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ABSTRACT: In this paper, a novel method is proposed to solve the complex mathematical model of
digital redesign of nonlinear systems which is regarded as difficult to approximate. The paper uses
the T-S fuzzy model and particle swarm optimization (PSO) to search for the range of digital-controller
parameters and to obtain the optimized digital controller using this algorithm. Due to the difficulty in
establishing the discrete model of the interval system and designing the digital controller of the interval
system, we have formulated the design problem into an optimization problem of a cost function. First,
we process the continuous-time nonlinear systems using the T-S fuzzy model, followed by designing a
continuous-time controller using individual rules. The next step is to express all possible linear systems
as interval systems and search for the range of digital-controller parameters using PSO to narrow
down the search range and conveniently search for the optimal solutions. According to the search
range of digital controller parameters, the PSO is used to search for the discrete-time controller based
on individual rules, so that the states of the discrete-time model based on the fuzzy model approximate
to those of the continuous-time nonlinear systems. Finally, one example is given to prove this method
is more accurate than the existing one with faster execution speed.

Keywords: intelligent digital resdesign, T-S fuzzy model, particle swarm optimization, nonlinear
system.

I. INTRODUCTION
This paper mainly focuses on the digital redesign of continuous-time nonlinear systems. Many
studies in recent years have emphasized on linear systems [1]-[14]. Tsai [1] et al. applied block-
pulse function to approximate digital redesign. Shieh [2] et al. applied Pade approximation and
inverse-Pade approximation on the digital redesign. Both [1] and [2] used mathematical
approximation to obtain the digital controller. Ieko [3] et al. presented a digital redesign method
for linear time-invariant continuous-time control systems of the one-degree-of-freedom type and
the state-feedback type. Shieh [4] et al. proposed a state-space self-tuning control using dual-
rate sampling and control digital linear time-varying systems. Shieh [5] et al. proposed the digital
redesign of a cascade analogue controller for continuous-time interval systems. Rafee [6] et al.
proposed an optimal digital redesign of the state-matching between the continuous-time and
discrete-time step responses. Chang [7] et al. applied the linear matrix inequalities (LMI) for the
digital redesign of time-varying linear systems. Lee [8] et al. applied digital redesign on an
observer-based feedback controller, treating digital redesign as the minimization of norm distance
and applying linear matrix inequalities (LMI) for solution. Lee [9] et al. applied Delta-Operator
in LMI based digital redesign. Wang [10] et al. used linear matrix inequality that treats the
sliding mode control of linear time-invariant systems for digital redesign. Kiml [11] et al. applied
the integral quadratic constraints to treat issues of digital redesign. Cardim [12] applied state-
derivative forward gain and feedback gain to control the digital redesign of helicopter vertical
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and landing systems. Lin [13] et al. applied evolutionary programming algorithms on the digital
redesign of model-reference-based decentralized adaptive tracker. Polyakov [14] et al. also
proposed a two-level optimization algorithm so that the poles fall within the specified area, in
order to reduce the order of the controllers.

Currently, few studies focus on the digital redesign of nonlinear systems [15]-[19]. Because
nonlinear systems do not satisfy superposition theorem like linear systems, they are more complex
than linear systems and difficult to analyze. Sung [15] et al. proposed the digital redesign using
fuzzy-model-based global approximation. This method applied linear matrix inequalities (LMI)
to minimize the norm distance between the states of continuous time systems and discrete time
systems. Joo [16] et al. proposed a fuzzy-model-based dual-rate sampling method to process the
digital redesign of chaotic systems. Lee [17] et al. applied a fuzzy observer-based output-feedback
control system to process digital redesign. Lee [18] et al. proposed the digital redesign of stabilized
linear model for nonlinear systems. This method applied bilinear and linear matrix inequalities
to determine the digital controller. Chang [19] et al. proposed the use of the T-S fuzzy model for
establishing nonlinear models, followed by finding the optimal digital controller using genetic
algorithm, to minimize errors between the states of continuous-time and discrete-time systems.
Although the approximation accuracy of that paper showed smaller errors in comparison with
the method proposed by Joo [16], there is, however, still room for further improvement in terms
of approximation accuracy. Furthermore, the computational complexities via the proposed GA
are higher. In an attempt to improve the approximation accuracy and computational efficiency,
the paper presents a new approximation method to be applied in the digital redesign of a fuzzy-
model-based controller. The method applies the continuous-time nonlinear system equivalent to
a continuous-time T-S fuzzy model and design continuous-time controller using individual rules.
Secondly, the method takes into consideration all possible linear systems and expresses them
into interval systems, followed by searching the range of digital controller parameters using
PSO, in order to narrow down the search range and to conveniently look for the optimal solution.
According to the search range of digital controller parameters, the PSO is used to search for the
discrete-time controller based on individual rules, so that the states of discrete-time model based
on the fuzzy model closely approximate those of the continuous-time nonlinear systems.

The origination of the paper is described as follows: Section II describes the problems to be
solved and introduces a continuous-time T-S fuzzy model and a discrete-time T-S fuzzy model.
The PSO-based digital redesign of continuous-time nonlinear system is discussed in Section III.
Then, in Section IV, an illustrated example is given to verify the proposed method. Finally, some
conclusions are drawn in Section V.

II. PRELIMINARIES
Because the majority of actual systems are nonlinear systems which are complex and difficult to
analyze, it is necessary to conduct analysis on nonlinear systems. We will discuss on continuous-
time and discrete-time T-S fuzzy models in the following.

(A) Continuous-Time T-S Fuzzy Models
Consider a nonlinear system as shown in (1),

� �� ( ) ( ( )) ( ( )) ( )c c c cx t f x t g x t u t (1)

where �� 1( ) n
cx t R  is the state vector, f(.) and g(.) are nonlinear functions, and �� 1( ) m

cu t R  is the
control input vector. The nonlinear system can be approximated by a continuous-time T-S fuzzy
model which is composed by multiple linear models and multiple fuzzy inference rules. We use
the following T-S fuzzy model to represent a complex nonlinear system:
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where (j=1,2,…,n)j

iM  is the jth premise variable of fuzzy sets in the ith fuzzy subspace,
S1(t),..., Sn(t) are the premise variables, Ai � Rn×n, Bi � Rn×m, and q is the number of fuzzy rules. A
singleton fuzzifier, product inference engine, followed by a center-average defuzzification is
adopted to transform (2) into the following equation:
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and ( ( ))i
k kM s t  is the membership grade of sk(t). A fuzzy-model-based controller is used as follows:
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1 1
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(4)

where Kci is the feedback gain in the ith fuzzy subspace. After applying some commonly used
defuzzification strategies, we obtain

uc(t) = –Kcxc(t) (5)
where

�

�

� �
�1

1

q
i ci

c q
i

j
j

w

w

KK

(B) Discrete-Time T-S Fuzzy Models
The discrete-time T-S fuzzy model is shown as follows:

� � � �
1 1

Plant Rule :

If ( ) is  and ... and ( ) is 
Then ( ) ( ) ( ),  1,  2,  ...,  .

i i
n n

d i d i d

i

s t M s t M
x kT T x kT u kT i qG H

(6)

where T is the sampling time, Gi = exp(Ai T), �� � �0 exp( )T
i i idH A B  and x1(kT), ..., xn(kT) are the

premise variables. Similarly, the dynamics of (6) can be represented as

� � �( ) ( ) ( )d d dx kT T x kT u kTG H (7)
where
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The corresponding fuzzy-model-based discrete-time controller is shown in (8):

� � �
1 1

Controller  Rule  :

If ( ) is  and ... and ( ) is 
Then ( ) ( ),  1,  2,  ...,  ,

i i
n n

d di d

i

s kT M s kT M
u kT x kT i qK

(8)

where Kdi is the feedback gain in the ith fuzzy subspace. The intelligent digital redesign fuzzy-
model-based controller is shown in (9).

� �( ) ( ),d d du kT x kTK (9)
where

�

�

� �
�1

1

q
i di

d q
i

j
j

w

w

KK

III. PSO-BASED DIGITAL REDESIGN OF CONTINUOUS-TIME NONLINEAR
SYSTEMS

(A) Problem Description
Considering the continuous-time system (1), the continuous-time controller (4), and the sampling
period, we design a descrete-time controller (8) to minimize the cost function as

�

� �

� �

� �

��

��

01

1 1

( ) ( )

( ) ( ) ,

f
n t

ci di
i

n N

f f fci di
i j

J x t x t dt

x jT x jT T
(10)

where xci(t) and xdi(t) are the ith state variables of the state vectors xc(t) and xd(t), respectively.
Tf = tf / N is the sampling time with a sufficiently large integer N. xci(jTf) and xdi(jTf) represent
the values of state vectors xc(t) and xd(t) at t = jTf, respectively. We can express the digital redesign
issue as the optimization problem in (11).

Find Kdi to minimize J (11)
where Kdi is the optimal solution determined by PSO algorithm.

(B) Particle Swarm Optimization
Particle Swarm Optimization (PSO) is a desired optimization technique inspired by the
observations of foraging behaviour of birds or fish proposed by Kennedy and Eberhart [20] in
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1995. Because of simplicity for implementation, smaller memory usage, distributed search, and
ability to quickly converge to a reasonably good solution, PSO is widely adopted in various
engineering applications [21]-[23].

The algorithm, which is based on a metaphor of social interaction, searches a space by adjusting
the trajectories of individual vectors, called “particles” as they are conceptualized as moving
points in multidimensional space. The individual particle in PSO flies in the search space with
velocity which is dynamically adjusted according to its own flying experience and its companions’
flying experience. The former was termed cognition-only model and the latter was termed social-
only model. By integrating these two types of knowledge, the particle behavior in a PSO can be
modeled by using the following equations:

� � � � � � �
� � � �

1

2

( 1) ( ) ( )
                ( )

i i i

i

V t w V t c rand Pbest x
c rand Gbest x (12)

� � � �( 1) ( ) ( 1)i i ix t x t V t (13)
where Vi(t) and xi(t) refer to the velocity and position of previous particle, Vi(t+1) and xi(t+1) refer
to the velocity and position of next-generation particles, rand � [0 1], constant weight w � [0.4
0.9], c1 and c2 refer to the learning factors with typical values of c1 = c2 = 2. If the position of that
particle goes beyond the search range, the particle must be re-initialized.

(C) PSO-Derived Optimal Digital Controller

We must first find out the search range of i
dK  before using PSO algorithm for intelligent digital

redesign. We adopted interval arithmetic to determine the search range of PSO-based intelligent
digital redesign.

Due to the different values generated under different states for matrices A, B, and Kc, we
take into consideration of all possible state values to find out the upper and lower boundaries of
matrices A, B, and Kc. We can express these matrices into interval matrices AI, BI, and I

cK . The
interval expression of (3) is shown in (14).

� �� ( ) ( ) ( )I I
c c cx t x t u tA B (14)

The closed-loop system is shown in (15).

� �� ( ) ( ) ( )I I I
c c cx t x tA B K (15)

where � �I I[ ,  ], [ , ]A A A B B B , and � [ ,  ]I
cccK K K . A, B, and Kc refer to the lower boundaries of

AI, BI, and I
cK , respectively. A , B , and cK refer to the upper boundaries of AI, BI, and I

cK ,

respectively. Each element of the upper and lower boundaries of AI, BI, and I
cK can be calculated

via (16).
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The state equation of sampled-data system from (14) is shown in (18).

� �� ( ) ( ) ( )I I
d d dx t x t u kTA B (18)

where ud(kT) refers to the piecewise function and satisfies ud(t) = uc(kT) for kT � t � kT + T. We
redesign the intelligent digital controller as

� �( ) ( )I
d d du kT x kTK (19)

Substituting (19) into (18), we have (20).

� �( ) ( ) ( )I I I
d d d dx t x t x kTA B K (20)

where nmI

d R ��K  is the digital control gain matrix. The discrete-time model of (15) and (20) are
shown in (21) and (22), respectivelly.

� � �( ) exp( )I I I
d cx kT T A B K (21)

� � �( ) ( ) ( )I I I
d d dx kT T x kTG H K (22)
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where GI = exp(AIT) and HI = (GI – In)AI–1 BI. We can find I
dK  through I

cK  so that the continuous-
time state vector xc(t) approximate to the discrete-time state vector xd(t). This method is known
as state compatibility digital redesign. From (21) and (22), we can obtain (23).

� � �exp( I I I I I I
c d)A B K G H K (23)

Then we apply the Pade method [2] to mathematically approximate � )exp( I I I
cA B K  and obtain

an equation as shown in (24).

� � � � � �

�
� �� � � �� �
� �
� �� � � � �� �
� �

11 1
2 2 6

6

I I I
d m c n

I I I
c n n

T
I ( ( ))

T
        

K K I P Q H

K G I P Q G I
(24)

where � � � ��
+I I I I I

c cP B K A B K  and �I I I
c=Q A B K .

We find the search range of I
dK  for PSO, as shown in (24), and rewrite (11) as (25).

Find Kdi to minimize J

Subject to � I
di dK K . (25)

We can use PSO to research a set of Kdi in order to minimize (25), and consequently
approximate the discrete-time states to the continuous-time states.

The key processes to design an optimal digital controller are described as follows:

(1) Obtain the continuous-time state vector xc.

(2) Choose a sampling time T to obtain Gi and Hi as shown in (6).

(3) Encode Kdi to become a particle, as shown in (26)

� �� � � � � � � � � �11 12 21 22 1 2         d d d d dn dn dnmK K K K K K KP (26)

(4) Obtain the discrete-time state vector xd.

(5) Calculate the cost function J from (10).

(6) Apply PSO to obtain a set of Kdi that minimizes J.

We can find a set of optimal solution for Kdi through the above design process so that the
discrete-time system can closely approximate the continuous-time system.

IV. SIMULATION RESULTS
In this section, we use the example of Chen’s chaotic attractor [19] to express the effectiveness of
the proposed method. The dynamic system of Chen’s chaotic attractor is shown in (27).

� � �
� � � �
� �

�

�

�

1 1 2

2 1 1 3 2

3 1 2 3

35 35
7 28

3

x x x
x x x x x
x x x x

(27)

The state trackers of Chen’s chaotic attractor at initial state are x1(0) = 1, x2(0) = 1, x3(0) = 1
as shown in Figure 1. To establish the T-S fuzzy model, we define the range of x1 between –30
and 30. We can transform (27) into the following T-S fuzzy model, as shown in (28).
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35 35 0
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0 30 3
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�� �
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� ��� �

2

35 35 0
7 28 30

0 30 3
A

Bi = I3, (i = 1, 2)

By using the proposed algorithm in Section III, the continuous-time T-S fuzzy model (28) can
be represented as follows:

� �� ( ) ( ) ( )I I
c c cx t x t u tA B (29)

where

� �
� �

�� �
� �� � �� �
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35 35 0
7 28 30 30

0 30 30 3

IA

Figure 1: The Phase Diagram of the Chen’s Chaotic Attractor with Initial States x1(0) = 1, x2(0) = 1, x3(0) = 1
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� �
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1 0 0
0 1 0
0 0 1

IB

The corresponding discrete-time system is shown in (30).

� � �( ) ( ) ( )I I
d d dx kT T x kT u kTG H (30)

where

�

� � �
1

exp( ), ( )I I I I I I
nTG A H G I A B
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� � � � � �

� � � �
� �� � � �� �
� �� � �� �

0.0798 0.0125 1.1723 2.736 1.6162 1.1568
0.5982 0.3754 1.2705 5.7941 4.0297 3.1016
0.3236 0.2094 4.0401 2.8518 0.4842 0.9819

IG
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� � � � � �

� � � �
� �� � � �� �
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0.0195 0.0206 0.0356 0.0566 0.0243 0.0242
0.0113 0.0071 0.0694 0.1422 0.07 0.0707
0.0048 0.0048 0.0697 0.0707 0.0245 0.0745

IH

The rule structure of the continuous-time T-S fuzzy model is shown in (31).
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1 1

Controller Rule :

If ( ) is ,

Then ( ) ( ), 1,  2,

i

i
c c c

i

x t M

u t x t qK
(31)

where

� �
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�

� � � �
� � � �
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1 2
20 35 0 20 35 0
7 43 30 7 43 30
0 30 12 0 30 12

,c cK K

In the next step, we will use (24) to find out the search range I
diK  of Kdi, as shown in (32).

� � �
� � �

� �
� ��
� �
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[ 31.644 7.9951] [ 53.2901 118.18171] [-99.4139 76.8313]
[ 36.1757 -1.9501] [ 9.4868 151.7798] [ 109.4525 75.3013]

[-7.3147 6.7761] [-79.1132 91.199] [-30.4794 76.695]

I
diK (32)

We can use (32) as the search range for PSO to find out the optimal set of Kdi that minimizes
the J in (10). Parameters of the PSO include: sampling time T = 0.05 sec., c1 = c2 = 2, w = 0.4, the
maximal iterations of 1000, and a population of 20 particles. We can find a set of Kdi, as shown in
(33).

� �� �
� �� �� �
� �� �� �

1

19.4922 42.9394 36.1631
8.3599 36.6113 18.1556
5.3463 54.1652 12.2281

dK (33)

�

� �� �
� �� �� �
� �� �� �

2

14.9083 114.3146 53.1769
11.6169 21.779 38.0012
5.3111 27.2025 4.5611

dK
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Then we can obtain a fuzzy-model-based discrete-time controller as shown in (34).

� � �
1 1

Controller  Rule :

If ( ) is 
Then ( ) ( ),  1,  2

i

c di d

i

x kT M
u kT x kT iK

(34)

Figs. 2-4 show the state responses with the initial conditions (x1(0), x2(0), x3(0)) = (1, 1, 1).

Figure 2: Response of the State x1 of the Chen’s Chaotic Attractor by the Proposed Method (Dashed Line) and the
Analogue Controller (Solid Line)

Figure 3: Response of the State x2 of the Chen’s Chaotic Attractor by the Proposed Method (Dashed Line) and the
Analogue Controller (Solid Line)
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In Table I, we compare the performance of the proposed method with the previous method
[19]. For sampling T = 0.05s, the error between the states of the original continuous-time and the
discrete-time systems by using the proposed method is 0.0039. Note that the cost function value
revealed in [19] is incorrect, which should be 0.004 after our re-evaluation. This result shows
that the error using the proposed PSO-based intelligent digital redesign method is still relatively
smaller than that presented in the previous paper [19].

Table I
Comparison of Cost Function Value

Digital redesign method J

Wook’s 1.4445 §

Proposed 0.0039

V. CONCLUSION
In this paper, we have presented a novel intelligent digital redesign method by using the T-S
fuzzy model for complex continuous-time systems. Instead of approximating the original
continuous-time system directly, the proposed T-S fuzzy model approximates a digital redesign
system. Moreover, the PSO algorithm with a simple structure is adopted to achieve a better
performance with a smaller error in comparison with the previous article. Therefore, the PSO
algorithm is applied to establish a more accurate discrete-time model to narrow down the search
range of the parameter matrix and to conveniently search for the optimal solution. Finally, we
have used an example to illustrate the feasibility and effectiveness of the proposed scheme for
designing an optimal digital controller.

Figure 4: Response of the State 3x  of the Chen’s Chaotic Attractor by the Proposed Method (Dashed Line) and the
Analogue Controller (Solid Line)
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