
International Journal of Computational Intelligence in Control, 3(2), 2011, pp. 77-99

EVOLUTIONARY COMPUTATION AND DSP BASED
INTELLIGENT AIRCRAFT LANDING CONTROL

Jih-Gau Juang*, Hou-Kai Chiou and Chia-Ling Lee
Department of Communications, Navigation and Control Engineering
National Taiwan Ocean University, Keelung 20224, Taiwan, R. O. C.

ABSTRACT: This paper presents several digital signal processor (DSP) based intelligent controllers
to aircraft automatic landing system. PID control law is adopted in the intelligent controller design.
Fuzzy cerebellar model articulation controller (FCMAC) is utilized to compensate for the PID control
signal. Control gains are selected by evolutionary computation. Tracking performance of preset
landing path and adaptive capability to different disturbances are demonstrated through hardware
simulations. Different evolution methods, Adewuya crossover, arithmetical crossover, average
crossover, convex crossover, and blend crossover, are utilized to analyze the performance on optimal
parameter search. Hardware implementation of this intelligent controller is performed by a DSP
board with VisSim platform. This study also compares different CMACs to improve the performance
of conventional ALS. The atmospheric disturbances affect not only flying qualities of an aircraft but
also flight safety. The proposed intelligent controllers can successfully expand the controllable
conditions in severe wind disturbances.

Keywords: PID Control, Evolutionary Computation, DSP, Automatic Landing Control, Fuzzy CMAC,
Turbulence.

1. INTRODUCTION
Evolutionary computation (EC) is the general term for several computational techniques on the
evolution of biological life in the natural world. In computer science evolutionary computation is
a subfield of artificial intelligence involving combinatorial optimization problems. Evolutionary
computation includes genetic algorithm (GA), evolutionary programming (EP), evolution strategies
(ES), genetic programming (GP), and classifier systems (CS). Despite being developed
independently over several decades in these subfields of evolutionary computation, most of these
techniques are similar in spirit, but differ in the details of their implementation and the nature
of the particular problem to which they have been applied. The GA is search procedures based on
the mechanics of natural genetics and natural selection. Compared to GA, the EP typically only
uses the mutation process without using the binary-coded and reproduction (or crossover)
processes. The efficiency of ES also depends on the size of mutation strength. The GP is that one
kind by operators according to the basic function of the definition of the working purpose, on the
basis of limiting conditions of questions, through evolutionary computation to generate optimal
procedure modeling automatically. The difference between GA and GP is that the type of GA is
by way of coding and the type of GP is by way of procedure. The CS is a kind of adaptive rule-
based system, which can study complicated rule from the change of external environment and
adjust progressively to strengthen own inherent knowledge. The most widely used form of
evolutionary computation is the generic algorithm. The GA was proposed by John Holland in
1962 [1], which is an optimization and search technique based on the principles of genetics and
natural selection. In 1975, Holland mentioned the most basic principle of GA in “Adaptation in
Natural and Artificial System” [2]. In the same year, De Jong showed the usefulness of the GA
for function optimization and made the first concerted effort to find optimized GA parameters.
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Whereas the GA generally only involves techniques of implementing mechanisms, such as
reproduction, crossover, mutation, fittest function, etc. Via reproduction, crossover, and mutation
steps, the GA can generate next generation to reach the purpose of evolution. According to level
of fitness value, the GA retains the fine one and eliminates the inferior populations. Therefore, it
is widely used to solve optimal problems recently. It can search many points at the same time
and is not apt to fall into local optimal solution. The GA has been used for a wide range of
applications, as well as for specific applications focused on a specific requirement. So far many
new improving methods focus on making GA more efficient and increasing parameter searching
ability widely. Here we put focus on crossover principle of different ECs. We utilize five crossover
principles [3-5] with intelligent controllers under wind disturbances to search optimal control
gains, and compare the differences between these principles.

According to Boeing’s report [6], 67% of the accidents by primary cause are due to human
factors and 5% are attributed to weather factors. By phase of flight, 47% accidents are during
final approach or landing. It is therefore desirable to develop an intelligent automatic landing
system (ALS) that expands the operational envelope to include safer responses under a wider
range of conditions. In this study, robustness of the proposed controller is obtained by choosing
optimal control gains that allow a wide range of disturbances to the controller. The goal of this
paper is to show that the proposed intelligent ALS can relieve human operators and guide the
aircraft to a safe landing in severe turbulence environments. This study first uses conventional
aircraft automatic landing control system that uses PID controller with EC as the adjustment
mechanism to improve the performance of conventional ALS and guide the aircraft to a safe
landing. Wind disturbances are also implemented into the flight simulations. Many researchers
have applied intelligent concepts to the problem of intelligent landing control [7-8], but these
intelligent concepts are not adaptive to various wind disturbance conditions. In past decades,
most of the improvements in the ALS system have been on the guidance instruments, such as
GNSS Integrity Beacons, Global Positioning System, Microwave Landing System, and Automatic
Land Position Sensor [9-12]. By using improvement calculation methods and high accuracy
instruments, these systems provide more accurate flight data to the ALS to make the landing
smoother. However, these research do not include weather factors such as wind turbulences.
Recently, intelligent concepts such as neural networks, fuzzy system, genetic algorithm, and
hybrid systems have applied to flight control to increase the flight controller’s adaptive capability
to different environments [13-17]. This paper uses type-2 FCMAC [18-20] to improve the
performance of conventional ALS. Comparisons of conventional CMAC [21] and conventional
(type-1) FCMAC [22] are also given. The performance of the intelligent ALS under severe
environment can be improved by the advantages of the CMAC which include local generalization
and rapid learning process. Meanwhile, this study also utilizes the VisSim software and TI C2000
Rapid Prototyper to develop an embedded control system that uses a DSP controller. Thus,
hardware-in-the-loop control can be achieved.

2. LANDING SYSTEM
At the aircraft landing phase, the pilot descends from the cruise altitude to an altitude of
approximately 1200 feet above the ground. The pilot then positions the aircraft so that the aircraft
is on a heading towards the runway centerline. When the aircraft approaches the outer airport
marker, which is about 4 nautical miles from the runway, the glide path signal is intercepted, as
shown in Figure 1. As the airplane descends along the glide path, its pitch, attitude, and speed
must be controlled. The descent rate is about 10 ft/sec and the pitch angle is between -5 to +5
degrees. Finally, as the airplane descends 20 to 70 feet above the ground, the glide path control
system is disengaged and a flare maneuver is executed. The vertical descent rate is decreased to
2ft/sec so that the landing gear may be able to dissipate the energy of the impact at landing. The
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pitch angle of the airplane is then adjusted, between 0 to 5 degrees for most aircraft, which
allows a soft touchdown on the runway surface.

A simplified model of a commercial aircraft that moves only in the longitudinal and vertical
plane is used in the simulations for implementation ease [13]. The motion equations of the aircraft
are given as follows:
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where u is the aircraft longitudinal velocity (ft/sec), w is the aircraft vertical velocity (ft/sec), q is
the pitch rate (rate/sec), � is the pitch angle (deg), h is the aircraft altitude (ft), �E is the incremental
elevator angle (deg), �T is the throttle setting (ft/sec), �o is the flight path angle (-3deg), and g is
the gravity (32.2 ft/sec2). The parameters Xi, Zi and Mi are the stability and control derivatives.

To make the ALS more intelligent, reliable wind profiles are necessary. Two spectral turbulence
forms models by von Karman and Dryden are mostly used for aircraft response studies. In this
study the Dryden form [13] was used for its demonstration ease. The model is given by :
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Figure 1: Glide Path and Flare Path
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� �� � � �0.2 0.5 0.00098w gcu h  for � �0 500h ,� � 0.2w gcu  for h > 500.

The parameters are: ug is the horizontal wind velocity (ft/sec), wg is the vertical wind velocity
(ft/sec), U0 is the nominal aircraft speed (ft/sec), uwind510 is the wind speed at 510 ft altitude, Lu
and Lw are scale lengths (ft), �u and �w are RMS values of turbulence velocity (ft/sec), �t is the
simulation time step (sec), N(0,1) is the Gaussian white noise with zero mean and unity standards
deviation, ugc is the constant component of ug, and h is the aircraft altitude (ft). Figure 2 shows a
turbulence profile with a wind speed of 30 ft/sec at 510 ft altitude.

Figure 2: Turbulence Profile

3. CONTROL SCHEME
Conventional aircraft landing system uses PID-type control, as shown in Figure 3. Controller
inputs consist of altitude and altitude rate commands along with aircraft altitude and altitude
rate. The pitch command �c is obtained from the PID controller. Then, the pitch autopilot is
controlled by pitch command. The pitch autopilot is shown in Figure 4. In order to enable aircraft
to land more steady when an aircraft arrives to the flare path, a constant pitch angle will be
added to the controller. In general, the PID controller is simple and effective but there are some
drawbacks such as apparent overshoot and sensitive to external noise and disturbance. When
severe turbulence is encountered, the PID controller may not be able to guide the aircraft to land
safely. With the CMAC compensator, the proposed controller can overcome these disadvantages.
It uses a traditional PID controller to stabilize the system and train the CMAC to provide precise
control. The original gains of PID controller are adjusted based on experiences, what it provides
are tolerable solutions, not desired solutions. The CMAC can effectively meliorate these conditions.

The overall control scheme is described in Figure 5, in which the control signal U is the sum
of the PID controller output and the CMAC output. The inputs for the CMAC and PID controller
are: altitude, altitude command, altitude rate, and altitude rate command. In each time step k,
the CMAC involves a recall process and a learning process. In the recall process, it uses the
desired system output of the next time step and the actual system output as the address to
generate the control signal UCMAC.  In the learning process, the control signal of the pitch autopilot,
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Figure 3: PID-controller

Figure 4: Pitch Autopilot

Figure 5: The CMAC Control Scheme
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U, is treated as a desired output. It is used to modify the weights of CMAC stored at location
which is addressed by the actual system output and the system output of the next time step. The
output of the CMAC is the compensation for pitch command. When the wind turbulence is too
strong, the ALS can not control the aircraft to land safely. Here we use CMAC, type-1 FCMAC,
and type-2 FCMAC control schemes to improve the ability of turbulence resistance of the ALS.

3.1. Cerebellar Model Articulation Controller (CMAC)
CMAC is a type of artificial neural network proposed in the literatures [21]. It could be considered
as an associative memory learning structure based on the performance of the cerebellum of human
being. The function of CMAC is alike to a lookup-table technique which represents complex and
nonlinear systems. And the fundamental concept of CMAC is to store information into overlapping
regions in an associative approach so that stored information can easily be recalled using less
storage space (memory cell). The structure of CMAC is shown in Figure 6. Manipulation of the
CMAC divides the algorithm into two segments.

Figure 6: The Conceptual Diagram of CMAC

The first is an output generating stage. The output of CMAC can be obtained by the mapping
process U � A � Y, where A stands for the M-dimensional memory cell, the a � A � RM is the
binary associative vector, as an address indexes in coherence with the input vector x. Let the
input x address N (N < M) memory cells; the mapping A � Y represents the chosen weights that
stored in memory cells are added together to compute the output as:

�

� �
1

( ) ( )
N

j j
j

y x w a x (8)

where wj is the weight of the jth storage hypercube and aj(x) is a binary factor indicating whether
the jth storage hypercube is addressed by the input x. The second is the stage of network learning
in the CMAC, it is to update the addressed weights of memory cells according to the error between
the desired output and the real output. Its weight updating rule is:
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where yd is the desired output, m is the number of addressed memory cells, � is the learning rate.

When it processes input vector of the CMAC, it simply divides it into certain blocks. The
relation between input vector with these blocks is simply a crisp relation. The relation between
the input condition and the association intensity is simply “activated” or “not activated”. Further,
an important identity of the CMAC is local generalization that derived from where nearby input
vectors have some overlapping vicinity and then share some associative memory cells.

3.2. Type-1 FCMAC
The structure of type-1 FCMAC is shown in Figure 7. FCMAC is a kind of associative memory
network. Not only has it faster self-learning rate than normal neural network by quantities with
a few adjustments of memory weights, but also it has good local generalization ability. The function
of FCMAC is similar to a look-up table, and the output of CMAC is figured from a linear
combination of weights which are stored in memory. The concept of FCMAC is to store data
(knowledge) into overlapped storage hypercubes (remembering region) in an associative manner
such that the stored data can easily be recalled. Two kinds of operations are included in the
FCMAC, one is calculating the output result and the other is learning and adjusting the weight.
The output of FCMAC can be obtained by the mapping process X�S�C�W�Y as follows.

Step 1: Quantization (X � S): X is n-dimension input space. For the given x = [x1 x2, ... ,xn]
T,

s = [s1 s2, ... , sn]
T represents the quantization vector of x. It is specified the corresponding state of

each input variable before the fuzzification.

Figure 7: Conventional FCMAC Structure
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Step 2: Associative Mapping segment (S�C): It is to fuzzify the quantization vector which is
quantized from x. FCMAC uses the fuzzification method of the fuzzy theorem as its addressing
scheme. After the input vector is being fuzzified, the input state values are transformed to “firing
strength”, which is based on corresponding membership functions.

Step 3: Memory Weight Mapping (C�W): After fuzzifying block regions, the ith rule’s firing
strength in FCMAC could be computed as:

�
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( ) ( ) * ( ) * ... ( ) ( )
n

j j j jn n j ii
C x c x c x c x c x (10)

where ( )
ij ic x  is the jth membership function of the ith input vector and n is the number of total

states. The asterisk “*” denotes a fuzzy t-norm operator. And there are several kinds of t-norms
such as the max, min and product operators. We choose the product inference method as the t-
norm operator because it is easy to implement.

Step 4: Output generation with memory weight learning (W�Y): Due to partial proportional
fuzzy rules and existent overlap situation, more than one fuzzy rules are fired simultaneously.
The consequences of multi-rules are merged by a defuzzification process. The defuzzification
approach we applied is to sum assigned weights of the activated fuzzy rules on their firing
strengths, denoted as Cj(x). The output of network is,
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The work on learning of FCMAC is to update the memory weight according to the error between
the desired output and the actual output. The weight update rule for FCMAC is as follows [22]:
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where � is the learning rate, m is the size of floor ( called generalization ), yd is the desired
output.

3.3. Type-2 Fuzzy CMAC
The type-2 fuzzy theorem is utilized into CMAC structure in order to promote more accurate
resolution than conventional FCMAC. The mapping procedure of type-2 FCMAC is similar to
conventional FCMAC. The diagram structure of type-2 FCMAC is shown in Figure 8. Each phase
of mapping is described as follows. The X is an n-dimensional input space, as shown in Figure 9.
For the given X = [x1, x2 .... xn], S = [s1, s2 .... sn] represents the quantization vector of x. It is
specified the corresponding state of each input variable before the fuzzifization. Type-2 FCMAC
uses the interval type-2 fuzzification method of the fuzzy theorem as its addressing scheme.
After the input vector to the interval type-2 fuzzy set is being fuzzified, the input state values
are transformed to upper firing strength and lower firing strength, which is based on corresponding
interval type-2 membership functions. We choose the product inference method as the t-norm
operator. The jth rule’s upper firing strength jc and lower firing strength firing strength cj in
type-2 FCMAC could be computed as:
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The type-reduced set of the type-2 FCMAC using the center of sets type reduction :
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It is an interval type-1 set determined by its left and right end points yl and yr, which can be
written as follows [20]:

Figure 8: Diagram of type-2 FCMAC in 3-D

Figure 9: Architecture of type-2 FCMAC Network
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w  and w are the corresponding weights of c  and c, respectively. L and R can be obtained from
[20]:

Step 1: Assume that the pre-computed jw  are arranged in ascending order, i.e.,

1 2 ........... Nw w w� � �

Step 2: Compute ry by initially setting ( ) / 2jj jc c c� �  for j = 1......N and let r ry y� �

Step 3: Find R(1 � R � N – 1) such that 1R R
rw y w ��� �

Step 4: Compute yr with jjc c�  for j � R and j jc c�  for j > R and let r ry y�� �

Step 5: If r ry y�� �  then go to step 6. If r ry y�� ��  then stop and set r ry y�� ��

Step 6: Set r ry y� ���  and return to Step 3.

The procedure for computing yl is very similar to the one just given for yr. In Step 3 find

L(1 � L � N–1) such that 1L L
lw y w ��� � . Additionally, in Step 2 compute yl initially setting

( ) / 2j jjc c c� �  for j = 1......N and in Step 4 compute yl with j jc c�  for j � L and j jc c�  for
j > L.

The defuzzified output is simply the average

y = yr + yl (18)

The work on learning of type-2 FCMAC is to update the memory weight according to the
error between the desired output and the actual output. The learning rule for type-2 FCMAC is
as follow:
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where � is the learning rate, m is the size of floor (called generalization).

4. OPTIMAL CONTROL PARAMETERS
The GA’s good properties do not stem from the use of bit strings. GA based on real number
representation is called real-valued genetic algorithm, which would seem particularly natural
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when optimization problems with variables in continuous search spaces are tackled. A chromosome
is a vector of floating point numbers whose size is kept the same as the length of the vector,
which is a solution to the problem. The operation mechanisms, reproduction, crossover, and
mutation are operated by real number also. In recent years, a lot of researchers have done much
improvement for crossover and mutation, in order to expect GA to have better performance. In
this study, five crossover methods are applied to the evolution. They are Adewuya crossover,
arithmetical crossover, average crossover, convex crossover, and blend crossover. In addition to
utilize GA with these crossover methods to search the control parameters of the pitch autopilot,
we also compare the differences among these five methods.

4.1. Adewuya Crossover Method
In reproduction stage, we used roulette wheel selection to choose better parents, which is according
to the fitness function of populations. For each generation, the reproduction operator chooses
populations that are placed into a mating pool, which is used as the basis for creating the next
generation. Then, enter the next stage, crossover. The crossover in a GA is an important process.
The first method we used is proposed by Adewuya [3]. The process is divided into three steps, as
shown below.

Step 1: Randomly choose a gene from each individual of a matching pair in parent generation,
Pm� and Pn�, as crossover site.

� �1 1 2 ..... .....m m m mspattern p p p p�� (21)

� �2 1 2 ..... .....n n n nspattern p p p p�� (22)

Step 2: Calculate new values of these selected genes as follow, where � is a random number
and 0 � ��� 1.

� �1 1new m np p p� �� � � � � � � (23)

� �2 1new m np p p� �� � � � � � � (24)

Step 3: Replace Pm� and Pn� with Pnew1 and Pnew2, respectively. The genes in the right side of
the crossover site exchange with each other, which will obtain new offspring.

� �1 1 2 1..... .....m m new nsNewpattern p p p p� (25)

� �2 1 2 2..... .....n n new msNewpattern p p p p� (26)

Finally an important process is the mutation, which permits the introduction of extra
variability into the population. We pick out a population randomly, and change their gene
information, but the new offspring must be in the range established after adding gene information.
We use real number mutation process as follow

_new oldx x s rand noise� � � (27)

where s is the random value between 0 to 1. The fitness function that was used in this control
scheme is:

Fitness = number of successful landing with different turbulence strengths. (28)

4.2. Arithmetical Crossover Method
The second one we used is the arithmetical crossover [4]. The reproduction and mutation that we
used are the same as in Section 4.1. The arithmetical crossover makes the mating pair pull away
or get closer. The process is shown below.
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where x1 and x2 are the parents, x1
’ and x2

’ are the new offspring, and � is a random and positive
small real value. In addition, we can also use either (29) or (30) with –1 < � <1, which can determine
pull away or get closer by the sign of �.

4.3. Average Crossover Method
The third one we used is the average crossover. The reproduction and mutation that we used are
the same as in Section 4.1. The average crossover uses a simplified model with (23) and (24)
where � is 1/2. It can be obtained as follow

� �1
2new m np p p� �� � � (31)

where Pm� and Pn� are the parents, Pnew is the new offspring.

4.4. Convex Crossover Method
The fourth one we used is the convex crossover. The reproduction and mutation that we used are
the same as in Section 4.1. The convex crossover is shown below.

� �1new j kx x x� � � � � � � (32)
where xj and xk are the parents, xnew is the new offspring, � is a random and small real value.

4.5. Blend Crossover Method
The fifth one we used is the blend crossover. The blend crossover (BLX-�) was proposed by
Eshelman and Schaffer [5]. It is a prominent crossover operator for GA, and excels in optimization
of a number of standard separable functions with multimodality. The BLX-� crossover generates
offspring as following process.

1 1 2min( , )i i i iX x x d� � � � (33)
2 1 2max( , )i i i iX x x d� � � � (34)

1 2
i i id x x� � (35)

where x1 and x2 are chosen randomly from the population, 1
ix  and 2

ix  are the i-th elements of x1

and x2, respectively. The value of each element c
ix of the offspring vector xc is uniformly sampled

from the interval 1 2,i iX X� �� � .� is a positive parameter, which is suggested to be 0.5.

5. HARDWARE REALIZATION
VisSim is a Windows-based program for the modeling and simulation of complex nonlinear
dynamic systems [23]. VisSim combines an intuitive drag & drop block diagram interface with a
powerful simulation engine. The visual block diagram interface offers a direct method for
constructing, modifying and maintaining system models. The simulation engine provides fast
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and accurate solutions for linear, nonlinear, continuous time, discrete time, time varying and
hybrid system designs. In here, we build a aircraft dynamic model under VisSim software, and
realize the conventional PID controller by the same manner. Then, the intelligent controller
design using C language and its realization by DSP are presented.

Since the invention of the transistor and integrated circuit, digital signal processing functions
have been implemented on many hardware platforms ranging from special-purpose architectures
to general-purpose computers. It was not until all of the functionality (arithmetic, addressing,
control, I/O, data storage, control storage) could be realized on a single chip that DSP could
become an alternative to analog signal processing for the wide span of applications that we see
today. In this study, we use TI TMS320LF2407 chip to perform our task. The 2407A devices offer
the enhanced TMS320DSP architectural design of the C2xx core CPU for low-cost, low-power,
and high-performance processing capabilities. Moreover, it offers suitable array of memory sizes
and peripherals tailored to meet the specific performance points required by various applications.
The TMS320LF2407 operates at 40 MHz (40 MIPS), has 4 to16 PWM output channels and has
serial communication capabilities. In addition, the TMS320LF2407 contains a 10-bits analog-to-
digital converter (ADC) having a minimum conversion time of 500 ns that offers up to 16 channels
of analog input. Furthermore, the working process and externals of the eZdspTMLF2407A board
are shown in Figure 10 and Figure 11, respectively.

Figure 10:Working Process of the eZdspTMLF2407A board

Figure 11:Externals of the eZdspTMLF2407A board
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 There are three basic steps in the development of a DSP algorithm: (1). Create the system
you want to execute on the target DSP; (2). Generate the C source code from the system;
(3). Compile and link the C source code to produce an executable file. If step 1 performed using
available blocks form VisSim software, thus, steps 2 and 3 are automatically performed by VisSim.
The core of VS-ECD2407 is TI TMS320LF2407A, which is a 16 bits fixed-point DSP. While
designing the controller of an aircraft, it must consider the problem of the fixed point. Because
molds of VisSim are all floating-point operation, we must match VisSim/Fixed-Point software to
design molds of fixed-point flight controller. Figure 12 shows DSP development of the procedure
entirely, which is divided into the following steps.

Step 1: In VisSim major software, the fixed-point controller molds of an aircraft are designed
by VisSim/TI C2000 Rapid Prototype and VisSim/Fixed Point.

Step 2: CCStudio can make fixed-point controller molds to do compiling, analyzing, debugging,
and demonstrating, and generate *.c code and *.out code finally.

Step 3: Generate DSP controller molds which include *.out code, and replace original fixed-
point controller molds.

Step 4: Download *.out code to TI TMS320LF2407A embedded flash memory by JTAG.

Step 5: Utilize DSP controller to control automatic landing system and show real-time relevant
flight behavior.

Through above-mentioned DSP controller’s procedure of development, whole real-time DSP
hardware in-the-loop mode is shown in Figure 13. From VisSim development platform, it will
transmit information, altitude, altitude rate, altitude and altitude rate commands to the VS-
ECD2407 via connecting a JTAG between the computer and the VS-ECD2407. After DSP
processing, it passes the pitch command and adjusts the angle of elevator back to pitch autopilot
in VisSim via JTAG., and enable an aircraft to follow landing trajectory to land. The advantages
of DSP are fast operation, powerful instruction, fixed addressing ability at a high speed, parallel
process, etc. These can improve processing speed and accuracy greatly, such that it can be applied
to real-time control. In the simulation selection items of the VisSim, one can choose “Run in Real
Time”, and while designing fixed-point DSP controller, choose the exchange frequency of the
datum between DSP and PC properly, then real-time control can be performed.

6. SIMULATION RESULTS
The aircraft starts the initial states of the ALS as follows: the flight height is 500 ft, the horizontal
position before touching the ground is 9240 ft, the flight angle is -3 degrees, and the speed of the
aircraft is 234.7 ft/sec. Successful touchdown landing conditions are defined as follows:

(1) 3 1TDh� � � �� (ft/sec) (2) –300 � xTD(T) � 1000 (ft)

(3) 200 � VTD (T) � 270 (ft/sec) (4) –10 � �TD(T) � 5 (degrees)

where T is the time at touchdown, TDh� is vertical speed, xTD is the horizontal position, VTD is the
horizontal speed, and �TD is the pitch angle.

Figure 12:The Flow Chart of VisSim/DSP Procedure Development
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6.1. Conventional PID Controller
Table 1 shows the results from using different wind turbulence speeds. The conventional PID
controller with original control gains can only successfully guide an aircraft flying through wind
speeds of 0 ft/sec to 30 ft/sec [13]. If the wind speed is higher than 30 ft/sec, the ALS will be
unable to guide an aircraft to land safely. An aircraft is safe to land in the wind turbulence speed
at 30 ft/sec, as shown in Figure 14 to Figure 17.

Figure 13:DSP Hardware in-the-loop Mode

Figure 14:Turbulence Profile (30 ft/sec)
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Figure 15:Aircraft pitch (top) and Command (bottom)

Figure 16:Vertical Velocity (top) and Command

Figure 17:Aircraft Altitude (top) and Command

6.2. Different CMAC Controllers
The results from using CMAC controller are shown in Table 2. The type-2 FCMAC control scheme
can successfully guide the aircraft flying through wind speeds of 0 ft/sec to 100 ft/sec while the
type-1 FCMAC can only reach 90 ft/sec [22], as shown in Table 3. Table 4 shows the results from
using type-2 FCMAC. The situations at wind turbulence 100 ft/sec are that the pitch angle is
2.05 degrees, vertical speed is -2.21 ft/sec, horizontal velocity is 234.68 ft/sec, and horizontal
position at touchdown is 937 ft.
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Table 1
The Results from using Conventional PID Controller (Control Gains: K1 = 2.8,

K2 = 2.8, K3 = 11.5, K4 = 6.0)

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree)

0 797 -2.83 -1.41
10 910 -2.55 -0.85
20 809 -2.38 -0.59
30 844 -2.19 -0.17

Table 2
Results from using CMAC Controller

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree)

0 854 -2.55 -0.96
10 762 -2.76 -0.93
20 774 -2.51 -0.61
30 844 -2.72 -0.41
40 691 -1.93 0.21
50 586 -2.26 0.87
58 844 -2.58 0.98

Table 3
Results from using type-1 FCMAC Control

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree)

10 797 -2.83 -1.41

30 938 -1.54 -0.58

50 891 -2.13 0.47

70 691 -2.21 1.41

90 926 -1.99 1.34

Table 4
The Results from using type-2 FCMAC Control

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree)

20 855 -2.51 -0.58
40 726 -2.44 0.03
60 996 -2.00 0.50
80 890 -1.71 1.39
100 937 -2.21 2.05

Figure 18. Evolutionary learning process of the CMAC control scheme

Table 5
Fixed Number of Generations

Adewuya Arithmetical Average Convex Blend
crossover crossover crossover crossover crossover

CPU timesRGA/Total 2.04% 1.61% 1.51% 1.75% 1.62%

Error (%) 9.28% 9.04% 9.06% 9.00% 9.20%

Max intensity (ft/sec) 70 70 65 70 75
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6.3. Evolutionary Computation Based Controller
In evolutionary computation, regardless of binary-coded type or real-valued type, many improved
methods were proposed to make the evolution more perfect with better parameter search ability.
In this section, we put focus on crossover method of real-valued genetic algorithm. First of all,
the relevant initial parameters of the real-valued genetic algorithm are fixed, and evolution
procedures which are reproduction and mutation are all unanimous. The flow chart of a complete
evolution is shown in Figure 18. We utilize five crossover principles to search optimal control

Figure 18:Evolutionary Learning Process of the CMAC Control Scheme
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gains separately which an aircraft uses the CMAC controller under wind turbulence, and compare
differences between these methods. We fixed number of generation of evolution to calculate
execution time (CPU time) that each crossover method requires.

Table 5 and Table 6 show the comparison results of using different crossover methods. All
cases are tested by 10 independent runs. The results shown in Table 5 and Table 6 are averaged
values of these independent runs. We fixed the number of generation to 10 for comparing the
CPU time, as shown in Table 5. Table 6 shows the required number of generation until optimal
control gains are obtained. From Table 5, the CPU time of the average crossover is the least.
From the comparison of the error, which is the difference between altitude command and actual
altitude under wind turbulence speeds at 70 ft/sec, the least is the convex crossover. From Table
6, the Adewuya crossover can overcome the most intense of wind turbulence to 80 ft/sec, and
does not need more generations in convergence. In fact, the CPU time of these five crossover
methods are similar, and it only takes a little bit of portion out of total execution time.
Furthermore, execution speed of new developed computer increases continuously. The execution
time of the evolution is relative to the speed of CPU and the size of RAM. Therefore, the difference
lies in the parameters that are searched. Moreover, Table 5 and Table 6 show comparison results
of percentage of CPU time, which has slight difference. We carry out other application software
during searching optimal control gains. The result of sharing a part of calculation resources
causes differences. In addition, by the change within unit time, wind turbulence is violent than
wind shear. Searching optimal control gains under wind turbulence environment is more difficult,
and needs more generations. Since Adewuya crossover method has best performance than others,
it is used in FCMAC control scheme. Tables 7 and 8 show the results from using type-1 FCMAC
and type-2 FCMAC by Adewuya crossover method, respectively. Type-2 fuzzy CMAC with optimal
control gains can guide the aircraft overcome turbulence to 114 ft/sec, as shown in Figures 19 to 22.

Table 6
Required Number of Generations

Adewuya Arithmetical Average Convex Blend
crossover crossover crossover crossover crossover

CPU timesRGA / Total 1.84% 1.63% 1.61% 1.43% 1.94%
Error (%) 9.21% 9.27% 9.09% 9.10% 9.20%
Max intensity (ft/sec) 80 75 75 75 75
Required generations 23 18 35 31 25

Table 7
The Results from using type-1 FCMAC with Optimal Control Gains in TMS320C6713 DSP Board

(Optimal Control Gains: K1 =2.5409, K2=6.8029, K3=10.7398, K4=13.4932)

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree)

10 785.2276 -2.6398 -1.0054
20 738.2920 -2.5844  -0.6968
30 861.7598 -2.4173 -0.2652
40 693.1877 -2.1031 0.3418
50 814.1143 -2.5232 0.3842
60 820.4292 -1.8753 1.0607
70 798.7611 -1.9576 1.3403
80 738.2920 -1.6419 2.0949
90 961.2381 -1.5932 1.6522
100 849.5021 -1.4839 2.0451
105 736.9072 -1.6998 2.5472
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Table 8
The Results from using type-2 FCMAC with Optimal Control Gains in TMS320C6713 DSP board

(K1 = 2.0738; K2 = 2.0738; K3 = 8.4802; K4 = 14.8921)

Wind speed Landing point (ft) Aircraft vertical speed (ft/sec) Pitch angle (degree)

10 713.4394 -2.7149 -1.0181

20 658.6411 -2.5085  -0.5884

30 689.9717 -2.5961 -0.3657

40 796.1005 -2.6263 0.0399

50 867.3648 -1.7812 0.6581

60 926.0343 -1.6648 0.7523

70 937.7682 -1.5684 1.0462

80 738.2920 -2.1779 1.3978

90 722.0064 -2.7847 2.5582

100 867.3648 -1.6653 2.1311

110 703.6141 -2.5363 2.2396

114 838.8158 -1.8290 2.9149

7. CONCLUSIONS
The purpose of this paper is to investigate the use of evolution computation and DSP with CMACs
in aircraft automatic landing system. Current flight control law is adopted in the intelligent
controller design. The proposed controllers are implemented in a DSP. Tracking performance
and adaptive capability are demonstrated through hardware simulations. By using PID, CMAC,
type-1 FCMAC, and type-2 FCMAC, the wind speed of turbulence limits are 30, 58, 90, and 100
ft/sec, respectively. While the adaptive neural network controller and fuzzy neural nework
controller can overcome up to 75 ft/s [24-25], and the recurrent neural network controller can
overcome to 60ft/sec [26]. In this study, optimal control gains CMAC control scheme can reach 80
ft/sec, type-1 FCMAC can reach 105 ft/sec, and the type-2 FCMAC can reach 114 ft/sec. The
proposed controllers have better performance than previous works. The intelligent controller
can be used to replace the conventional controller. The proposed intelligent control scheme can
act as an experienced pilot and guide the aircraft to a safe landing in severe wind turbulence
environment.

Figure 19:Turbulence Profile (100 ft/sec)
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Figure 20:Aircraft Pitch (top) and Command (bottom)

Figure 21:Vertical Velocity (top) and Command

Figure 22:Aircraft Altitude (top) and Command
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