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ABSTRACT: In this paper, a genetic adaptive fuzzy-neural control scheme is proposed for a class of
multiple-input multiple-output (MIMO) nonlinear systems. The control scheme incorporates
backstepping design into the genetic algorithm with a backstepping-based fitness function. Using
the backstepping-based fitness function, the genetic algorithm can be used to adjust the parameters
of the fuzzy-neural networks in order to instantaneously generate the appropriate control strategy.
The genetic algorithm has a simplified procedure with the backstepping-based fitness function which
is used to evaluate the real-time stability of the closed-loop systems. To illustrate the feasibility and
applicability of the proposed method, simulation and experimental results are provided.
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1. INTRODUCTION
The design of fuzzy logic systems and/or neural networks for adaptive controllers [1-3] has been
widely developed because of the universal approximation feature [4-5], and the stability analysis
of the adaptive fuzzy logic and/or neural network controllers for nonlinear systems is generally
provided by Lyapunov stability theory. To search global optimal solutions, genetic algorithms [6-
23] have been incorporated into the design of fuzzy logic systems and/or neural networks
systematically because they are based on natural selection and natural genetics, and possess the
simple implement ability and the capability of escaping from local optima. Motor servo control
via genetic algorithms has been proposed in [9]. In [20-22], for the fuzzy-neural networks, the
learning process utilizes genetic algorithms rather than the conventional learning methods. In
[23], to reduce the computation loading, a reduced-form genetic algorithm has been proposed for
function approximation.

For the design of adaptive controllers of nonlinear systems, the complicated mathematical
form for fuzzy logic systems and/or neural networks [1-3], such as the update laws and the
Lyapunov condition for the system stability, must be solved. For this reason, it is difficult to
implement the control algorithms into real adaptive controllers. Moreover, the design of adaptive
controllers incorporated into genetic algorithms generally requires the procedure of off-line
learning [7-9] before they on-line control a plant. Thus, in this paper, to avoid solving complicated
mathematical equations, a genetic algorithm controller without the procedure of off-line learning
is developed for nonlinear systems, and the stability of the closed-loop system is guaranteed.
Also, to avoid the cancellation of useful nonlinearities in the design process for nonlinear systems,
adaptive backstepping control technique [24] is used. More specifically, we propose an adaptive
backstepping fuzzy-neural controller using the genetic algorithm with the backstepping-based
fitness function for a class of multiple-input multiple-output (MIMO) nonlinear systems. The
weighting factors of the adaptive fuzzy-neural controller are tuned on-line via the genetic
algorithm, instead of solving complicated mathematical equations. For the purpose of on-line
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tuning these parameters and evaluating the stability of the closed-loop system, the backstepping-
based fitness function is included in the genetic algorithm.

2. PROBLEM FORMULATION AND FUZZY-NEURAL NETWORKS
First, consider the MIMO nonlinear systems as
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where fp is the unknown system dynamics of the p-th subsystem, up is the input of the p-th

subsystem, bp is a positive constant, x = [x1, x2, ...xm]T is the state vector, and � 1 2[ , ,... ]
p

T
p p p pnx x xx

is the state vector of the p-th subsystem. Our control objective is to develop the backstepping
controller so that the state trajectory xp1 can asymptotically track a bounded command ypd.

Next, the detail design procedure of the backstepping controller under the assumption of the
known system dynamics fp is described as follows.

Step 1: Define a tracking error as

zp1 = xp1 – ypd (2)
Then, differentiating zp1 can be expressed as

� �� � �1 1p p pdz x y (3)
Define a virtual control as

� � ��1 1 1p pd p py c z (4)

where cp1 > 0 is a design parameter. From (3) and (4), if � � �1 1p px , then 
��

�1lim 0pt
z , that is, the

state trajectory xp1 can asymptotically track the bounded command ypd. Thus, define an error

state as � � � � � ��2 1 1 2 1p p p p pz x x . Then, our next goal is to force the error state zp2 to decay to
zero. By using (4) and the fact that � � �� 1 2 1p p px z , equation (3) can be rewritten as

� �� 1 2 1 1p p p pz z c z (5)
Step 2: Differentiating zp2 can be expressed as

� � � � � � �� �� � ��2 2 1 3 1 1( )p p p p p p pdz x x c z y (6)
Similarly, define a virtual control as

� � � � ����2 1 1 2 2 1p pd p p p p py c z c z z (7)
where cp2 > 0 is a design parameter. Moreover, define an error state as zp3 = xp3 – �p2. Then, by

using (7) and the fact that � � �� 2 3 2p p px z , equation (6) can be rewritten as

� � �� 2 3 2 2 1p p p p pz z c z z (8)

Step 3: Let k be a positive integer. Define an error state as �� � � ( 1)pk pk p kz x . Then,
differentiating zpk, where 3 � k � np – 1, can be expressed as
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�� � �� � � ( 1)pk pk p kz x (9)
Define a virtual control as
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where cpi > 0 is a design parameter. Moreover, define an error state as � �� � �( 1) ( 1)p k p k pkz x . Then,

by using (10) and the fact that �� � �� ( 1)pk p k pkx z , equation (9) can be rewritten as

� �� � �� ( 1) ( 1)pk p k pk pk p kz z c z z (11)

Step 4: Differentiating ppnz can be expressed as
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Define a control law as
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where � 0
ppnc  is a design parameter. Then, from (13), equation (12) can be rewritten as

�� � �� ( 1)p p p ppn pn pn p nz c z z (14)
Step 5: Consider the Lyapunov function as follows
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By differentiating (15) and using (5), (8), (11) and (14), we have
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From (15) and (16), we can conclude that zpi is bounded. Moreover, from (5), � 1pz is also bounded.
Integrating (16) can be expressed as
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1 10
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m

p p
p

c z d V V (17)

Because of the fact that the right side of (17) is bounded, we have zp1 � L2. According to the

Barbalat’s Lemma [25], 
��

�1lim 0pt
z , that is, the state trajectory xp1 can asymptotically track the

bounded command ypd.

On the basis of the aforementioned description, the backstepping controller of the nth order
nonlinear system can be summarized as the following lemma.
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Lemma: Consider the nth-order nonlinear systems (1). Let � �1 1p p pdz x y  and �� � � ( 1)pi pi p iz x

for � �2 pi n , where � � ��1 1 1p pd p py c z , and 
�
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1

( ) ( ) ( 1 )

1 1

k k
k k i k j

pk pd pi pi pj
i j

y c z z for � � �2 1pk n .

Suppose that the control law is given as 
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b , where cpi >

0. Then, the state trajectory xp1 can asymptotically track the bounded command ypd.

The fuzzy-neural network architecture in [2] is used in this paper. The fuzzy inference engine
uses the fuzzy IF-THEN rules to perform a mapping from an training input data xpq, p = 1, 2, ...,
m, q = 1, 2, ..., np, and the output data yp, p = 1, 2, ..., m, the ith fuzzy rule has the following form:
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THEN y is B and y is B
(18)

where i is a rule number, i
pqA  and i

pB  are the fuzzy sets. By using product inference, center-
average and singleton fuzzifier, the output of the fuzzy-neural networks can be expressed as:
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where � ( )i
sq

sqA
x is the membership function of i

sqA , N is the total number of the IF-THEN rules,

i
pw is the point at which � � 1� �i

i
pB

w , � �1 2[ ]N T
p p p pw w ww  is a weighting vector, � � � � ��1 2[ ]T N

is the fuzzy basis vector, where �i  is defined as
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3. DESCRIPTION OF GENETIC ALGORITHM
For the purpose of speeding up the computation of the genetic operation [23], the mechanism of
the genetic algorithm has three simplified parts: (1) keep a small population size, (2) replace the
string codes with real-value representation, and (3) perform compact mutation and crossover on
the chromosomes by the backstepping-based fitness function. The details are discussed in the
following.

First, for the adjustable parameters of the p-th output of the fuzzy-neural networks, define a
population of solutions with � chromosomes as
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where i
pw  denotes the ith chromosome and is a set of weighting factors in the interval

Dp = [–dp, dp], dp > 0. Each gene represents the adjustable parameter of the fuzzy-neural networks.
Note that the population is sorted by ranking the fitness of chromosomes, that is, the first
chromosome denotes the best chromosome in the population in terms of fitness.

Next, to instantaneously evaluate the stability of the closed-loop system, define the p-th
backstepping-based fitness function for the p-th subsystem as

� ˆ ( | )
pp pn p pF z f x w (22)

where ˆ ( | )p pf x w  is the estimation of the unknown dynamic fp(x|wp). A chromosome with largest

fitness denotes the optimal solution. The detail explanation of the backstepping-based fitness
function is given later.

Then, according to the backstepping-based fitness function, mutation and crossover operators
are performed. The operation procedure of the crossover operator is as follows. Only a single
gene is randomly chosen to perform the crossover operation. Suppose that the j-th gene is selected
as the crossover point. Then, the j-th gene of all chromosomes is updated as
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where the crossover factors �i p  and �i p  are the combination weights between the two crossover

chromosomes according to the backstepping-based fitness function, and they are defined as
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respectively.

As for the operation procedure of the mutation operator, the (��/ 2+1)-th chromosome is replaced
by the first chromosome according to mutation rate pm. Then, the (�� / 2+1)-th chromosome is
updated as
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and �, �, � � [0, 1] are random numbers, and ��> 0 is a design parameter.

4. DEVELOPMENT OF GENETIC ADAPTIVE FUZZY-NEURAL CONTROL SCHEME
Since fp are uncertain, the optimal control law (13) cannot be obtained. To solve this problem, the
fuzzy-neural system is used to approximate the uncertain continuous function fp. First, the
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uncertain continuous function fp in (13) is replaced by fuzzy-neural networks (19), i.e., ˆ ( | )p pf x w .

The resulting control law
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Suppose that up = upc. Then, substituting (28) in (1) and after some manipulations, we obtain
the error equation
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where � � �( ) ( )U
p pf fx x . By using the fact that the states must move in the direction of smaller

values of V if �� 0V , the p-th backstepping-based fitness function ˆ ( | )
ppn p pz f x w  in (22) for the p-

th subsystem is defined in order to instantaneously evaluate the stability of the closed-loop system.
A chromosome with the largest backstepping-based fitness function denotes the optimal solution.
So, a better chromosome can be obtained according to the backstepping-based fitness function
(22).

Since the system states may go into the unsafe region if the genetic operations can not
simultaneously generate the appropriate weightings of the fuzzy-neural networks in some time
interval, the concept of the safe controller is incorporated into the genetic adaptive backstepping
fuzzy-neural controller to guarantee that the system states are confined to the safe region. By
incorporating a safe control term ups into upc, the control law becomes

up = upc + ups (31)
The safe control term ups is added when the function V is greater than a positive limit Vu. If V

� Vu, then the safe control term ups is canceled. That is, if the system tends to enter the unsafe
region (V > Vu), then ups forces the system to return to the safe region.

Substituting (31) into (1), the error equation becomes

�� � � � �� ( 1)
ˆ( ) ( | )

p p p ppn p p p pn pn p n p psz f f c z z b ux x w (32)
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Using (31) and (32), we have
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Suppose that the safe control term ups[1] is given as
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where Vu is a design parameter and sgn(zpn) = 1(–1) if zpn � 0(<0). Suppose that V>Vu. Then,
substituting (34) into (33), we have
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From (35), the bounded stability of the closed-loop system for the nonlinear system in (1) can
be guaranteed.

5. SIMULATION EXAMPLES
Consider the following problem of balancing double inverted pendulums connected by a spring
[26]
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where xi1 is the angular position of the ith pendulum from the vertical reference, and ui is a
torque input. It is assumed that both xi1 and � 1ix  are available for measurement. The parameters
of the double inverted pendulums are chosen as m1 = 0.5 kg m2 = 0.5 kg, J1 = 0.5 kg and J2 = 0.5
kg, k = 2N � m/rad, and r = 1 m.

Our objective is to control the system state xp1 to track the reference trajectory ypd. The design
parameters of the genetic algorithm are given as � = 4, pm = 0.06, and ��= 4. The adjustable

parameters wi of 
11 12 21 22

ˆ ( , , , )if x x x x are in the intervals Di = [–1,1]. The reference signals are set as
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The initial states are set as x(0) = [0.5, 0, 0.3, 0]. The design parameters are selected as
c11 = 10, c12 = 10, c21 = 8, and c22 = 8. The simulation results are shown in Figs. 1-4. Figs. 1-4 show
that the system outputs x11 and x21 can track the reference signals y1d(t) and y2d(t) very well,
respectively.

Figure 1: The System Output y11(t) and Bounded
Reference y1d(t)

Figure 2: The System Output y21(t) and bounded
reference y2d(t)

Figure 3: The Control Inputs u1 and u2 Figure 4: The Tracking Errors  z11(t) and z21(t)

6. EXPERIMENTAL RESULTS
Consider the servo motor described as

� �
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�
�
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2

t

a t b

s K
V s s JLs JR BL s BR K K (37)

where R is the armature resistance, L is the armature inductance, � is the angular displacement
of the motor shaft, B is the friction constant, J is the armature moment of inertia of the motor,
and Kb is a voltage constant, Kt is a torque constant, and Va is the armature voltage. In general,
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the inductance L is small and may be neglected. If L is neglected, then the state space of transfer
function (37) can be expressed as

� �
� � � �
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�

0 1 0
( ) ( )

0 / /t b t

t t u
K K RB JR K JR
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where � � � ��1 2( ) [ ( ), ( )] [ ( ) ( )]T Tt x t x t t tx  and u = va. The proposed method controls the SANYO V511-

612EL8 DC servo motor with � 0.21Nm / AtK , R = 4.8�, � �0.21volts sec / radbK ,

� � -3 20.037 10 KgmJ  and � 0.013N-m-s/radB . The control objective is to force the speed x2 = w
of the servo motor to follow the reference speed wr.

The control system block diagram is shown in Fig. 5. The servo driver motor system is controlled
by PWM (Pulse-Width Modulation) method where switch-duty ratio d �[0, 1] is varied to adjust
the output of the Buck DC-DC converter. A proportional–integral–derivative (PID) controller in
inner loop is used to control the output voltage of the Buck DC-DC converter through the switch
duty ratio d, and then the proposed method in outer loop is used to control the speed of the servo
driver motor. The design parameters of the genetic algorithm are given as k = 4, pm = 0.06, and
��= 4. The control parameters are selected as c1 = 100, c2 = 100, Vu = 0.1. The PID gains are given
as Kp = 25, KI = 65, and KD = 75.

Figure 5: Block Diagram of the Motor System with DC-DC Converter

Traditionally, using two PID controllers in inner and outer loops controls the motor system
with the DC-DC converter, respectively. To verify the effectiveness of the proposed method, we
compare the proposed scheme with the conventional PID method.
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For a constant reference �r = 30rad/s and a source voltage vs = 10V, Figs. 6-9 show the
experimental results of the proposed method and the conventional PID method, respectively.
In both methods, the controlled system in Fig. 5 adds a shunt load resistance RL = 20� in
the output of the Buck DC-DC converter at 3-4 sec and 7-8 sec. It is shown that the
motor velocity tracks its reference well in Figs.6 and 8 even though the controlled system
has the load uncertainty. The mean square errors (MSE) of the tracking velocity error for
the proposed method and the conventional PID method are equal to 6.917×10–2 and
8.445×10–2, respectively. According to the accumulation of the tracking velocity error shown in
Figs. 7 and 9, the proposed method is quite satisfactory as compared with the conventional
PID method.

Figure 6: The System Output �(t) and Bounded Reference �r(t) using the Proposed Method

Figure 7: The Accumulation of the Tracking Error e = wr – w using the Proposed Method
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Figure 9: The Accumulation of the Tracking Error e = wr – w using Conventional PID Method

Figure 8: The System Output �(t) and bounded Reference �r(t) using Conventional PID Method

7. CONCLUSIONS
In this paper, a genetic adaptive fuzzy-neural control scheme has proposed for a class of MIMO
nonlinear systems. The weighting parameters of the fuzzy-neural controller can be successfully
tuned instantaneously via the genetic algorithm with a backstepping-based evaluation
mechanism, instead of solving complicated mathematical equations. Using the backstepping-
based evaluation mechanism can evaluate the real-time stability of the closed-loop systems in
order to generate the appropriate control strategy. The simulation and experiment results show
that the genetic adaptive backstepping fuzzy-neural control scheme performs on-line tracking
successfully.
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