therefore, based on
the dynamic model of circadian network, a sensitivity assay
to input-light perturbation is discussed in the following. The
input signal is the white light containing versatile wave
lengths from red light to blue light. The original constant
light profile starts at 8:00 A.M. in the morning, and ends at
4:00 A.M. after 44 hours (Harmer et al., 2000). Thus, we
assume that the illumination of light as value 1 and the dark
state as value 0 to mimic the light profile. The system
sensitivity with respect to the input light can be derived from
equation (3.1) as follows,

�
1 2

Y Y Y Y
D D B

U Y U U

� � � �
� � �

� � � �
� (3.10)

where � means the perturbations. From equation (3.10), we
can formulate the sensitivity from the �U to �Y as follows,

� 1

2 1

Y Y
I D D B

U Y

�
� �� �
� �� �

� �� �
� (3.11)

where I is the identity matrix. Then we can measure the
sensitivity of the circadian regulatory network with
respect to the input-light stimulus. To demonstrate the

validity of equation (3.11), we compare the realistic output
perturbation �Y with the estimated output perturbation

� 1

2 1

Y
B I D D B u

Y

�
� ��
� � �� �

�� �
 to confirm the validation of the

network dynamic model as in Figure 4, which represents
the system response to the perturbation of the environment.
The realistic �Y for each system gene is close to the
computed values so that the sensitivity equation like
equation (3.11) could well uncover the sensitivity of the
system characteristics. Furthermore, we manipulate a
simulation as follows.

Amplitude Simulation of Light: We change the
amplitude of light from 100% to 150% (+ 50%) and 50%
(– 50%) respectively as input to the circadian system and
derive the average measure indexes with the sensitivity
for each system gene, which are shown in Figures 5, 6 and
Table 3A. Further discussion will be given in the next
section.

C. Trans-perturbation Assay

Owing to the saturation of activity of genetic interactions,
we employ the sigmoid function to characterize the trans
expression of upstream genes in equation (1.2). As in the
description of equation (1.2), � is the trans-sensitivity rate
which is related to the transition time of trans-activation and
M

j
 is the trans-expression threshold that determines the

saturating transformation level of expression. We also induce
the corresponding sensitivity in the following,

�
1

Y Y
D

F F

� �
� �
� (3.12)

Figure 4: Comparison of the Predicted output Perturbation of Y�
with the Realistic One to Validate the System in
Response to the Environmental Perturbations
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Figure 5: Amplified Perturbation Assay of the Input-light Fluence Rate. (a) The Illustration of this Assay with the Change of the
White-light Fluence from 100% (Red Dashed Line) to 150% (Blue Solid Line) with Respect to the Original Amount.
(b) The Measure of Sensitivity for the System Genes Due to this Perturbation. (c), (e) and (g) Indicate the Three System
Measures of Similarity (Pearson Correlation), Period, and Mean Expression, Respectively. The Red Diamonds are Measures
of the Original System Whilst the Blue Points are those after Perturbation. The Histogram Represents the Differences for
each Measure under Perturbation. (d), (f) and (h) are the Coordinate Representations of these three Measures before and
after these Perturbation Assays Corresponding to (c), (e), (g), Respectively. Gene No. Indicates the Notations of the System
Genes X

1
 ~ X
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Hence we could discuss the sensitivity on the trans
level like the input sensitivity. By the analysis of these
two parameters, we can manipulate two simulations as
follows.

Trans-sensitivity Rate � Simulation of Gene

In a similar way as in input perturbation, we changed � from
100% to 0% (– 100%) and 200% (+ 100%) of system genes
in pathway to compare with their sensitivities to �, as shown
in Table 3B. We also average the three measure indexes of
each gene, which are shown in Figures 7.1, 7.2 & 9.

Trans-expression Threshold M
j
 Simulation of Gene

We varied M
j
 to 100% lower (– 100%) and higher (+ 100%)

than the original mean expression of the j-th gene
respectively and compared with their sensitivities of M

j
,

which are shown in Table 3C; and their average measure
indexes are shown in Figures 7.3, 7.4 & 9.

D. Cis-perturbation Assay

In equation (1.3), the genetic kinetic parameter d
q,ij

 can be
taken as the influence values of upstream gene on the
transcriptional binding or physical interaction with the output
gene, which is similar to the cis activation. Thus, we can
discuss the influence of the variations in genetic kinetic
parameters, which can be estimated from equation (1.9),
using the circadian network. We also induce their equation
of sensitivity like the trans case as follows,
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, and Y ��  is the genetic

expressions of the perturbation. Hence, we could also
discuss the sensitivity on the cis level, at which the initial
genetic expressions are perturbed to + 1.0 and – 1.0 for
the original amount of each system gene and shown in
Table 3D.

Variation Simulation of cis Parameters d
q,ij

For a specific gene j in the circadian network, we would
alter all the connectivity d

q,ij
, i = 1, 2, ..., n from 0%

(– 100%) to 200% (+ 100%) with 5% interval to mimic
perturbations of the cis circuit and average the three measure
indexes for each gene in Figures 8.1, 8.2 & 9.

Mutation Simulation of cis Parameters d
q,ij

There is a conspicuous perturbation of the cis circuit, i.e.
the mutation assay. For a specific gene j in the circadian
network, we also mimic the mutation of all its cis
connectivity d

q,ij
, i = 1, 2, ..., n at the same time by setting

their values as 0. Using the same way as before, we average
their  three measure indexes to evaluate the system
performance, which are shown in Figures 8.3, 8.4 & 9.

5. RESULTS

Analysis of Data Set

The famous modeling organisms, Arabidopsis thaliana, have
been well biologically studied and their microarray assays
are abundant. The plant behavior in response to the external
light, i.e., the circadian regulatory network, which is essential
in the physiology and metabolism of plant, has been widely
investigated. In this study, we adopted the data set from
the works of Harmer (2000) and used the ARX model
to construct the circadian pathway and perform the

Figure 6: Perturbation Assay under One-half Attenuation of the Input-light Fluence Rate. (a) The Illustration of this Assay with the
Change of the White-light Fluence from 100% (Red Dashed Line) to 50% (Blue Solid Line) with Respect to the Original
Amount. (b) The Measure of Sensitivity for the System Genes Due to this Perturbation. (c), (e) and (g) Indicate the Three
System Measures of Similarity (Pearson Correlation), Period, and mean Expression, Respectively. The Red Diamonds are
Measures of Original System Whilst the Blue Points are those after Perturbation. The Histogram Represents the Differences
for each Measure under Perturbation. (d), (f) and (h) are the Coordinate Representations of these Three Measures before
and after these Perturbation Assays Corresponding to (c), (e), (g), Respectively. Gene No. Indicates the Notations of the
System Genes  X

1
 ~ X

16
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sensitivity (or robustness) analysis of the circadian regulatory
network.

For cells grown in the constant light condition,
Harmer and his colleagues used highly reproducible
oligonucleotide-based arrays representing about
8200 different genes to determine the steady-state mRNA
levels in Arabidopsis thaliana that are measured in the
replicate hybridization of 12 samples harvested every 4 hours
over 2 days. With  their investigation of the circadian
regulatory system, Harmer et al., have provided an

abundance of correlated genes from which we choose 16
core genes of the circadian network with their time-course
microarray data for our dynamic system identification and
analysis.

Analysis of Circadian Network Model

For the discussion of the circadian network modeled by the
stochastic ARX model, we have designed several assays as
in the above section, like the biological experiments in the
wet laboratory, to discover the genetic responses and

Figure 7.3: Deviation Representations of the System Genes under
the Perturbation of Trans-expression Threshold M.
The Perturbation is Performed in the Vertical Axis
and the Responses of 16 System Genes are shown in
the Horizontal Axis, and the Colored Bars of Degree
are on the Right-hand Side of each Inset. (a) �
Similarity (Measured by the Pearson Correlation),
(b) � Period, and (c) � Mean Expression

Figure 7.4: Coordinates of Variations in Similarity and Mean v.s.
Period under the Perturbation of the Trans-expression
Threshold M. The Perturbation Genes are shown in
each Inset

Figure 7.1: Deviation Representations of the System Genes under
the Perturbation of Trans-sensitivity Rate �. The
Perturbation is Performed in the Vertical Axis and
the Responses of 16 System Genes are shown in the
Horizontal Axis, and the Colored Bars of Degree are
on the Right-hand Side of each Inset. (a) � Similarity
(Measured by the Pearson Correlation), (b) � Period,
and (c) � Mean Expression

Figure 7.2: Coordinates of the Variations in Similarity and Mean
v.s. Period under the Perturbation of Trans-sensitivity
Rate �. The Perturbation Genes are shown on the
Upper Right Corner of each Inset
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elucidate the robustness or sensitivity of the 16 genes in the
circadian network.

A. Rhythm Frequency Estimation from Circadian
Regulatory Network

The Rhythm exists in the circadian regulatory network via
feedback regulations. It can be estimated by equation (3.9)
from the identified circadian regulatory network in Table 1.
This result can be confirmed by the frequency directly
detected by equation (2.3) from microarray data.

B. Simulation of Input-light Perturbation

The paces of the circadian clock are synchronized by
environmental cues such as light. The stimulus of the external
light could be divided into red light and blue light, which
can be absorbed by phytochromes (PhyA [X

4
], PhyB [X

5
],

PhyD [X
6
], and PhyE [X

7
]) (Martinez-Garcia et al., 2000)

and crytochromes (Cry1 [X
2
] and Cry2 [X

3
]) (Casal, 2000),

respectively. Hereby we model the white light with an
amplified perturbation on the fluence or amplitude as in
Figure 5a. In Figures 5c and 5d, the similarities of the 150%

Figure 8.1: Deviation Representations of the System Genes under
the cis Perturbation. The Perturbation is Performed
in the Vertical Axis and the Responses of 16 System
Genes are shown in the Horizontal Axis, and the
Colored Bars of Degree are on the Right-hand Side
of each Inset. (a) � Similarity (Measured by the
Pearson Correlation), (b) � Period, and (c) � Mean
Expression

Figure 8.2: Coordinates of Variations in Similarity and mean v.s.
Period under the cis Perturbation. The Perturbative
Genes are shown in each Inset

Figure 8.3: Deviation Representations of the System Genes under
the Cis Mutation. The Mutation is Performed in the
Vertical Axis and the Responses of 16 System
Genes are shown in the Horizontal Axis, and the
Colored Bars of Degree are on the Right-hand Side
of each Inset. (a) � Similarity (Measured by the
Pearson Correlation), (b) � Period, and (c) � Mean
Expression

Figure 8.4: Coordinates of Variations in Similarity and Mean v.s.
Period under the Cis Mutation. The Mutant Genes
are shown in each Inset
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(+ 50% perturbation) light fluence for system genes show
deviation implying a strong influence of light perturbation
on the amplified amplitude. However, when considering the
periods of expression in Figures 5e and 5f, the significant
decrement of period appears in Cry1 [X

2
] and Cry2 [X

3
]

(Somers et al., 1998), indicating its potent dependence on
light quantity. There are the elevated mean expressions of
Cry1 [X

2
] and Cry2 [X

3
] in Figure 5g consistent with the

extreme sensitivity in Figure 5b and Table 3A (Somers et
al., 1998). Moreover, the coherent reductions in period can
be observed in photoreceptors ([X

1
] ~ [X

7
]). However, Chs

[X
15

] is found to have the largest sensitivity (see Figure 5b
and Table 3A) to both blue and UV light (Deikman and
Hammer, 1995). In addition, the attenuated amplitude
of light fluence (– 50%, see Figure 6a) will reduce
most of the similarities of gene expressions as in the
Figures 6c & 6d.

C. Simulation of Trans Perturbation

In the perturbation of trans-sensitivity rate (�), we will
discuss whether the transition rate, which determines the
transition time of one gene binding to or interacting with
another one, affects the system gene’s expression in this
model system. It seems that the similarity (Figure 7.1a)
remains unchanged for most system genes except Cry1 [X

2
],

PhyA [X
4
], PhyD [X

6
], and PhyE [X

7
] (Aukerman et al.,

1997). In addition, the results of PhyB [X
5
] and PhyD [X

6
]

(Figure 7.1a) are much the same as the provided
evidence that the role of PhyD [X

6
] is similar to PhyB [X

5
]

(Aukerman et al., 1997). If we consider the periodic variation
in Figure 7.1b, Cry2’s [X

3
] period is lengthened about 10%,

whilst that of Cry1 [X
2
] and Pap1 [X

14
] are shortened about

20%, respectively. The diversity and sensitivity of period
due to perturbation of the transition time are evident as in
Figure 7.1c. The mean expressions of system genes are
almost unaltered but PhyE [X

7
] (Devlin et al., 1998) is

reduced. Further, the results of Figure 7.2 exhibit the
robustness of the similarity and mean expressions of the
system genes. Therefore, the mimic assay of transition time
by the perturbation of trans-sensitivity rate has revealed that
the period is the only susceptible characteristic in contrast
to the similarity and mean expression. From the result of
Table 3B, we also found three genes of Cry1 [X

2
], PhyD

[X
6
], and Toc1 [X

11
] with significant sensitivities with respect

to the perturbation of the trans-sensitivity rate. Because the
largest difference in the mean sensitivity of each gene of
Table 3B is about 0.025, we would conclude that the trans-
sensitivity rate, which determines the transition time
indicating the transient state of trans activation, has less
influence on the circadian system.

In another perturbation of trans-expression threshold
M, we would realize the influence of activation threshold of
gene expression on the trans level, which determines the
activating abilities of upstream genes. There are five genes
of Cry1 [X

2
], Cry2 [X

3
], PhyD [X

6
], Pif3 [X

10
] and Toc1

[X
11

] with perceptible variations, which have the same
behavior in the measures of similarity and period (see Figure
7.3a and 7.3b). However, almost all mean expressions of
system genes decay in Figure 7.3c. Thus, we suspect that
their deviation in similarity is the result of changes in periods
and means of expression profiles. As shown in Figure 7.4,
the similarity and mean expression have more deviations in
contrast to the period due to the wider distribution on the
vertical axis. Nevertheless, the perturbation of Fkf1 [X

1
] has

different behavior of the stable similarity and mean. This
robustness means lower correlation with the regulations of
other genes in the circadian network. In the measure of
sensitivity in Table 3C, there are three apparent genes of
PhyE [X

7
], Lhy [X

12
], and Co [X

16
] with crucially positive

sensitivities, whilst Cry1 [X
2
] and Toc1 [X

11
] have

significantly negative ones. Owing the largest difference in
the mean sensitivity of each gene of Table 3C being close to
0.29, the circadian network is more sensitive to the
perturbation of the trans-expression threshold M and the
activation level of steady state, rather than the trans-
sensitivity rate �.

D. Simulation of Cis Perturbation

In the assay of cis perturbation, we attempt to alter the values
of the regulatory abilities of the genetic kinetic parameters
d

q,ij
 in the ARX system model. This could be considered as

the variations in the cis level. In Figure 8.1a, the similarities
of the system genes are mostly the same. Nevertheless, the
diagonal has few variations in the similarity to demonstrate
the essential role of the genetic kinetic parameter for each
gene in the network. We also found that Pif3 [X

10
] has a

significant decrement in period. As in Figure 8.2, the
stabilization of the similarity and mean expression is
manifested, especially in the perturbation of the biological
clock genes of Toc1 [X

11
], Lhy [X

12
], and Cca1 [X

13
]

(Mas et al., 2003). Hence, the single perturbation of these
three genes will not affect the circadian system due to their
well-known close interconnections with potential robustness.
This can be demonstrated by the lower sensitivities in
Table 3D consistent with Tables 3B and 3C.

In addition to the cis perturbation, the mimic genetic
mutation on the cis level is also a crucial strategy of study,
which is very popular in the traditional biological assay. The
mutation of each network gene in order has revealed the
uncovered deviation of gene expression in the diagonal of
the three insets in Figure 8.3. Obviously, in Figure 8.4, the
cis mutations of Elf3 [X

8
], Pap1 [X

14
], Chs [X

15
], and Co

[X
16

] could not affect the system genes but their periods.
However, the mutants of the remaining genes result in
significant deviations of their gene expressions.

In the overview of the perturbation of genes on the trans
and cis levels, we showed these four types of perturbations
consistently in Figure 9. The fact that the most diversity
appears in the cis mutation indicates that the ability of cis
activation is essential to the circadian system network. The
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Figure 9: Overview of the Genetic Perturbations on Trans and Cis Levels in the Circadian System Model with the Measures of �
Period, � Mean Expression and � Similarity for all System Genes

other three perturbations are more robust. We presume that
the transition time concerning the transient state on the trans
level is less effective on genetic interactions. The complexity
of the circadian network will resist the perturbations of genes
on the cis level except the cis mutation, which is consistent
with the results of sensitivities in Tables 3B-3D.

6. DISCUSSION

Microarray analysis using the stochastic system approach
offers an opportunity to generate the interpretation of
functional influence on a specific genetic regulatory network.
The crucial ontology behind using stochastic system
techniques is that the framework of the interactivity between
gene expression profiles could be recognized quantitatively
according to the stochastic process such as ARX underlying
a dynamic system under a noisy environment. Therefore,
because the microarray data were harvested with time
progression (Harmer et al., 2000), the simultaneously varied
gene expressions implicated in the circadian regulatory
network of Arabidopsis thaliana would be detected via
interactive stochastic modeling in silico in spite of the
versatile interactions such as transcriptional control, protein
phosphorylation, or specific complex interaction etc.

The clustering method (Soukas et al., 2000 and 2001;
Tamayo et al., 1999) answers the problem of what is the
functional catalogue of a specific gene by the identification
of resembling patterns of gene expressions. Similarly, the
co-regulations of upstream genes in our method also imply
their concurrent functions. In contrast to the clustering

algorithm, the causality of time-course data has been
smoothly drawn by our dynamic method. The Bayesian
networks (Friedman et al., 2000) were used merely for
forward probabilistic estimation with the time transition
lacking in the feedback linkages. This unidirectional problem
would not happen in our algorithm. Owing to the quantitative
regulatory abilities of our model, we have a greater
diversity of regulatory influence than the Boolean networks
(Huang, 1999), which are deterministic with merely two
states.

In our stochastic system approach applied to the
circadian network using stochastic ARX, we not only can
identify the regulatory abilities via interactive ARX(1) model
with activation delays, but also indicate the regulatory
strength from the input-light signal. In terms of the regulatory
abilities, the comparison between the upstream regulatory
genes of a target gene can inspire us to ask which one is
significant biologically and whether it is a positive or
negative influence on the investigated gene as shown in
Figure 3. Further, the speculation of activation delays
benefits the experimental reference by providing us when
the upstream regulatory genes might interact with their target
genes in the circadian regulatory network. The greatest
importance of the proposed stochastic model is the
convenience of the consequent system analysis, for example,
sensitivity analysis, to gain more insight about the circadian
regulatory network. From the result of Table 3, the
photoreceptor genes and their down stream target genes in
circadian regulatory network are more sensitive to input light
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perturbations; and the circadian regulatory networks are
more sensitive to cis perturbations than to trans perturbations.
Furthermore, the activation or repression relationships
inferred via microarray data would distinctly uncover the
overall effect of regulatory interactions among system genes
in the circadian regulatory network on the transcriptional
level.

In addition to the stochastic system modeling of the
circadian regulatory network in silico, the system analysis
of the circadian regulatory network by perturbation assays
will reveal the practice of systems biology. Especially, we
measure systematically the simulation output profiles by
three indexes of similarity, period, and mean expression. In
the investigation of 16 genes of the circadian regulatory
network, we have demonstrated that the period of Chs is
very sensitive to the perturbation of input light implying its
essentiality among photoreceptors. If we perform the
perturbation on the trans level, we will discover that the
activation threshold of trans gene expression is crucial to
the circadian system. Cry1, PhyD, PhyE, and Chs are
significantly sensitive to the perturbation of the trans-
expression threshold. This implies that the trans-expression
threshold, like the activation degree of the protein, should
be confined to avoid the disturbance of the genetic system.
The robustness of the circadian system is shown in the cis
perturbation while the cis mutation will cause more lethal
in the gene expression. The less sensitive genes are Lhy,
Cca1 and, Toc1 on the cis perturbation or mutation due to
their core functions of the initiation of the biological clock.
This is why the period of the circadian genes will be altered
facilely after the perturbation. From the analysis of the
circadian network by system modeling approach in silico,
we can operate many genetic assays with the external light
stimulus that will not be performed easily in reality to
discover the responses among the involved genes in the
circadian system.

There are some shortcomings in our study. First,
although the time-course microarray data are available, its
lower samplings will distort the real changes of gene
expressions, especially for fast dynamic evolution. A more
sampling experiment with respect to the intrinsic turnover
rate is expected for a more precise analysis. Second, we
formulate our ARX circadian network model using the
biological knowledge of the correlations between the
circadian genes. In this situation, we should know the exact
interactive partners of the system genes. Hence, the more
proper knowledge of the correlations can provide, the more
accurate the stochastic system model is. In the circadian
regulatory network, it is enough for us to construct the
stochastic system because of its simulation similarity
approaching 0.99 in Figure 2a. Third, a larger network
containing more than one hundred genes will make modeling
and discussion difficult due to computation complexity.
Finally, the activation profiles under the proteome should
be highly correlated with the transcriptional profiles to

improve the interpretation ability of our system model. In
general, the synchronous time-course microarray assay is
more suitable to detect the transcriptional binding among
genes, so that an inference of physical interactions in the
post-transcriptional level will become more feasible in our
study.

In the near future, the most pressing task is to investigate
our presumed characteristics of the circadian network in the
laboratory. As the stochastic system modeling algorithms are
further developed, we expect this stochastic system approach
to have immense impact in elucidating the underlying
molecular mechanisms of network in a variety of organisms
besides the circadian network in Arabidopsis thaliana,
especially after the maturation of the protein chips.
Ultimately, we envision that biologists will perform routine
system analysis in silico to seek some novel genetic
characteristics and to identify the robust or sensitive links
of system genes.
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