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Abstract: This paper proposes a Reinforcement Self-Organizing Fuzzy Control method using Ant Colony Optimization (RSOFC-
ACO). Only reinforcement signals are required when using the RSOFC-ACO for fuzzy controller design. There are no fuzzy
rules initially in RSOFC-ACO. An online fuzzy clustering method is used to generate fuzzy rules automatically during control
process. The fuzzy clustering method flexibly partitions the input space and requires a smaller number of rules than a grid-type
partition. The consequent part of each fuzzy rule is designed using Ant Colony Optimization (ACO). All candidate consequent
control actions of a fuzzy rule are listed in advance. The tour of an ant is regarded as a combination of consequent actions
selected from every rule. The used ACO approach aims to optimally select the consequent part from a set of candidate actions
according to ant pheromone trails. The RSOFC-ACO method is applied to truck backing control problem and its performance
is compared with other reinforcement fuzzy control methods to verify its efficiency and effectiveness.
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1. INTRODUCTION

A fuzzy system consists of a set of fuzzy if-then rules.
Conventionally, the selection of fuzzy if-then rules often
relies on a substantial amount of heuristic observation to
express the knowledge of proper strategies. Obviously, it is
difficult for human experts to examine all the input-output
data from a complex system to find a number of proper rules
for the fuzzy controller. To copy with this difficulty, several
approaches to generating fuzzy if-then rules from numerical
data have been proposed [1]-[5]. For some real-world control
applications, precise training data are usually difficult and
expensive, if not impossible, to obtain. For this reason, there
has been a growing interest in reinforcement learning
algorithms for fuzzy controller. In reinforcement learning
problems, an agent receives a signal from its environment
which can be considered a reward or punishment [6]. No
supervisor is present to correct the actions chosen at each
execution step. Instead, the agent must discover which
actions yield the most reward by trial and error.

Previous studies propose several approaches for fuzzy
system design in reinforcement learning environments [7]-
[14]. These approaches are mainly based on the Temporal
Difference (TD) method [7]-[10] or Genetic Algorithms
(GA) [11]-[14]. A previous study [7] proposes a generalized
approximate reasoning-based intelligent control (GARIC)
architecture for TD-based reinforcement fuzzy system
learning. This approach uses a two-layer feedforward neural
network as an action evaluation network and a fuzzy
inference network as an action selection network. Another
study [8] proposes a reinforcement neural-network-based
fuzzy logic control system (RNN-FLCS) where fuzzy neural

networks comprise both the action and evaluation networks.
One drawback of these actor-critic architectures is that they
usually suffer from the local minimum problem in network
learning and slow learning performance thanks to the
gradient descent learning method. The authors of [9, 10]
proposed fuzzy Q-learning for fuzzy inference system design,
where the consequent part of each rule is designed via Q-
values. The authors of [12] proposed a symbiotic evolution
method for fuzzy controller (SEFC) design for genetic
reinforcement fuzzy system learning. The symbiotic
evolution technique is also used in a later study [13]. A
combination of on-line clustering and Q-value based GA for
fuzzy system design (CQGAF) is proposed in [14], where
Q-values serve as fitness values for GA. Unlike the above
TD or GA based reinforcement learning methods, this paper
uses ant colony optimization (ACO) [15] for fuzzy controller
design under reinforcement learning environments. In [16],
ACO has been used for fuzzy system design. However, in
that work, the antecedent part is partitioned grid-type and
supervised learning is conducted.

This paper proposes a Reinforcement Self-Organizing
Fuzzy Control method using Ant Colony Optimization
(RSOFC-ACO). The antecedent and consequent parts of a
fuzzy system controller are designed using fuzzy clustering
and ACO, respectively. The fuzzy clustering approach
generates rules online and flexibly partitions the input space.
The consequent parts in a fuzzy controller are selected from
a set of candidate actions, and this selection problem can be
regarded as a combinational problem. Ant Colony
Optimization (ACO) is used in consequent design because
it is a powerful meta-heuristic approach that can solve
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difficult combinatorial optimization problems. This study
applies the proposed RSOFC-ACO to truck backing control
problems and compares it to other reinforcement learning
methods.

 This paper is organized as follows. Section 2 describes
the designed fuzzy controller in RSOFC-ACO and basic
concepts of ACO. Section 3 describes the proposed RSOFC-
ACO learning algorithms. Section 4 conducts RSOFC-ACO
simulations. Finally, Section 5 draws conclusions.

2. FUZZY CONTROLLER AND ANT COLONY
OPTIMIZATION

This section describes the designed fuzzy controller in
RSOFC-ACO and basic concepts of ACO, which is used
for fuzzy controller design.

2.1 Fuzzy Controller

 In this paper, each rule in the fuzzy controller is presented
in the following form:
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A Gaussian membership function is used for fuzzy set
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x 1( ,..., )nx x� is converted into a fuzzy singleton and is
mapped to the fuzzy set A

ij
 with degree M

ij
(x). In the
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The output from each rule is a crisp value. The fuzzy
control action is the combination of the output of each rule
using the weighted average defuzzification method. Suppose
that a fuzzy controller consists of m rules, then the output of
the controller is
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In the antecedent part, instead of a grid-type partition, a
flexible partition is adopted. Figure 1 shows the grid-type
and flexible partitions, where each grid corresponds to a
fuzzy rule. The use of flexible partition avoids the problem
of combinational growth of partitioned grids that occurs in
grid-type partition. Therefore, the number of fuzzy rules can
be reduced when using flexible partition. In RSOFC-ACO,
it is unnecessary to assign rule number in advance, as the
fuzzy controller is self-organized using fuzzy clustering.
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Figure 1: Partition of the Input Space. (a) Grid-type (b) Flexible
Partition
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2.2 Ant Colony Optimization

There is a total of Nm combinations of consequent parts in
Eq. (2). The RSOFC-ACO uses ACO algorithm to solve the
consequent part selection problem. ACO is a meta-heuristic
algorithm inspired by the behavior of real ants, and in
particular how they forage for food [15]. ACO can be applied
to combinational problems, where the solutions to the
optimization problem can be expressed in terms of feasible
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paths on a graph. Among these feasible paths, ACO tries to
find the one with minimum cost. In ACO, a finite size colony
of artificial ants is created. Each ant then builds a solution
to the problem. The performance measure is based on a
quality function F(.). In RSOFC-ACO, reinforcement signal
r is used as quality function F(.). The information collected
by the ants during the search process is stored in the
pheromone trails � associated to the connection of all edges.
The ants cooperate in finding the solution by exchanging
information via the pheromone trials. Edges can also have
an associated heuristic value � representing information
about the problem instance definition or run-time information
provided by a source different from the ants. Once all ants
have computed their tour (i.e. at the end of the each iteration),
ACO algorithms update the pheromone trail using F(.). The
pheromone trail may be updated locally while an ant builds
its trail or globally when all ants have built their trails [15,
17-19]. The whole ACO algorithm can be described by taking
the TSP for example, details of which can be found in [15].

3. RSOFC-ACO LEARNING ALGORITHM

3.1 Fuzzy Clustering

The proposed RSOFC-ACO method uses fuzzy clustering
for rule antecedent part design. Clustering is based on the
concept that a rule geometrically corresponds to a cluster in
the input space. For each incoming input pattern x, the rule
firing strength can be regarded as the degree of the incoming
input pattern that belongs to the corresponding cluster.
According to this concept, the firing strength �

i
(x) in Eq.

(4) is the criterion in study [2] for deciding if a new fuzzy
rule should be generated. In [2], this rule generation concept
was used in a neural fuzzy system. The proposed RSOFC-
ACO applies this concept to fuzzy controller design using
ACO. There are no fuzzy rules initially. As in [2], for each
incoming data x(k), find
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where m(k) is the number of existing rules at time k. If �
I
 �

�
th
 or r(k) =0, where �

th
 � (0, 1) is a pre-specified threshold,

then a new fuzzy rule is generated and ( 1) ( ) 1r k r k� � � .
For initial parameter assignment of each new fuzzy set, a
simpler and modified version of the aligned fuzzy clustering
algorithm in [2] was used. For each newly generated fuzzy
rule, the corresponding center and width of Gaussian fuzzy
set A

1j
 in each input variable are assigned as:
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Equation (7) shows that only one width value �
fix

 is used
for all fuzzy sets. This is in contrast to the algorithm in [2],
where different fuzzy sets use different widths after
supervised parameter learning. Due to this variation, a cluster
aligning operation is performed in [2] to reduce the number
of parameters by sharing the same fuzzy set for some fuzzy

rules. In contrast to supervised learning, reinforcement
learning does not require high learning accuracy on precise
input-output training data, so only one fuzzy set width is
used in RSOFC-ACO to ease the width determination task
and reduce memory requirement.

3.2. RSOFC-ACO Learning Algorithm

In RSOFC-ACO, rules are generated online using
fuzzy clustering as introduced in subsection 3.1. For each
rule, the consequent is selected from the predefined
set 1{ ,  ,  }NU u u� � using ACO. In the RSOFC-ACO
approach, the combination of selected consequent values
functions as an ant tour. Figure 2 illustrates the case where

three rules are generated and 1 2 3 4{ , , , }.U u u u u�  Selection

of the consequent value is based on pheromone trails between
each rule.  The size of the pheromone matr ix is
m × N and each entry in the matrix is denoted by �

ih
, where

i = 1, ..., n and h = 1,..., N. As Figure 2 shows, when the ant
arrives at rule Ri, then the probability p
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 that action u

h
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  in RSOFC-ACO is defined by
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Figure 2: The Consequent Value is Selected by an Ant According
to Pheromone Trails where the Tour of an Ant is Marked
by a Bold Line. The Corresponding Pheromone Matrix
is shown below
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Figure 2 illustrates one tour of an ant (marked by a bold
line), where an ant starts from the initial state, moves through
R1 and R2, and stops at R3. For each rule, the node visited by
the ant is selected as the consequent part of the rule.
Figure 3 shows that the selected consequent part values in
R1, R2, and R3 are u

2
, u

3
, and u

1
, respectively.

After a whole fuzzy controller is constructed from an
ant tour, it is applied to a controller plant, during which rules
are also generated online using fuzzy clustering. When
control fails, a reinforcement signal r is received, where r is
defined as the number of time steps until failure. An iteration
ends when the performance of aN  fuzzy controllers (ants)
have been evaluated. The entire RSOFC-ACO process ends
when a predefined end iteration number is met or a successful
fuzzy controller is found.

The pheromone matrix is updated after all of the aN
fuzzy controller have been applied to the controlled plant.
That is, the pheromone matrix is updated after the end of
iteration k. The reinforcement signal is used directly as the
quality value F for pheromone update. For each iteration k,
the ant (fuzzy controller) that achieves the maximum quality
value, denoted as F

max
, among the aN  ants is found. Then,

the pheromone level is updated using

( 1) (1 ) ( ) ( )ih ih ihk k k� � � �� � � �� , (9)

where � � (0, 1) is a parameter that represents the
evaporation coefficient and
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where c is a learning rate that determines the updating speed
of �. The global-best ant that achieves the best-so-far quality
value F

max
 is found at each iteration. Equation (10) shows

that only the pheromone trails on the path traveled by the
global-best ant is increased by a value of c .F

max
 at each

iteration.

4. SIMULATIONS

This paper applies the RSOFC-ACO to truck backing
control. Figure 3 shows the simulated truck and loading zone
studied in [20]-[22]. The position of the truck is exactly
determined by the three state variables , , and ,x y�  where

�  is the angle of the truck with the horizontal axis shown in
Figure 3, and x and y are the horizontal and vertical positions,
respectively. The truck is controlled by a steering angle �,
and only backing up is considered. The truck moves
backward by a fixed unit distance every stage. For simplicity,
enough clearance is assumed between the truck and the
loading zone such that y does not have to be considered as
an input. The input ranges considered in this example are

[0 , 180 ]�� � �  and [0, 25]x� , and the output range is

[ 40 , 40 ]�� � � � . The truck simulation model is [20]

( 1) ( ) cos[ ( ) ( )] sin[ ( )]sin[ ( )]x t x t t t t t� � � � � � � � � (11)
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t
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b
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where b = 4 is the length of the truck. The control objective
is to back up the truck to a suitable position with a suitable
truck angle. Previous studies have dealt with fuzzy control
of the truck control problem [20]-[22]. In [20], a fuzzy
controller is designed heuristically by expert knowledge. In
[21], the antecedent part is heuristically assigned in advance
and the consequent part is designed by supervised learning
from collected input-output training data. In [22], a fuzzy
controller is designed by the combination of expert
knowledge and supervised training data. Studies [21] and
[22] assume that training data is available and collected from
driving data of an expert. In practice, this means that an
expert must drive the truck to generate training data.

Figure 3: The Simulated Truck Model



Reinforcement Self-Organizing Fuzzy Control Using Ant Colony Optimization 19

Unlike the methods above, this paper designs a fuzzy
controller using RSOFC-ACO, which requires neither
expert knowledge nor supervised training data. The
design constraint defines that the position of the truck is
x � [9, 11] and [80,100]��  after 80 time steps of control.
If the constraint is violated, the control fails, and the total
number of control time steps until failure is recorded as the
quality value F. A control strategy is deemed successful if
the constraint is met for 150 time steps for all of the three
initial states ( (0), (0)) (3,135 ),x � � �  ( (0), (0))x � � (12, 45°)

and ( (0), (0))x � � (18, 30°). The fuzzy controller inputs are

scaled values 0.03.x(k) and 0.01 ( )k� � . The width �
f ix

in Eq. (7) is set to 0.4. The set of candidate actions is
U = [– 40, – 35, …, 35, 40], where there are 18 candidate
actions in the set. The parameter �

th
 for fuzzy clustering is

set to 0.15. The ant number aN  is set to 15. The parameters
for pheromone levels updated in Eq. (9) and Eq. (10) are
set to � =0.1 and c = 0.1, respectively. For statistical
evaluation, this study simulates 50 runs. A run ends when a
successful fuzzy controller is found or a failure run occurs.
A failure run occurs if no successful fuzzy controller is found
after 7,500 trials. Here, a trial means a control process by a
fuzzy controller. All 50 runs in this study are successful when
using RSOFC-ACO. The average number of trials over these
50 runs is 383. Figure 4 shows the maximum number of
control time steps until failure for each iteration of the 50
runs. The average number of fuzzy rules is six. Table 1 shows
the corresponding statistical values, including average trial
numbers and standard deviation. Figure 5 shows the final
distributions of clusters in the input space for one successful
run. The fuzzy controller contains six rules. Figure 6 shows
the successful control results of the fuzzy controller for the
three initial states used for training. Figure 7 shows control
results for another three initial states ( (0), (0))x �  = (4, 30°),
( (0), (0))x � = (10, 60°) and ( (0), (0))x �  = (20, 150°).

In Eq. (10), pheromone level is updated using the global-
best ant. Another simulation with pheromone level updated
using iteration-best ant is also conducted, and the method is
denoted as RSOFC-ACO (Iteration). In RSOFC-ACO
(Iteration),  pheromone level is also updated using

Table 1
Comparisons of RSOFC-ACO with Different Reinforcement

Fuzzy Controller Design Methods for the Truck Backing
Control Problem

Method GFC- Fuzzy- SEFC RSOFC-ACO RSOFC-
ACO Q (Iteration-best) ACO

Rule number 35 35 6 6 6

Average trials 3003 710 460 488 383

Standard 1945 405 401 490 454
Deviation

Failure runs 15 0 0 0 0

Figure 4: The Maximum Number of Control Time Steps until
Failure for each Iteration of 50 Runs

Figure 6: Truck Backing Control Trajectories using RSOFC-ACO
with the Three Initial States Used for Training

Eq. (9) and (10) at iteration k. The best ant among the aN
ants at iteration k is found and its quality value is denoted as
F

max
, and ( )ih k��  is equal to c .F

max
 for the path traveled by

the iteration-best ant. Table 1 shows the performance of

Figure 5: Distributions of Clusters in the Input Pace
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RSOFC-ACO (Iteration). The results show that for the truck-
backing control problem, pheromone level updated using a
global-best ant is better than using an iteration-best ant.

To see the effect of fuzzy clustering in RSOFC-ACO,
this study simulates a fuzzy controller with the antecedent
partitioned in advance with grid-type and the consequent
values selected using ACO. This method is denoted as GFC-
ACO. As in [21], inputs �  and x contain 7 and 5 type-1
fuzzy sets, respectively, and the total number of rules is
7 × 5 = 35. The used membership functions for these 12
fuzzy sets are the same as those used in [21]. The ant number

aN  is also set to 15. Table 1 shows the GFC-ACO results.
This tables shows that GFC-ACO performance is worse than
RSOFC-ACO. This comparison verifies the performance of
fuzzy clustering for rule reduction and performance
improvement.

For comparison, previous reinforcement fuzzy controller
design methods are applied to the same problem. These
methods include fuzzy Q-learning [9] and Symbiotic-
Evolution-based fuzzy controller (SEFC) [12]. In fuzzy
Q-learning, the antecedent part of the fuzzy controller is
partitioned in grid type as in [21], and there are 35 rules.
The candidate consequent actions are also selected from the
same set U in RSOFC-ACO. Fuzzy Q-learning also uses the
eligibility trace. The discount rate and learning rate in Q-
value update are set to 0.9 and 0.01, respectively. The trace
decay parameter in eligibility trace is set to 0.9. This set of
parameters is selected as it achieves the best performance
among several trials. The SEFC uses genetic algorithm with
symbiotic evolution for fuzzy controller design, where both
the antecedent part parameters (the centers and widths of
Gaussian fuzzy sets) and consequent part parameters
(continuous values in the search [– 40, 40]) are all learned.
SEFC sets the number of rules at six
a priori. The number of individuals in one population is

6 × aN  = 90, and each generation generates and evaluates

90 fuzzy controllers. The GA evolution parameters are the
same as those suggested in [12]. Table 1 shows the results
of these compared methods. The results show that the
average trial number is smaller for RSOFC-ACO than for
the other methods.

6. CONCLUSION

This paper proposes a new reinforcement learning method,
the RSOFC-ACO, for fuzzy controller. The fuzzy clustering
function in RSOFC-ACO helps generate fuzzy rules online
and flexibly partition the input space, which reduces the
number of rules and avoids the curse of dimensionality in
high-dimensional state space. The use of fuzzy clustering
also shows better learning performance than grid-type
partition in the simulation example. The consequent part of
each rule is determined using ACO. The simulation example
and comparisons with other reinforcement learning methods
show that the ACO algorithm for consequent part learning
is effective and efficient. Future studies will use modified
ACO algorithms to improve consequent part learning
performance. The use of continuous ACO for continuous
consequent part design will also be studied.
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