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Abstract: Thispaper proposesa Reinforcement Self-Organizing Fuzzy Control method using Ant Colony Optimization (RSOFC-
ACO). Only reinforcement signals are required when using the RSOFC-ACO for fuzzy controller design. There are no fuzzy
rulesinitially in RSOFC-ACO. An online fuzzy clustering method is used to generate fuzzy rules automatically during control
process. Thefuzzy clustering method flexibly partitionsthe input space and requires a smaller number of rulesthan a grid-type
partition. The consequent part of each fuzzy rule isdesigned using Ant Colony Optimization (ACO). All candidate consequent
control actions of a fuzzy rule are listed in advance. Thetour of an ant is regarded as a combination of consequent actions
selected fromevery rule. The used ACO approach aimsto optimally select the consequent part from a set of candidate actions
according to ant pheromonetrails. The RSOFC-ACO method is applied to truck backing control problem and itsperformance
is compared with other reinforcement fuzzy control methods to verify its efficiency and effectiveness.
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1. INTRODUCTION

A fuzzy system consists of a set of fuzzy if-then rules.
Conventionally, the selection of fuzzy if-then rules often
relies on a substantial amount of heuristic observation to
express the knowledge of proper strategies. Obvioudly, it is
difficult for human expertsto examine all the input-output
datafrom acomplex system tofind anumber of proper rules
for the fuzzy controller. To copy with this difficulty, several
approachesto generating fuzzy if-then rulesfrom numerical
data have been proposed [1]-[5]. For some redl-world control
applications, precise training data are usually difficult and
expensive, if not impossible, to obtain. For thisreason, there
has been a growing interest in reinforcement learning
algorithms for fuzzy controller. In reinforcement learning
problems, an agent receivesa signal from its environment
which can be considered a reward or punishment [6]. No
supervisor is present to correct the actions chosen at each
execution step. Instead, the agent must discover which
actionsyield the most reward by trial and error.

Previous studies propose several approaches for fuzzy
system design in reinforcement learning environments[7]-
[14]. These approaches are mainly based on the Temporal
Difference (TD) method [7]-[10] or Genetic Algorithms
(GA) [11]-[14]. A previous study [ 7] proposes ageneralized
approximate reasoning-based intelligent control (GARIC)
architecture for TD-based reinforcement fuzzy system
learning. This approach usesatwo-layer feedforward neural
network as an action evaluation network and a fuzzy
inference network as an action selection network. Another
study [8] proposes a reinforcement neural-network-based
fuzzy logic contra system (RNN-FLCS) wherefuzzy neural

networks comprise both the action and evaluation networks.
Onedrawback of these actor-critic architecturesisthat they
usually suffer from thelocal minimum problem in network
learning and slow learning performance thanks to the
gradient descent learning method. The authors of [9, 10]
propased fuzzy Q-learning for fuzzy inference sysem design,
where the consequent part of each ruleis designed via Q-
values. The authors of [12] proposed a symbiotic evolution
method for fuzzy controller (SEFC) design for genetic
reinforcement fuzzy system learning. The symbiotic
evolution technique is also used in a later study [13]. A
combination of on-line clustering and Q-val ue based GA for
fuzzy system design (CQGAF) is proposed in [14], where
Q-values serve as fitness values for GA. Unlike the above
TD or GA based reinforcement learning methods, this paper
usesant colony optimization (ACO) [15] for fuzzy controller
design under reinforcement learning environments. In [16],
ACO has been used for fuzzy system design. However, in
that work, the antecedent part is partitioned grid-type and
supervised learning is conducted.

This paper proposes a Reinforcement Self-Organizing
Fuzzy Control method using Ant Colony Optimization
(RSOFC-ACO). The antecedent and consequent parts of a
fuzzy system controller are designed using fuzzy clustering
and ACO, respectively. The fuzzy clustering approach
generatesrulesonlineand flexibly partitionstheinput space.
The consequent partsin afuzzy controller are selected from
a set of candidate actions, and this selection problem can be
regarded as a combinational problem. Ant Colony
Optimization (ACO) isused in consequent design because
it is a powerful meta-heuristic approach that can solve
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difficult combinatorial optimization problems. This study
appliesthe proposed RSOFC-ACO to truck backing control
problems and compares it to other reinforcement learning
methods.

This paper isorganized asfollows. Section 2 describes
the designed fuzzy controller in RSOFC-ACO and basic
concepts of ACO. Section 3 describesthe proposed RSOFC-
ACO learning agorithms. Section 4 conducts RSOFC-ACO
simulations. Finally, Section 5 draws conclusions.

2. FUZZY CONTROLLERAND ANT COLONY
OPTIMIZATION

This section describes the designed fuzzy controller in
RSOFC-ACO and basic concepts of ACO, which is used
for fuzzy controller design.

2.1 Fuzzy Contraller

In this paper, each rule in the fuzzy controller ispresented
in thefollowing form:

R:1fx (k) isA and ... and x (K) isA_. Theny(K) isu (K)
«y

where x (k) ~ x, (k) areinput variables, y(k) isthe control
output variable, A is afuzzy set, and u(t) isarecommend
action and isafuzzy singleton. In RSOFC-ACO aswell as
in the general fuzzy Q-learning approach [9. 10], the control
output y(K) is selected from a set of pre-assigned candidate
actions U ={u,,...,u}. Each rule with its competing
consequent part may bewritten as
RuleR:If x (K} isA,and ... and x (K) isA . Then y(K) is
u(k) Oru,Or .... Or u, 2

A Gaussian membership function is used for fuzzy set
A, and the membership functionis

X, —m.)?

M, (x,) = exp{—%} ®
where m, and o, represent the center and width of the fuzzy
SetA,, respectively. In thefuzzification process, crisp input
X=(X,..., X,) is converted into a fuzzy singleton and is
mapped to the fuzzy set A, with degree Mij(x). In the
inference engine, the fuzzy t-norm operation isimplemented
using algebraic product. Given an input data set x, therule
firing strength 1, (x) of rulei is calculated by

n nooX — .
W 0O=TTM, () =epl-X ) @
j=1 j=1 ij
The output from each ruleisacrisp Jval ue. The fuzzy
control action is the combination of the output of each rule
using the wei ghted average defuzzifi cation method. Suppose
that afuzzy controller consists of mrules, then the output of
thecontraller is

y= zi:lui (X,
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In the antecedent part, instead of agrid-type partition, a
flexible partition is adopted. Figure 1 shows the grid-type
and flexible partitions, where each grid corresponds to a
fuzzy rule. The use of flexible partition avoidsthe problem
of combinational growth of partitioned gridsthat occursin
grid-type partition. Therefore, the number of fuzzy rulescan
be reduced when using flexible partition. In RSOFC-ACO,
it is unnecessary to assign rule number in advance, as the
fuzzy controller isself-organized using fuzzy clustering.
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Figure 1: Partition of the Input Space. (a) Grid-type (b) Hexible
Partition

2.2 Ant Colony Optimization

Thereis atotal of N™ combinations of consequent partsin
Eq. (2). TheRSOFC-ACO uses ACO algorithm to solve the
consequent part selection problem. ACO isameta-heuristic
algorithm inspired by the behavior of real ants, and in
particular how they foragefor food [15]. ACO can be applied
to combinational problems, where the solutions to the
optimization problem can be expressed in terms of feasible
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paths on agraph. Among these feasible paths, ACO triesto
find the onewith minimum cost. In ACO, afinitesize colony
of artificial antsis created. Each ant then builds a solution
to the problem. The performance measure is based on a
quality function F(-). In RSOFC-ACO, reinforcement signal
r isused as quality function F(-). Theinformation collected
by the ants during the search process is stored in the
pheromonetrailst associated to the connection of all edges.
The ants cooperate in finding the solution by exchanging
information viathe pheromonetrials. Edges can al so have
an associated heuristic value n representing information
about the problem instance definition or run-timeinformation
provided by a source different from the ants. Once all ants
have computed their tour (i.e. at theend of the each iteration),
ACO agorithmsupdate the pheromonetrail usng F(-). The
pheromonetrail may be updated locally while an ant builds
itstrail or globally when all ants have built their trails[15,
17-19]. Thewho eACO algorithm can bedescribed by taking
the TSPfor example, detail s of which can befound in [15].

3. RSOFC-ACO LEARNING ALGORITHM

3.1 Fuzzy Clustering

The proposed RSOFC-ACO method uses fuzzy clustering
for rule antecedent part design. Clustering is based on the
concept that arule geometrically correspondstoacluster in
the input space. For each incoming input pattern x, therule
firing strength can beregarded asthe degree of theincoming
input pattern that belongs to the corresponding cluster.
According to this concept, the firing strength ,(x) in Eq.
(4) isthecriterion in study [2] for deciding if anew fuzzy
rule should be generated. In [2], thisrule generation concept
was used in a neural fuzzy system. The proposed RSOFC-
ACO applies this concept to fuzzy controller design using
ACO. Thereareno fuzzy rulesinitially. Asin [2], for each
incoming datax(k), find

| =arg max p(x(K)) ©)
where m(k) isthe number of existing rulesat timek. If ¢, <
¢,,0r r(k) =0, where ¢, € (0, 1) isapre-specified threshold,
then anew fuzzy rule is generated and r(k+1) =r(k)+1.
For initial parameter assignment of each new fuzzy set, a
simpler and modified version of thealigned fuzzy clustering
algorithmin [2] was used. For each newly generated fuzzy
rule, the corresponding center and width of Gaussian fuzzy
SetA, in each input variable are assigned as:

M iy = Xj(k)' Oy (k+1)j = Otix (7)

Equation (7) showsthat only onewidth valuec, isused
for all fuzzy sets. Thisisin contrast tothealgorithmin[2],
where different fuzzy sets use different widths after
supervised parameter learning. Duetothisvariation, acuser
aligning operation isperformed in [2] to reduce the number
of parametersby sharing the same fuzzy set for some fuzzy

rules. In contrast to supervised learning, reinforcement
learning doesnot require high learning accuracy on precise
input-output training data, so only one fuzzy set width is
used in RSOFC-ACO to ease the width determination task
and reduce memory requirement.

3.2. RSOFC-ACO LearningAlgorithm

In RSOFC-ACO, rules are generated online using
fuzzy clustering as introduced in subsection 3.1. For each
rule, the consequent is selected from the predefined
set U ={u, ..., uy} using ACO. In the RSOFC-ACO
approach, the combination of selected consequent val ues
functionsas an ant tour. Figure 2 illustratesthe case where

threerulesaregenerated and U ={u,, u,, u,, u,}. Selection

of the consequent val ue is based on pheromonetrail s between
each rule. The size of the pheromone matrix is
mx N and each entry in the matrix is denoted by 7, , where
i=1,..,nandh=1,..., N. AsFigure 2 shows, when theant
arrives at rule R, then the probability p, that action u, is
selected from N candidate actions (denoted by nodes) of R*!
isdependentont. . ,h=1, ..., N. The selection probability

i+1h’

p,, in RSOFC-ACO is defined by

Tit1h (k)
3 K

P (K) =

i=1,..,mand h=1,...,N (8)
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Figure 2: The Consequent Value is Selected by an Ant According
to Pheromone Trailswherethe Tour of an Ant isMarked
by a Bold Line. The Corresponding Pheromone M atrix
is shown below
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Figure 2 illugtrates onetour of an ant (marked by abold
line), where an ant sartsfrom theinitial state, movesthrough
R! and R?, and stops at R®. For each rule, the nodevisited by
the ant is selected as the consequent part of the rule.
Figure 3 shows that the sel ected consequent part valuesin
R', R, and R® are u,, u,, and u,, respectively.

After awhole fuzzy controller is constructed from an
ant tour, itisapplied to acontroller plant, during which rules
are also generated online using fuzzy clustering. When
control fails, areinforcement signal r isreceived, wherer is
defined asthenumber of time sepsuntil failure. An iteration
ends when the performance of N, fuzzy controllers (ants)
have been evaluated. Theentire RSOFC-ACO process ends
when a predefined end iteration number ismet or a successful
fuzzy controller isfound.

The pheromone matrix is updated after all of the N,
fuzzy controller have been applied to the controlled plant.
That is, the pheromone matrix is updated after the end of
iteration k. Thereinforcement signal isused directly asthe
quality value F for pheromone update. For each iteration k,
the ant (fuzzy controller) that achievesthe maximum quality
value, denoted asF_ , among the N, antsisfound. Then,
the pheromone level isupdated using

T (K+1) = (1-p) 7y, (K) + Aty (K) 9

where p € (0, 1) is a parameter that represents the
evaporation coefficient and

C-F,., if (i,h) e global-best-tour
0, otherwise '

A, (K) = { (10)
where cisalearning ratethat determinesthe updating speed
of t. Theglobal-best ant that achievesthe best-so-far quality
value F__ is found at each iteration. Equation (10) shows
that only the pheromone trails on the path traveled by the
global-best ant is increased by a value of c-F__ at each
iteration.

Loading zone x=10, ¢=90

Figure 3: The Simulated Truck Model
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4. SIMULATIONS

This paper applies the RSOFC-ACO to truck backing
control. Figure 3 showsthe simulated truck and loading zone
studied in [20]-[22]. The position of the truck is exactly
determined by the three state variables ¢, x, and y, where

¢ istheangleof thetruck with the horizontal axisshownin
Figure 3, and xand y arethe horizontal and vertical positions,
respectively. The truck is controlled by a steering angle 0,
and only backing up is considered. The truck moves
backward by afixed unit distance every stage. For simplicity,
enough clearance is assumed between the truck and the
loading zone such that y does not have to be considered as
an input. The input ranges considered in this example are

¢ €[0°,180°] and xe€[0,25], and the output range is
0 €[-40°, 40°] . Thetruck simulation model is[20]

X(t+1 =x(t)+ COS[$(t) +0(t)]+sin[o(t)]s n[$(t)] (11)
Y(t+1) = y(©) + Sn[B(t) + 0(V)] - sinfo(] cos (O] (12)
e+ = 5 -sn 23000 (13)

whereb = 4isthelength of thetruck. The control objective
isto back up the truck to a suitable position with a suitable
truck angle. Previous studies have dealt with fuzzy control
of the truck control problem [20]-[22]. In [20], a fuzzy
controller isdesigned heuristically by expert knowledge. In
[21], theantecedent part is heuristically assigned in advance
and the consequent part is designed by supervised learning
from collected input-output training data. In [22], a fuzzy
controller is designed by the combination of expert
knowledge and supervised training data. Studies [21] and
[22] assumethat training datais availableand collected from
driving data of an expert. In practice, this means that an
expert must drivethetruck to generatetraining data.

'llll‘llllllllllll
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Unlike the methods above, this paper designs a fuzzy
controller using RSOFC-ACO, which requires neither
expert knowledge nor supervised training data. The
design constraint defines that the position of the truck is
x € [9, 11] and ¢ €[80,100] after 80 time steps of control.
If the constraint is violated, the control fails, and the total
number of control time steps until failureisrecorded asthe
quality value F. A control strategy is deemed successful if
the constraint is met for 150 time steps for all of the three
initial states (x(0), $(0)) = (3,135°), (x(0), $(0)) = (12, 45°)
and (x(0), $(0)) = (18, 30°). Thefuzzy controller inputsare
scaled values 0.03-x(k) and 0.01-¢(k). The width o,
in Eq. (7) is set to 0.4. The set of candidate actions is
U =[-40, - 35, ..., 35, 40], where there are 18 candidate
actionsin the set. The parameter p, for fuzzy clustering is
sett00.15. Theant number N, issetto 15. The parameters
for pheromone levels updated in Eqg. (9) and Eqg. (10) are
set to p =0.1 and ¢ = 0.1, respectively. For statistical
evaluation, thisstudy s mulates 50 runs. A run endswhen a
successful fuzzy controller isfound or afailure run occurs.
A failurerun occursif no successful fuzzy controller isfound
after 7,500 trials. Here, atrial meansacontrol processby a
fuzzy controller. All 50 runsin this sudy are successful when
using RSOFC-ACO. The average number of trials over these
50 runs is 383. Figure 4 shows the maximum number of
control time steps until failure for each iteration of the 50
runs. Theaveragenumber of fuzzy rulesissix. Table 1 shows
the corresponding statistical values, including averagetrial
numbers and standard deviation. Figure 5 shows the final
distributions of clustersin theinput spacefor one successful
run. The fuzzy controller contains six rules. Figure 6 shows
the successful control results of thefuzzy controller for the
threeinitial statesused for training. Figure 7 shows control
resultsfor another threeinitial states (x(0), ¢(0)) = (4, 30°),
(x(0),$(0)) = (10, 60°) and (x(0),$(0)) = (20, 150°).

In Eq. (10), pheromonelevel isupdated usng theglobal -
best ant. Another simulation with pheromonelevel updated
using iteration-best ant is also conducted, and the method is
denoted as RSOFC-ACO (lteration). In RSOFC-ACO
(Iteration), pheromone level is also updated using

Table 1
Comparisons of RSOFC-ACO with Different Reinforcement
Fuzzy Controller Design M ethods for the Truck Backing
Control Problem

Method GFC- Fuzzy- SEFC RSOFC-ACO RSOFC-
ACO Q (Iteration-best) ACO

Rule number 35 35 6 6 6

Average trials 3003 710 460 488 383

Standard 1945 405 401 490 454

Deviation

Failure runs 15 0 0 0 0

Eq. (9) and (10) at iteration k. The best ant among the N,
antsat iteration kisfound and itsquality valueisdenoted as
F .o and At (k) isequal toc-F__ for the path traveled by
the iteration-best ant. Table 1 shows the performance of
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Figure 7: Truck Backing Control Trajectories using RSOFC-ACO
with Another Three Initial Test States

RSOFC-ACO (Iteration). Theresults show that for the truck-
backing control prablem, pheromonelevel updated using a
global-best ant is better than using an iteration-best ant.

To see the effect of fuzzy clustering in RSOFC-ACO,
this study simulates a fuzzy controller with the antecedent
partitioned in advance with grid-type and the consequent
values selected using ACO. This method isdenoted as GFC-
ACO. Asin [21], inputs ¢ and x contain 7 and 5 type-1
fuzzy sets, respectively, and the total number of rules is
7 x 5 = 35. The used membership functions for these 12
fuzzy satsarethe same asthose used in [21]. Theant number

N, isalso set to 15. Table 1 shows the GFC-ACO results.

Thistablesshowsthat GFC-ACO performanceisworsethan
RSOFC-ACO. This comparison verifiesthe performance of
fuzzy clustering for rule reduction and performance
improvement.

For comparison, previousre nforcement fuzzy controller
design methods are applied to the same problem. These
methods include fuzzy Q-learning [9] and Symbiotic-
Evolution-based fuzzy controller (SEFC) [12]. In fuzzy
Q-learning, the antecedent part of the fuzzy controller is
partitioned in grid type as in [21], and there are 35 rules.
The candidate consequent actions are also selected from the
sameset U in RSOFC-ACO. Fuzzy Q-learning also usesthe
eligibility trace. The discount rate and learning rate in Q-
valueupdate are set t0 0.9 and 0.01, respectively. Thetrace
decay parameter in eigibility traceisset to 0.9. This set of
parameters is selected as it achieves the best performance
among several trials. The SEFC usesgenetic algorithm with
symbiotic evolution for fuzzy controller design, where both
the antecedent part parameters (the centers and widths of
Gaussian fuzzy sets) and consequent part parameters
(continuous valuesin the search [— 40, 40]) are al learned.
SEFC sets the number of rules at six
a priori. The number of individuals in one population is

6x N, =90, and each generation generates and eval uates
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90 fuzzy controllers. The GA evolution parameters are the
same as those suggested in [12]. Table 1 shows the results
of these compared methods. The results show that the
average trial number is smaller for RSOFC-ACO than for
the other methods.

6. CONCLUSION

This paper proposes anew reinforcement learning method,
the RSOFC-ACO, for fuzzy controller. Thefuzzy clustering
function in RSOFC-ACO helpsgeneratefuzzy rulesonline
and flexibly partition the input space, which reduces the
number of rules and avoids the curse of dimensionality in
high-dimensional state space. The use of fuzzy clustering
also shows better learning performance than grid-type
partition in the simulation example. The consequent part of
each ruleisdetermined using ACO. The simulation example
and comparisonswith other reinforcement learning methods
show that the ACO algorithm for consequent part learning
is effective and efficient. Future studies will use modified
ACO algorithms to improve consequent part learning
performance. The use of continuous ACO for continuous
consequent part design will also be studied.
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