
International Journal of Computational Intelligence in Control, 1(1), 2009, pp. 7-14

Structural Reasoning: An Approach to the Evaluation of
System State Spaces

Andrei Lobov, Jose L. Martinez Lastra
Tampere University of Technology, Department of Production Engineering, P.O. Box 589 33101 Tampere Finland

Abstract: Formal validation of the industrial systems requires new ways to make this process more user-friendly. The central
question of the formal validation is “Did we build the right system?” However, answering of this question requires an
understanding of what is the “right system”. Instead, a “What we did?” question can be asked at the first place. Provided
a set of system attributes (e.g. I/Os), the user can investigate what are the relationships among selected attributes including
different possible scenarios. Therefore, following new analysis techniques the applicability of formal methods can be increased.
This paper describes a method to evaluate system state spaces called structural reasoning. The system state space or
reachability graph is considered as a finite structure that can be manipulated to provide more readable result. The structural
reasoner tool, which is also discussed in the paper, simplifies an analysis of the system. It can be seen as an addition to the
traditional methods such as a model-checking.

Keywords: Structural reasoning, Petri Nets, Data mining, Formal validation.

1. INTRODUCTION

Programmable Logic Controllers (PLCs) can be seen as
the main devices in implementation of deterministic control
at the factory floor. Industrial programmable systems are
developed and programmed by engineers using either
standard (e.g. IEC-61131) or vendor specific programming
languages. The latter often resemble the languages of the
mentioned standard–IEC-61131–which are ladder
diagrams, function block diagrams, instruction list and
structured text. A simplified process of system design can
involve narrative descriptions discussing the desired
behavior that should be coded by the engineer. Often the
next step after the narrative descriptions is the direct coding
of the behavior as it was understood by the engineer-
programmer.

In order to assist the engineer and to ascertain correct
system behavior, formal methods based on rigorous
mathematical constructs can be employed. The application
of formal methods however can be a high-skill demanding
process and can take considerable time share of the entire
project [1]. Traditionally formal validation of a system sets
a question: “Did we build the right system?” This question
contains one important aspect for the successful validation–
that is, the understanding what is the right system. Answering
such auxiliary question is not a trivial task. It is often the
case that due to problems in communication between the
customer ordering a system and the developer implementing
it, the understanding of right system is not fully attainable.
Furthermore, the customer as human being sometimes may
not fully understand what s/he needs. Taking into account
that as the time goes the understanding of the right system

may also alter–the problem of answering the traditional
question of the formal validation becomes even more
complicated.

This article discusses an approach for reasoning on
system correctness. It was developed based on well-known
Venn diagrams [4] and more specifically on Edwards-Venn
diagrams [2] introduced in 80s of the last century. The
diagrams serve here as a visualization tool. Having system
in hands, the developer can generate a system state space
(reachability graph) showing all possible states system can
reach. Traditionally, the state spaces can be investigated by
means of model-checking [13], where certain paths in state
space can be tested. In the method presented here, the state
space is considered as a large population of nodes where
each node has a unique set of attributes and in addition it
may share some attributes with other node(s). Based on the
structure of the state space and attributes distribution, a
statistical approach which authors called ‘structural
reasoning’ is applied to infer the properties of the whole
system. The structural reasoning in comparison to the
traditional methods allows to focus on the dependences
between the selected attributes rather than going relation-
by-relation among attributes. The latter case can be found
in model-checking: in order to check something in the state
space, the engineer need to envision that ‘something’ and
express it in the corresponding language. Therefore, each
time it is required to check a formula to hold in state
space it is required to envision it first. The structural
reasoning on the other hand can provide with hypotheses on
the relations themselves which can be found in the system
among the attributes. Therefore, the result of the structural

International Journal of Computational Intelligence in Control
Vol. 12 No. 2 (July-December, 2020)



8 International Journal of Computational Intelligence in Control

reasoning is a spectrum of possible relations among the
attributes. In other words the answer to the question “what
we did?”

The structural reasoning is demonstrated on a piece of
the equipment that can be found in pallet-based assembly
systems used in electronics production – a lifter. The article
is organized as follows: second chapter discusses Edwards-
Venn diagrams and Timed Net Condition/Event Systems
(TNCES)–Petri Nets-based formalism applied here for
system modeling. Third chapter describes the principles of
the structural reasoning. Fourth chapter discusses an
application of structural reasoning to the pallet lifter.
Conclusions are drawn in the fifth chapter.

2. EDWARDS-VENN DIAGRAMS AND TIMED NET
CONDITION/EVENT SYSTEMS

This chapter discusses the mathematical apparatus used for
systems modeling and analysis.

Edwards-Venn Diagrams

British philosopher and the logician, John Venn, has
introduced the Venn diagrams to represent the relationships
between multiple sets [4, 5]. Nowadays, the Venn diagrams
are one of the basic tools used in the schools to describe the
sets and relationships among those. An example of Venn
diagram is shown in Figure 1. Three sets or concepts are
introduced in  the diagram: robots, vehicles, and
manufacturing machinery. Different intersections of the
concepts can be used for classification of particular
equipments.

For instance, the intersection of the Vehicle and
Manufacturing Machinery concepts can be used to classify
different kinds of Automated Guided Vehicles (AGVs) used
at the factory floor and also involved in some basic
manufacturing processes. Furthermore, the intersection of
all three concepts may identify mobile robots applied in a
factory, etc.

Known more than for one century, Venn diagrams was
an important aid in the reasoning on rather simple problems
involving few factors or sets in the problem domain. One of
the reasons for this simplicity of the problems addressed by
Venn diagrams is the fact that their visualization is generally
limited by four sets. That is, only four sets can be drawn in
the Venn diagrams using a general approach where each set
is depicted as an ellipse. Until the last quarter of twentieth
century, a general solution for the problem of representing
Venn diagrams for arbitrary number of sets was unknown.
Finally, one possible solution named Edwards-Venn
diagrams was given in [2]. Later, [3] provides a state of the
art on graphical representation for (arbitrary) many sets
listing the main contributions and possible interpretations
of the diagrams.

The Edwards-Venn (EV) diagrams allow representing
arbitrary many sets and all possible combinations for those.
They overcome the limitations of Venn diagrams–the
maximum of four sets. An example of EV diagram for six
sets is shown in Figure 2.

The way to draw EV diagrams can be expressed as
follows. The first three sets can be represented as basic
shapes such as circle and rectangles. Although it does not
really matter for EV diagram which shape represents what
set, for the explanatory reasons lets assume that the circle is
the “first” set, the rectangle with the longer width than height
is a representation of the “second” set and, finally, the “third”
set is represented by the rectangle having its width smaller
than height. So far an EV diagram having just these three
sets has no difference compare to the traditional Venn
diagrams. The difference comes with the addition of the
fourth set. Starting from the fourth set the boundaries of Venn
areas in EV diagram are represented as closed curves
following an equation:

cos(2 ) / 2i iy r x r� � � � (1.)

Figure 1: Venn Diagram for Three Sets Figure 2: Edwards-Venn Diagram for Six Sets



Structural Reasoning: An Approach to the Evaluation of System State Spaces 9

where
• y–is the radius in the polar coordinate system;

• x–is the angle in the polar coordinate system;

• r–is the radius of the drawn Venn area;

• i–is the curve’s number to be drawn i � [1, N-2].
Therefore, the first curve represents the “fourth” set and
the last (N-2) curve stands for the “last” (N-th) set.

Once the curves are obtained, the polar coordinates
x and y are translated to the Cartesian coordinates applying
the following transformations:

| | cos( ) 0X y x X� � � (2.)

| | sin( ) 0Y y x Y� � � (3.)

where
• X–is the abscissa in the planar Cartesian space;
• Y–is the ordinate in the planar Cartesian space;
• X0, Y0–is the centre of the Venn area;

• x, y–are the polar coordinates according to the equation
(1).
This is a bit simplified scenario for the creation of EV

diagram. In the ideal case, the curves should be drawn on
the spherical surface, and then the stereographic projection
has to be applied to derive the diagram. The difference
between the “simplified” method presented here and the
“complete” one using the stereographic projection is that
the former converges faster to the circle (“first set”) as the
newly added sets oscillate around it. However, firstly, the
number of studied sets has to be large to pose the problem
for the diagram application as a visual aid, and secondly,
for the implementation in a computer allowing simple zoom
out/in functions along with configurable radius (‘r’)
parameter, the problem can be easily overcome. Thus, each
unique region of Edwards-Venn diagram can be identified
in a dedicated tool.

What information can be retrieved from the EV
diagrams? First of all, it should be noticed that the
neighboring regions in EV diagram differ by one concept
only. That is, if the diagram shown in Figure 2 classifies the
elements according to six given concepts, the elements of
the neighboring regions differ from each other by one
concept only. It corresponds to so called Gray code
(e.g. {000, 001, 011, 010, 110, 111, 101, 100} in a case of
three concepts). Furthermore, if the sine function is to be
used instead of cosine in equation (1.), the resulting diagram
corresponds to the natural order or the binary-counting order
for the concepts, i.e. {000, 001, 010, 011, …, 111} in a case
of three concepts.

How this information can be used in relation to the
validation of industrial systems behavior? The ordering of
the concepts or the attributes as they are called in the
Structural Reasoner tool may assist in classification of system
evolution principles. The Gray code may be seen as the
steady advancing system evolution through the selected

attributes, while the binary-ordering may assist in revealing
more complex patterns in system behavior.

Timed Net Condition/Event Systems

Net Condition/Event Systems were introduced in 1995 [14].
These are the Petri Nets derived formalism. Later the
formalism has been extended to express timing [15].
Figure 3 shows an example of Timed Net Condition/Event
Systems (TNCES) module.

TNCES is a typed formalism. That is, newly developed
modules get a unique type assigned that gives a possibility
for modules reuse in the models–there can be several
modules of the same type differentiated by the unique names.
Besides the places, transitions and flow arcs that can be found
in the ordinary Petri Nets (e.g. {p1, p2}, {t1, t2} and
{(p1, t2), (t2, p2), (p2, t1), (t1, p1)} in Figure 3), the TNCES
is also composed of a set of event arcs (e.g. {(turn_on, t1),
(turn_off, t2), (t2, turned_OFF)} in Figure 3); set of the
condition arcs (e.g. {(enabled, t1),  (p1, act_ON),
(p2, act_OFF)} in Figure 3). The modular representation of
TNCES allows clear definition of the interfaces by means
of event and condition I/Os. In Figure 3, the set of event
inputs is {turn_on, turn_off}; the set of condition inputs
{enabled}, the set of event outputs {turned_OFF}; and the
set of condition outputs {act_ON, act_OFF}. A timing
interval can be assigned to the flow arcs connecting places
and transitions. Once the marking of the place changes and
becomes greater than zero, the place clock is started. The
corresponding post-transition becomes enabled by time if
the lower bound of the timing interval (if defined) is reached
by the place clock. The transition should fire before the upper
bound of the timing interval is reached. Otherwise, the
transition becomes disabled. In the given example, (p1, t2)
flow arc has a timing interval assigned, meaning that the
token should reside at least for 10 time units at place p1 and
at most 30 time units–otherwise transition t2 becomes
disabled for good.

Due to condition and event arcs, the semantics of the
net is extended. Condition arcs originate from a place and

Figure 3: A TNCES Module



10 International Journal of Computational Intelligence in Control

lead to the transition(s). These carry the “state information”.
Having the place marked can cause the firing of the
transition(s) in another part of the net. Event arcs on the
other hand interconnect transition(s) to transition(s). These
signal a change in one part to another part of the net.

TNCES is used here to model industrial programmable
systems. The program developed in some industrial language
can be translated to the TNCES. The state space is then
constructed, where each state is a unique marking of the
TNCES modules. TNCES modules in the model of a system
represent different parts and aspects of the system, e.g. I/O
modules (similar to Figure 3), control logic, and controlled
processes [8]-[12]. The resulting state space can be supplied
for model-checking and used in structural reasoning.

3. STRUCTURAL REASONING

The structural reasoning was firstly introduced in [16]. Here,
its concepts are further elaborated and demonstrated on
industrial lifter example. Application of the one of the
traditional methods in formal validation such as model-
checking [13] allows to test complex scenarios if these hold
in the reachable state space (reachability graph) of the
system. A Computational Tree Logic (CTL) is one of the
languages allowing to express the test scenarios, which are
usually obtained from the narrative descriptions
(requirements) of the system. Therefore, an engineer at the
factory floor needs first to understand the requirements and
than express these in the given formal language. The CTL
formula representing some tested system scenario can take
a complex form as it exemplified in Figure 4.

The formula is given here for the illustrative purposes.
One should be familiar with the CTL syntax to interpret it.
But knowing the syntax is not enough. Additional
information is required to interpret such a formula: the
meaning for the markings of certain places (‘m(x) = n’) has
to be known as well. Such problems are common for any
situation where a higher-level or dedicated language has to
be used to translate some aspects from one domain to
another, so that the solution can be obtained in that ‘another’
domain and then the result is again “translated” back to the
source domain.

The structural reasoning can be applied to ease the tasks
of moving between the different domains. The Structural
Reasoner (SR) tool, a part of MOVIDA Framework,
implements this possible solution.

The idea behind the SR is to analyze the network of
nodes having some properties assigned to them. Using the
Venn or Edwards-Venn diagrams and the attributes graph
derived from those, one can analyze the behavior patterns
of the system and identify interrelationship between the

attributes. The SR operates with the network Net, which can
be defined as a tuple:

{ , , , }Net N C A� � (4.)

where,
• N is a finite set of the nodes;

• C � (N × N) is a finite set of the connections between
the nodes;

• A is a finite set of attributes; finally,

• �: A � N, is a map between the attributes and the nodes.

System state space S (a connected directed graph) can
be represented as follows:

{ , , , }S St Tr M� � (5.)

where,
• St is a finite set of states;

• Tr � (St × St) is a finite set of transitions;

• M is a finite set of TNCES markings;

• �: M � St is a function mapping one marking to each
state.

The SR tool can be used to analyze the state space as a
network. The analysis method is suitable not only for the
state space, although this is the main domain in the current
discussion. In general, the SR can be applied to any
phenomena that can be described similarly to the equations
(4.) and (5.). That is, some structure or network having its
nodes interconnected and some attributes assigned to the
nodes. The network should not be necessarily restricted to a
connected graph, as it is the case with the state space.

Further, the attributes graph can be generated for the
network. The attributes graph AG is defined as follows:

{ , , , }a a aAG N C A� � (6.)

where,
• N

a
 is the a finite set of attribute nodes labeled with the

number of nodes from N (4.) which they represent,

• C
a
 � (N

a
 × N

a
) is a finite set of the connections in the

attributes graph labeled with the number of possible
connections between N

a
 (based on C (4.));

• A is the same as in (4.);

• �
a
: A � N

a
, is a map between the attributes and the nodes

in the attributes graph.

The difference between equations (4.) and (6.) is that
the former represents the entire net (the state space), while
the latter is a compact representation of the network obtained
according to the selected attributes. In comparison to the
network Net representing the state space of the system, its
attributes graph AG may be unconnected.

What information attributes graph (AG) can provide
[16]?
• First of all it highlights all the possible scenarios in a

system involving selected attributes. The possible
scenarios are obtained as a result of the SR. In the case

E[EF(m(p300) = 1 and m(p205) = 1 and m(p521) = 1 and
m(p471) = 1) U AF(m(p300) = 1 and m(p204) = 1 and

m(p521) = 1 and m(p471) = 1)]

Figure 4: An example of CTL Formula



Structural Reasoning: An Approach to the Evaluation of System State Spaces 11

of model-checking and usage of CTL, each of the
possible scenarios has to be first envisioned by the
engineer to create the formula and validate it.

• Secondly, the attributes graph may have unconnected
nodes. Labeled with zero, those represent the situations
that can never occur in a system. Checking the same by
means of model-checking would require dedicated
formulae to be developed.

• Thirdly, the labels for AG nodes can provide information
on the number of nodes/states associated with the
property. In the context of the state space, it may reflect
the ‘balance’ between different states in the system.

• Fourthly, the number of outgoing connections may
provide the link to the ‘probability’ of going from the
states where one property holds to the states where
another property holds.

• Fifthly, the number of self-connections can be used to
analyze the connection degree for the states. If the
number of self-connections divided by the number of
the network nodes in the AG node is greater than 1, there
are several possible paths through the region of a state
space represented by the AG node.

The SR can be used in identification of the key attributes
of the system. The key attributes are the ones that provide a
full coverage of the state space. That is, the entire state space
can be expressed in terms of the given attributes. For
example, consider traffic lights with a simple control
changing the lights between the ‘red’, ‘yellow’ and ‘green’
colors. Besides the outputs of the controller that are
connected to the corresponding color section of the traffic
lights, the controller program may contains another variables
that all together make the condition for the light to change
from one to another. It would be natural to suppose that the
variables representing the lights will serve as the key
attributes of the program in relation to which all the rest of
variables are defined.

Finding the minimal set of the attributes can be an
important task in system analysis. Knowing the key
attributes, one can use these as a basis for studying the
behavior of other attributes of the system. The key attributes
should provide the full coverage of the state space.
That is, the entire state space can be expressed in terms of
key attributes (e.g. for the traffic lights the reasoning can
look as follows: the region of the state space, where the red
light is ON, is followed by the region with yellow light ON,
etc.)

The density (Dens
a
) of an attribute i (A

i
) in a given state

space (S) is defined as follows:

Dens
a
 = | A

i
| / |S| (7.)

where
• | A

i
|, is a number of states in the state space where the

given attribute holds;

• |S| is a size of the state space.

The key attributes all together make a density to be equal
to ‘1’:

Dens = ( |A
i
| + | A

k
| + … + | A

z
| ) / |S | = 1 (8.)

where i, k, …, z form a set of the key attributes. An example
of an attribute can be a variable – a sensor, or an actuator in
the control program. Also composite attributes can be
considered, for instance when certain combination of
variables holds at the same time. In terms of EV diagram
discussed before, such attributes are represented by different
regions of the diagram. The regions in EV diagram form the
necklaces [3]. That is, the regions representing different
number of intersecting sets (in our case–states sharing a
number of attributes) that radiate around the center of
diagram (forming a loop–necklace–around the center).
Figure 5 highlights different necklaces for the same diagram
shown in Figure 2. Starting with the black color (Figure 5),
six regions located outmost form the center of the diagram
are highlighted to represent the first necklace that may
contain ‘pure’ elements that belong to one and only one of
the given sets (contain only one preselected attribute). Then,
using white and black colors in turn, the following necklaces
are highlighted. The second necklace is represented with 15
regions (a number of unique ways to select two sets out of
six), etc. The last necklace contains only one region–an
intersection of all six sets (the states representing this region
must contain all the six attributes).

The necklaces can serve in analysis of system behavior.
They can show what is the maximum number of the attributes
required to fully cover the state space in search for key
attributes.

4. CASE STUDY: A LIFTER

The electronics production is one of the application domains
for pallet-based assembly systems. A pallet holding a product
or its components travels through the system and gets

Figure 5: Necklaces of Edwards-Venn Diagram



12 International Journal of Computational Intelligence in Control

assembled while visiting different manual or robotic
workstations. The conveyor systems transporting pallets may
contain two levels in order to allow pallets circulation in the
system. Figure 6 shows lifter equipment attached to the
mainline conveyor segment. The lifter can receive a pallet
at one level and transport it to another level of the conveyor
system. Having a line composed of the workstations and
mainline, one could add start and end lifters at the beginning
and at the end of the main line. The mainline should be a
two level conveyor. Therefore at the end lifter the pallet is
received at the upper level and transported to the lower level,
where the pallet is transported to the start lifter which raises
it to the upper level of the mainline. Such an installation
allows pallet circulation while particular workstations are
busy processing some other pallets. Therefore the blockages
are avoided since pallets do not have to wait for the station
to get free. Instead, the pallet can come to the same place at
the next cycle of the main line.

Figure 7 shows a blueprint of the start lifter. The lifter
receives a pallet at the lower level and transports it to the
upper level. The labels in the figure denote different sensors
and actuators. Each conveyor segment has a sensor
(B1/2/3) and a motor (M1/2/3). While receiving a pallet,
the motor runs to move the belt to load a pallet on the sensor.
The lifter is composed of three segments–lower terminal (that
receives a pallet), sledge (a conveyor segment that can also
be moved vertically between the terminals), and upper
terminal (used to unload the pallet to the mainline). Auxiliary
sensors and controls are used to select different modes of
the lifter (S1-S5) and to provide safety restrictions on the
vertical motion of the lifter (S7 and S8). The sensor B5
ensures that there is no any obstacle between the terminals
and the sledge, which serves as a condition for allowing the
vertical motion.

Using this information, a programmer takes a controller
device and writes a program to implement specified behavior.
This particular system was programmed using ladder logic

for OmronTM CPM1A PLC. Then the program was translated
to TNCES to be formally validated. An example for the CTL
formula for the lifter was given in Figure 4. This formula
expresses a scenario when the pallet is not fully loaded to
the sledge and the lifter starts vertical motion – which should
be forbidden. In order to develop such a formula the engineer
must first understand the requirements, envision such a
situation and not forget to test it. Traditional testing as well
as simulation have one drawback–they lack clear stopping
criteria. That is, it is impossible to say if there were enough
test runs to ascertain valid system behavior.

In structural reasoning the engineer selects the attributes
(sensors and actuators), which is easier for his/her
understanding, and tries to reveal interdependences among
these attributes. The system state space S (5.) for the lifter
contains 20007 states computed in MOVIDA Framework.

For system state space analysis, the data should be
selected first, namely the attributes to be investigated.
Figure 8 depicts the process of selecting attributes (a). Once
the attributes are selected, the structural reasoner tool can
be invoked. In the structural reasoner, one can select the
subset of attributes to study (Figure 8–b). The attributes can
be used to generate the EV diagram, to compute the attributes
graph and density function.

Figure 9 depicts the attributes graph (AG) obtained from
the 20007 states of the reachability graph of the system for
the selected attributes. There are 31 nodes in total in the AG.
Each node has a unique color  received from the
corresponding region of EV diagram which it represents.
The nodes contain the number labels representing the number
of states that belong to the corresponding EV region–share
the same set of attributes. Arcs interconnecting the nodes
having a perpendicular bar on them with a number label
represent an amount of possible connections between the
regions of the state space. In general, the numbers in the
nodes should sum up to the size of the state space (i.e. 20007)
and the connections to the number of connections between
the states in the state space. The AG can be seen as a compact
representation of the state space. At the fist glance to the
AG by moving the mouse cursor from node to node, it is
possible to observe from the appearing tooltips that it is

Figure 7: A Blueprint of a Lifter

Figure 6: Lifter Installation in the Assembly Line



Structural Reasoning: An Approach to the Evaluation of System State Spaces 13

Figure 8: Preparing Data for Structural Reasoning (a) and
Selecting the Attributes for Edwards-Venn Diagram
Generation

by observing the interplay of the motors and sensors of the
conveyor segments–starting at the lower terminal and coming
to the upper terminal sensor, which will be eventually
activated, and after that the pallet leaves the lifter. This can
be considered as a normal behavior. However, the AG gives
another important aspect to consider. While the system is in
the node labeled with ‘744’ (there is only one such node in
the AG), the system may go to deadlock node labeled with
‘5279’. As can be analyzed by checking the meaning of the
nodes (looking at what attributes are assigned to them), it
appears that there is such a scenario possible when the pallet
is stuck at the lower terminal. Usually such cases are hard
to envision and test. What is important for the given example
is that no any motors or actuators are activated once such
situation is met. In the factory floor, the operator needs to
intervene to correct this case. Such situation became possible
due to TNCES plant model interconnected with TNCES
controller model allows such a scenario. And as a result, it
can be validated by means of the structural reasoning on the
entire system state space.

Furthermore, one can indentify the key attributes while
generating the density function for the necklaces. Figure 10
shows the density distribution for the necklaces. Since there
are 12 attributes were selected, there are 13 (12 + 1 (Ø))
necklaces available. For example, 0.3 for the fourth necklace
grouping four attributes in the graph means that 30% of states
in the state space simultaneously contain 4 preselected
attributes. It is worth to check if the key attributes can be
found to simplify the analysis.  In terms of density
distribution, the function should be maximized by removing
some of attributes in order to check if these are already
covered by the necklaces of smaller order (farther from the
center). The search for the key attributes gives a result shown
in Figure 11. There are two attributes that can fully cover
the entire state space–these are directions of the sledge
conveyor (SledgeDir_ON and SledgeDir_OFF variables
(Figure 8)). Although such outcome was expected in this
case, the engineer using these key attributes may start
gradually adding other attributes to look how the system
behave. Eventually the graph shown in Figure 9 or its smaller
representation can be obtained in this process.

Figure 9: Attributes Graph (AG) for the Selected Attributes

possible for a pallet to travel through the lifter and be
unloaded from the upper terminal. This can be concluded

Density

P(4) density 0,3

1

0,5

P(0) P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10) P(11) P(12)

Figure 10: Density Distribution for the Selected Attributes

(a)

(b)



14 International Journal of Computational Intelligence in Control

5. CONCLUSIONS

A novel approach providing a solid view to the structure of
nodes having the attributes assigned to them (e.g. system
state space) and, therefore, simplifying the system analysis
was discussed in the article. The approach shifts the focus
of the formal validation from the attempts of answering “Did
we build the right system?” question to “What we did?”
question. It allows user to reveal all the scenarios for selected
attributes rather than using scenario-by-scenario approach.

In a future work, connections to the other theories
especially to the statistical methods have to be further
elaborated. In general, system state spaces can be treated
with some precautions as a large collection of data that can
be suitable for data mining where each state is seen as an
“individual” having some unique attributes in a large
“population” of states.

REFERENCES

[1] P. E. Ross, “The Exterminators”, IEEE Spectrum, 42,
(2005), 36-41.

[2] A. W. F. Edwards, “Venn Diagrams for Many Sets”, New
Scientist, 1646, (1989), 51-56.

[3] A. W. F. Edwards, “Cogwheels of the Mind: the Story of
Venn Diagrams”, The Johns Hopkins University Press,
2004.

[4] J. Venn, “On the Diagrammatic and Mechanical
Representation of Propositions and Reasonings”,
London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, 9, (1880).

[5] J. Venn, “Symbolic Logic”, London: Macmillan, (1881).

[6] G. Frey and L. Litz, “Formal Methods in PLC
Programming”, In Proc. of IEEE Conference on System
Man Cybernetics, (2000), 2431-2436.

[7] A. Lobov and J. L. Martinez Lastra, “Data Mining of
Systems State Spaces”, In Proc. of 2nd International
Conference on Changeable, Agile, Reconfigurable and
Virtual Production, July 2007.

[8] A. Lobov, C. Popescu and J. L. Martinez Lastra, “On
Reachable State Space Reduction for Formal Validation
of Scan-based Systems”, In Proc. of  4th IEEE
International Conference on Industrial Informatics,
August 2006, 79-84.

[9] A. Lobov, J. L. Martinez Lastra and R. Tuokko,
“Application of UML in Plant Modeling for Model-based
Verification: UML translation to TNCES”, In Proc. of
2nd IEEE International Conference on Industrial
Informatics, August 2005.

[10] A. Lobov, C. Popescu and Martinez Lastra, J. L., “An
Algorithm for Siemens STL representation in TNCES”,
In Proc. of 11th IEEE International Conference of
Emerging Technologies and Factory Automation, 641-
647, September 2006.

[11] A. Lobov, J. L. Martinez Lastra, R. Tuokko and V.
Vyatkin, “Modelling and Verification of PLC-based
Systems Programmed with Ladder Diagrams”, In Proc.
of 11th IFAC Symposium on Information Control
Problems in Manufacturing, April 2004.

[12] H.-M. Hanisch, A. Lobov, J. L. Martinez Lastra,
R. Tuokko and V. Vyatkin, “Formal Validation of
Intelligent-Automated Production Systems: Towards
Industrial Applications”, International Journal of
Manufacturing Technology and Management, 8(1-3),
75-106, 2006.

[13] E. M. Clarke, O. Grumberg and D. Peled, “Model
Checking”, MIT Press, 1999.

[14] M. Rausch and H.-M. Hanisch, “Net Condition/
event systems with multiple condition outputs,” In
Proc. of Symposium on Emerging Technologies and
Factory Automation, Paris, France, 1, 592-600, October
1995.

[15] H.-M. Hanisch, J. Thieme, A. Lüder, O. Wienhold,
“Modeling of PLC Behavior by Means of Timed Net
Condition/Event Systems”, In Proc. of 6th IEEE Conf.
on Emerging Technologies and Factory Automation
(ETFA’97), Los Angeles, (1997), 391-396.

[16] A. Lobov, J. L. Martinez Lastra, “Structural Reasoning
in Proving System Correctness”, In Proc. of IEEE 12th

International Conf. on Emerging Technologies and
Factory Automation (ETFA’ 2007), Patras, Greece,
(2007), 681-688.

Figure 11: Density Function for the Key Attributes

Density

1

0,5

P(0) P(1) P(2)

Necklaces


