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ABSTRACT: Suboptimal design of a model predictive controller is considered for a discrete-time
linear plant with the assumption that the controller is a piecewise polynomial defined on a given
partition of the state space. The motivation is that the optimal controller is a piecewise affine function
whose piecewise structure is irregular in general. Indeed, its computation requires a computational
geometric technique and is difficult to carry out when the plant is of high order and/or when the
piecewise structure is nearly degenerate. The proposed approach can avoid such geometric
computation with a regular partition and a positive polynomial technique. It is more flexible than
the existing suboptimal approaches with a regularly partitioned piecewise affine controller. It is
also direct in that it does not need the computation of the optimal controller and is carried out with
minimization of the distance to optimality. The asymptotic optimality of the proposed approach is
discussed together with the stability of the resulting closed-loop system.

Keywords: model predictive control, robust optimization, sum-of-squares technique, regiondividing
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1. INTRODUCTION

Model predictive control is one of the most
widely used control methods in practice [21].
Formerly, its use was limited to plants of slow
time response because it has to solve at each
sampling instant an optimization problem on
the behavior of the closed-loop system within
some finite horizon. Bemporad– Morari–Dua–
Pistikopoulos [2] broadened its scope by
proposing the offline computation of the optimal
solution as a function of the current state of the
plant. At the application of the controller, only
the evaluation of this function is required and
hence the controller can be used for fast plants.

In the following, our attention is focused on
the case of a discrete-time linear plant. In this
case, the optimal solution is a piecewise affine
function of the current state and the associated
piecewise structure is irregular in general. Its
computation requires a computational
geometric technique, which is complicated and
delicate especially in the case of a high-
dimensional space, that is, in the case of a high-

order plant in our context. Moreover, the
computation can be numerically unstable when
the partition is nearly degenerate. Note that
this is the issue not only in the offline
computation of this piecewise function but also
in its online evaluation because the subregion
containing a given state has to be identified
there.

Motivated by these facts, several authors
proposed approximation of the optimal
controller, which gives a suboptimal but simpler
controller. In particular, approximation with a
piecewise affine function defined on a given
regular partition has been actively investigated
[1, 3, 10, 11, 12, 13]. There, the partition is
chosen easy to handle even in the high-
dimensional space. A problem of this approach
is that such a piecewise affine controller does
not give a good enough approximation of the
optimal controller. Although the use of a fine
partition improves the approximation, it also
increases the computational cost. Moreover, the
distance to optimality is not easy to measure in
the existing works. In some works, e.g., [3], this
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measurement needs the computation of the
optimal controller, which requires problematic
geometric computation. In other works, e.g., [12,
13], the measurement becomes possible only
after a suboptimal controller is fixed.

In this paper, a design of a piecewise
polynomial model predictive controller is
considered for a given regular partition. Since
a polynomial is more flexible than an affine
function, it can give a better approximation. The
proposed approach is direct in the sense that it
does not require the computation of the optimal
controller and its design is performed by
minimization of the distance to optimality. The
first property means that geometric
computation is not necessary any more; the
second means that the distance to optimality
can be taken into account in the design process.
The proposed approach is asymptotically
optimal in the sense that the resulting
controller can be made arbitrarily close to the
optimal one by the use of a high-degree
polynomial or a fine partition. Finally, in the
proposed approach, slight change of the
formulation guarantees stability of the resulting
closed-loop system. An early version of this
paper has been presented at a conference [24].

A polynomial model predictive controller has
been considered by Kvasnica–Löfberg–Fikar
[16]. In their approach, the optimal controller
is computed first and then approximated with
a polynomial under the guarantee of closed-loop
stability. A positive polynomial technique plays
an important role there, which is the same in
the present approach. On the other hand, it is
different from the present approach that their
approach requires the computation of the
optimal controller and does not consider the
distance to optimality. Domahidi–Zeilinger–
Morari–Jones [8] proposed controller design
with a general nonlinear function basis
through minimization of the distance to
optimality. They however considered the
distance to optimality only at finitely many
points in the state space while we consider the
worst-case distance over the given domain. A
positive polynomial technique has been used
for other purposes in model predictive control.
Namely, it was used for control of a linear

parameter-varying plant [6] and for design of
a separator [15].

The rest of this paper is organized as follows.
Section 2 sets up the problem to be considered.
Section 3 gives the proposed approach. Section
4 is for the discussion on the approach and
Section 5 is for an example. Section 6 concludes
the paper.

The following notation is used. The symbols
O and I stand for the zero matrix and the
identity matrix, respectively, of appropriate
size. The symbol T expresses the transpose of a
matrix or a vector. For a vector u, the
inequalities u > 0 and u ≥ 0 express the
elementwise positivity and nonnegativity of u,
respectively. The inequalities u > v and u ≥ v
are equivalent to u – v >0 and u – v ≥ 0,
respectively. For a symmetric matrix Q, the
inequalities Q ! O and Q ! O stand for the
positive definiteness and the positive
semidefiniteness of Q, respectively. For a real
number a, the symbol  a  designates the
smallest integer larger than or equal to a.
Finally, for a minimization problem P, its
optimal value (if exists) is denoted by minP.

2. PROBLEM

Suppose that a plant to be controlled has the
dynamics

x(t + 1) = Ax(t) + Bu(t)

for t = 0, 1,... and the constraints

u(t) ∈  U0,    x(t) ∈  X0

for t = 0,1,..., where U0 and X0 are given convex
polytopes. The dimensions of the state x(t) and
the input u(t) are denoted by p and pu,
respectively. In the model predictive control, the
input u(t) at the time t is computed by the
following procedure. We first measure x(t) and
solve the following optimization problem
parametrized by x with substituting x := x(t):

Ox : minimize
1

0

1 1 1
( ) :

2 2 2

N
T T T

x k k k k N fxN
k

J u x Qx u Ru x Q
−

=

 = + +  ∑

subject to x
0
 = x,

xk+1 = Axk + Buk (k = 0,1,..., N–1),
uk ∈  U0  (k = 0, 1,..., N – 1)
xk ∈  X

0
  (k = 0, 1, ..., N – 1)
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xN ∈  Xf,

where the design variable is

( )0 1 1:
TT T T

Nu u u u −= L for a positive integer N. In

this problem, Q ! O, R ! O, and Qf ! O are
given symmetric matrices and Xf is a given
convex polytope. Then, the first pu elements of
the optimal solution u, i.e., u0, is the input u(t)
to be applied. In the following, we make a
natural assumption that U0, X0, and Xf contain
the origin in their interiors.

As in Bemporad et al. [2], the function Jx(u)
can be expressed without xk(k = 0,1,...,N) by the
repeated substitution of xk+1 = Axk+ Buk. Let us
write the resulting expression as

1 1
( )

2 2
T T T

xJ u u Hu x Fu x Yx= + +

with appropriate matrices H, F, and Y, where
H and Y are symmetric. By completing the
square, we can rewrite Jx(u) as (1/2)zTHz + (1/
2)xT (Y – FH–1FT)x with z := u + H–1FTx. Hence,
the minimization of Jx(u) is equivalent to that
of Vx(z) := (1/2)zTHz. We rewrite the constraints
of Ox in terms of z to have Gz≤ f(x), where the
right-hand side f(x) turns out to be affine in x.
Consequently, the problem to be solved is

1
: ( )

2
( ),

T
x xP m in im ize V z z Hz

subject to Gz f x

=

≤

whose design variable is z. The dimension of z
is written as n(= Npu) and that of f(x) as m(=
N(mu+mx)+m f), where mu, mx, and m f are the
numbers of inequalities necessary for the
description of U0, X0, and Xf, respectively. Due
to the assumptions on Ox, we have H ! O and
f(0) > 0. We also make an additional assumption
that the problem Px as well as the original
problem Ox is considered only for x ∈ X with X
being a closed convex polytope in Rp having the
origin in its interior. Moreover, we assume for
any x ∈ X the existence of z (which is dependent
on x) such that Gz < f(x). The latter assumption
is satisfied if the domain X is chosen small
enough, because of the assumption f(0) >0.

Bemporad et al. [2] showed that the optimal
solution of Pxis a piecewise affine function of

x ∈ X and considered its explicit computation.
Once such a function is obtained, its evaluation
for the measured state x(t) immediately gives
the control input u(t). Unfortunately, the
computation of this piecewise affine function
has the problem discussed in the introduction.
In order to circumvent the problem, we consider
to obtain a suboptimal solution of Px as a
piecewise polynomial in x defined on a given
partition of X.

3. PROPOSED APPROACH

In the proposed approach, we arbitrarily
partition the domain X into several convex
polytopes and design a polynomial controller for
each subpolytope. For simplicity, we first focus
on the special case that the partition consists
of only one subpolytope, i.e., the domain X itself.
The general case will be considered in Section
3.3; in fact, the same procedure is just repeated
for each subpolytope.

3.1. Reduction to a Robust Optimization
Prob lem

We consider to obtain a polynomial z(x) that
nearly optimizes Pxfor each x ∈ X. This problem
is in fact reduced to a robust optimization
problem. Let us fix x ∈ X for the moment.

The problem Px has a unique optimal
solution due to the strict convexity of the
objective function Vx(z) and the compactness of
its sublevel sets. A necessary and sufficient
condition for z ∈  Rn to be the optimal solution
is the existence of λ ∈  Rm such that

( ), 0, 0, [ ( ) ] 0T TGz f x Hz G f x Gz≤ λ ≥ + λ = λ − =

(e.g., [9, p. 340][5, p. 366]). This is the Karush–
Kuhn–Tucker condition for optimality and the
vector λ  is a Lagrange multiplier.

By solving the equality above as z = –H–1GTλ
and substituting it to the remaining
inequalities, we reach the problem

minimize c

subject to –GH–1GT λ  ≤ f(x),

λ ≤ 0,

λT[f(x) + GH–1GTλ] ≤ c,
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whose design variable is (λ, c) ∈  Rm × R. If some
(λ , c) attains the optimal value c = 0 (c cannot
be negative), the mentioned optimality
condition guarantees that the vector z = –H–1

GTλ  gives the optimal solution of the problem
Px. On the other hand, if some (λ ,c) attains a
suboptimal value c >0, the vector z = –H–1GTλ
gives a suboptimal solution of Px and its distance
to optimality is less than or equal to c. To see
the latter statement to hold, observe that, for
this λ  and any z satisfying Gz ≤ f(x),

Minimize both sides subject to Gz≤ f(x) to have

min Px ≥
( )

1
min [ ( ) ]

2
T T

Gz f x
z Hz f x Gz

≤

 − λ − 
 

≥

=
11

( ).
2

T T TGH G f x−− λ λ − λ

Multiply –1 to both sides and add (1/2)zT Hz
for z = –H–1 GTλ to have

1

1

1 1 1
min ( )

2 2 2

[ ( ) ]

.

T T T T T
x

T T

z Hz P z Hz GH G f x

f x GH G

c

−

−

− ≤ + λ λ + λ

= λ + λ
≤

(1)

Now, we allow x to move in X. The preceding
discussion motivates us to assume λ(x) to be a
polynomial of some fixed degree d and solve the
optimization problem:

T: minimize c

subject to 1 ( ) ( ) ( ),TGH G x f x x X−− λ ≤ ∈

( ) 0 ( ),x x Xλ ≥ ∈
1( ) [ ( ) ( )] ( )T Tx f x GH G x c x X−λ + λ ≤ ∈

with the coefficients of λ (x) and the scalar c
being the design variables. The problem T is a
robust optimization problem because the
constraints have to be satisfied for any x ∈ X.
Its solution has the following property.

Theorem 1. Let a polynomial λ (x) and a
scalar c be a feasible solution of the problem T.
Then, z(x) := –H–1GTλ(x) is a polynomial in x and
gives a feasible solution of the problem Px for
each x ∈ X. Moreover, the corresponding value
of the objective function (1/2)z(x)THz(x) differs
from the optimal value minPx at most c for each
x ∈ X.

Proof. The proof is almost clear from the
discussion so far.

The polynomiality of z(x) is obvious from its
definition. Since Gz(x) = –GH–1GT λ(x) ≤ f(x) for
each x ∈ X, this z(x) gives a feasible solution of
Px for each x ∈ X. Moreover, it satisfies the
inequality (1) for each x ∈ X, which implies the
last statement of the theorem.

This theorem implies that a feasible solution
λ(x) of T gives a feasible solution z(x) of Px and
further a suboptimal controller u

0
(x) = (Ipu

O)u(x) := (Ipu  O) [z(x) –H–1FTx]. The associated
c means the worst-case distance to optimality
over X. Therefore, c has to be made as small as
possible. Computation of such λ(x) and c will be
discussed in the next section.

This approach has the following advantages.
The resulting controller u

0
(x) is a polynomial

in x and can be closer to the optimal controller
than an affine interpolation considered in the
literature. Computation of the optimal
controller is not necessary and thus geometric
computation is not necessary either. A controller
design is performed through minimization of c,
which stands for the distance to optimality.

3.2. Solution of the Robust Optimization
Prob lem

In order to solve the robust optimization
problem T, we use the sum-of-squares
technique, which has made a remarkable
progress in this decade [7, 17, 19, 26, 27]. A
general treatment of this type of problems has
been presented in [18]. With the sum-of-squares
technique, a sufficient condition is obtained for
each constraint of T. Since these sufficient
conditions are independent of x, their use in T
instead of the original constraints gives a
solvable problem and its solution is a feasible
solution of T. Moreover, the sufficient conditions

184



Direct Design of a Suboptimal Model Predictive Controller with a Positive Polynomial Technique 87

can be made arbitrarily tight at the cost of
increasing complexity of the conditions.

Let us briefly see how a sufficient condition
is obtained for the second constraint λ(x) ≥ 0 (x
∈ X). Suppose that the domain X is expressed
as {x ∈  Rn | r

1
(x) ≥ 0, r

2
(x) ≥ 0, ..., r"(x) ≥ 0} with

scalar polynomials r
1
(x), r

2
(x), ...,r‘(x) whose

degrees are d
1
, d

2
, ..., d‘, respectively. Then, λ(x)

≥ 0 (x ∈ X) follows if the vector polynomial

1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )x s x r x s x r x s x r xλ − − − −L " " (2)

is nonnegative all over for some vector
polynomials s1(x), s2(x), ..., s‘(x) that are again
nonnegative all over Rp. We choose the degrees
of s1(x), s2(x), ...,s‘(x) as 2(D–[d1/2]), 2(D– [d2/2]),
..., 2(D – [d"/2]), respectively, with some positive
integer D larger than or equal to d/2, d1/2, d2/
2, ..., d‘/2, where d is the degree of λ(x). Then
the polynomial (2) has the degree 2D at most.
This polynomial is nonnegative all over if each
of its elements is expressed as the sum of
squares of polynomials and this sufficient
condition is expressed as positive
semidefiniteness of some matrix having the size

.
D p D p

p p

+ +   
×        Similarly, for each i = 1,

2,...,‘, nonnegativity of each element of si(x) is
expressed as positive semidefiniteness of a
matrix having the size

/ 2 / 2
.i iD d p D d p

p p

   − + − +      ×      

 Thus, we

obtain a sufficient condition for λ(x) ≥ 0 (x ∈ X)
in terms of positive semidefiniteness of
appropriate matrices. These matrices are
independent of x and are affine in the
coefficients of λ (x). Hence, the sufficient
condition is suitable to use in T in place of λ(x)
≥ 0 (x ∈ X). Moreover, the sufficient condition
can be made arbitrarily tight by the increase of
the positive integer D.

The same technique is applied to the first and
the third constraints of the problem T. In the case
of the third constraint, this is performed after
the constraint is equivalently rewritten as

( ) ( ) ( )
.

( )

T T

T

c x f x x G
O

G x H

 − λ λ
 λ 

f

Replacing the constraints of T by the
obtained sufficient conditions, we have a
semidefinite programming problem, which is
solvable with the standard interior-point
method. The required manipulations can be
easily performed with a software such as
YALMIP [20].

The matrices in the sufficient conditions
have the sizes exponential in D and p. Hence
the positive integer D cannot be chosen large.
This also means that the degree d of λ(x) cannot
be large.

3.3. Partition of the Domain

In the case that the domain X is partitioned into
several convex polytopes, the procedure
discussed so far is applied to each subpolytope.
It is notable that the problem T can be solved
independently for each subpolytope. Hence, the
computational cost depends only linearly on the
number of subpolytopes.

Blind refinement of the partition of X
increases the number of subpolytopes rapidly
especially when the dimension p is large. In
order to avoid it, the technique of adaptive
partition is often useful. Namely, we start with
a coarse partition, solve the problem T for each
subpolytope, find the subpolytope having the
largest (i.e., worst) optimal value, and then
partition that subpolytope. Repeating this
procedure, we can improve the controller with
suppressing the rapid increase of the number
of subpolytopes. This technique has been used
in a more general context of robust optimization
[22, 23].

4. DISCUSSION

4.1. Asymptotic Optimality

In general, a Lagrange multiplier may not be
unique; it may not be continuous to the
perturbation of the problem. Hence, it is not
obvious in the problem T whether the objective
function c can be made small enough with a
piecewise polynomial λ(x).

This question can be answered
affirmatively. Arbitrarily good approximation
is possible by increasing the degree of the

185



88 Yasuaki Oishi

polynomial or the resolution of the partition.
This is because, for any positive c, there exists

a continuous function ˆ ( )xλ  that satisfies the

constraints of T with the strict inequalities. This
continuous λb(x) can be approximated
arbitrarily well with a piecewise polynomial,
which implies the preceding claim.

Theorem 2. For any positive number c, there

exists a function ˆ ( )xλ that is continuous in X and

satisfies

1 ˆ ( ) ( )TGH G x f x−− λ < (x ∈  X),

ˆ ( ) 0xλ > (x ∈  X),

(x ∈  X).

Proof. For the proof of the theorem, we
introduce the following unconstrained
optimization problem parametrized by x ∈ X
and t > 0:

where [f(x) – Gz]i stands for the ith element of
the vector f(x) – Gz. This problem often appears
in the context of the interior-point method (e.g.,
[4, Section 6.4]). The objective function takes a
finite value for some z due to the assumed strict
feasibility of Px. Moreover, it is strictly convex
and has a compact sublevel set, which implies
that the problem Px,t has the unique optimal

solution denoted by ˆ( , ).z x t  At  the
objective function has to have the zero gradient,
that is,

with GT = (g1  g2 ⋅⋅⋅ gm). Hence, defining

1 2
ˆ ˆ ˆ ˆ( , ) ( ( , ) ( , ) ( , ))T

mx t x t x t x tλ = λ λ λL  with

ˆ ( , ):
ˆ[ ( ) ( , )]i

i

t
x t

f x Gz x t
λ =

−

for  i = 1, 2, ..., m, we are to have

ˆ ˆˆ ˆ( , ) ( ), ( , ) 0, ( , ) ( , ) 0,TGz x t f x x t Hz x t G x t< λ > + λ =

We will show that ˆ ˆ( ): ( , / 2 )x x c mλ = λ  is the

desired function. Indeed, it satisfies all the
requiredinequalities by definition. The only
thing necessary to show is its continuity in X.
Let us consider the equalities to be satisfied by

ˆ( , )z x t  and  i.e., ˆˆ 0THz G+ λ =  and

 (i = 1, 2, ..., m) which are

n+m equalities with respect to the n-
dimensional vector  and the m-dimensional

vector . The Jacobian of the left-hand sides is

with Λ̂ being the m×m diagonal matrix whose
diagonal elements are the m elements of the
vector . This Jacobian is nonsingular for t >0
and > 0. Hence, the implicit function theorem

implies thedesired continuity of  and

 for x∈ X and t > 0. The proof is complete.

4.2. Stabil ity

In the model predictive control, the closed-loop
stability is not obvious and has been a big issue.
In the case of the optimal model predictive
controller, if the matrix Q

f 
and the polytope

X
f
are appropriately chosen, the optimal value

of Ox, i.e., minOx, becomes a Lyapunov function
and assures the stability of the closed-loop
system [21]. In the case of a suboptimal
controller, several results are available [1, 3, 10,
11, 12, 13].

We here discuss stability of our suboptimal
controller with the condition used by Jones–
Morari [13]. In particular, if a suboptimal
solution u(x) = (u

0
(x) u

1
(x) ⋅⋅⋅ uN–1

(x))T of the
problem Ox satisfies

0 0

1 1
( ( )) min ( ) ( )

2 2
T T

x xJ u x O x Qx u x Ru x− ≤ +

for any x ∈  X, the controller u0(x) asymptotically
stabilizes the plant. It is possible to rephrase
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Direct Design of a Suboptimal Model Predictive Controller with a Positive Polynomial Technique 89

this condition in terms of Px by noting the
relation z(x) = u(x) + H–1FTx and Vx(z(x)) =
Jx(u(x)) –(1/2)xT(Y –FH–1FT)x. Indeed, the
stabilityis guaranteed if a suboptimal solution
z(x) of Px satisfies

0 0

1 1
( ( )) min ( ) ( )

2 2
T T

x xV z x P x Qx u x Ru x− ≤ + (3)

for any x ∈ X, where 1
0 ( ) ( )[ ( ) ].

u

T
pu x I O z x H F x−= −

This motivates us to consider the following
variation of the problem T:

T: minimize c

subject 1 ( ) ( ) ( ),TGH G x f x x X−− λ ≤ ∈

( ) 0 ( ),x x Xλ ≥ ∈

1( ) [ ( ) ( )]T Tx f x GH G x−λ + λ ≤

1[ ( ) ]
2 2

upT T T
Ic c

x Qx x G x F H R
O

−  
+ λ + ×  

( ) 1[ ( ) ] ( ).
u

T T
pI O H G x F x x X− λ + ∈

Again, λ(x) is a polynomial of some fixed degree
d. This problem has the following property.

Theorem 3. Suppose that a polynomial λ (x)
and a scalar c are feasible in the problem T0

and satisfy c ≤ 1. Then, the controller u0(x)
defined by u0(x) = (IpuO)[z(x) –H–1FTx] and
z(x) = –H–1GTλ (x) asymptotically stabilizes the
plant .

Proof. As was shown in Subsection 3.1, the
left-hand side of the third constraint of T0 is
larger than or equal to Vx(z(x))–min Px. On the
other hand, the right-hand side is equal to c[(1/
2)xT Qx+ (1/2)u0(x)TRu0(x)] for u0(x) defined in
the theorem. Since c ≤ 1, the condition (3) is
satisfied for any x ∈ X, which implies the desired
stability.

The problem T0 is a robust optimization
problem. Although its third constraint looks
more complicated than the counterpart in T, it
can be equivalently restated by a matrix
inequality affine in λ (x). Hence, an approach
similar to T is possible and a feasible solution
(λ (x),c) can be found with the sum-of-squares
technique.

5. EXAMPLE

The approach in Section 3 was applied to a plant

0.7326 0.0861 0.0609
( 1) ( ) ( )

0.1722 0.9909 0.0064
x t x t u t

−   
+ = +      

under the input constraint –2 ≤ u(t) ≤ 2. This
example was taken from Bemporad et al. [2].
For the model predictive control of this plant,
the weight matrices were chosen as Q = I and
R = 0.01 and the terminal weight Qf was set to
the matrix such that Qf –ATQf A = Q. The length
of the horizon was chosen as N = 2 and the
domain X was set to [–1, 1]2. The semidefinite
programming problems were solved with the
solver SeDuMi [28] and the modeling language
YALMIP [20]. The used computer was equipped
with Intel Core 2 Duo P8800 (2.66 GHz and 2.67
GHz) and memory of 4 GB.

First, the domain X was not partitioned and
our approach was applied with λ(x) of various
degree. The result is summarized in Table 1. It
is seen that the attained optimal value of T,
which means the distance to optimality,
decreases as the degree of λ(x) increases. This
is consistent with the discussion in Subsection
4.1. On the other hand, the computational time
increases rapidly.

Next, the degree of λ(x) was fixed to six and
the domain X was partitioned into subpolytopes.
The result is found in Table 2. Here, in the
second row, the partition consists of two
subpolytopes [–1, 0] × [–1, 1] and [0, 1] × [–1,
1]; in the third row, the partition consists of four
subpolytopes [–1, 0]2, [–1, 0]×[0, 1], [0, 1]×[–1,
0], and [0, 1]2. Although the increase of the
computational time is not as rapid as in Table
1, the distance to optimality reaches a small
value in the third row of the table. The
controller u

0
(x) in this case is presented in

Figure 1 (a). It is close to the optimal controller
in Figure 1 (b), which is computed with the
Multi-Parametric Toolbox [14] and is a
piecewise affine function defined on nine
irregular subpolytopes.

When the two controllers in Figure 1 were
applied to the plant, they produced the state
trajectories in Figure 2 for three initial states
(0.9 0.7)T, (0.9 0.2)T, and (0.9 –0.3)T. The
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6. CONCLUSION

In this paper, a design of a suboptimal model
predictive controller is considered with a
regularly partitioned piecewise polynomial.
This approach can make the distance to
optimality smaller than the existing approaches
with a regularly partitioned piecewise affine
function. It does not need the computation of
the optimal controller and thus does not need
geometric computation. Moreover, it is
performed by direct minimization of the
distance to optimality. The approach is
asymptotically optimal in the sense that the
distance to optimality can be made arbitrarily
small by the use of a high-degree polynomial or
a fine partition. It is also possible to guarantee
the stability of the resulting closed-loop system.

It has to be admitted that the computational
time in Section 5 is rather large for the simple
control problem considered there. In fact, it is

Table 1
Design of Suboptimal Controllers in the Case that

the Polynomial Degree is Changed and the
Partition is Fixed

poly. deg. # ofsubpoly. attained opt. val. comp. time

6 1 8.890 16 .3s

8 1 1.604 103.0s

10 1 0.402 459.4s

Table 2
Design of Suboptimal Controllers in the

Case that the Polynomial Degree is
Fixed and the Partition is Changed

poly. deg. # ofsubpoly. attained opt. val. comp. time

6 1 8.890 16 .3s

6 2 0.225 34 .9s

6 4 0.029 66 .7s

Figure 1: Model predictive controllers as functions of the current state.(a) A suboptimal controller, which is a
piecewise sixth-degree polynomial on a regular partition consisting of four subpolytopes; (b) The optimal
controller, which is a piecewise affine function on an irregular partition consisting of nine subpolytopes.

Figure 2: The state trajectories produced by the
suboptimal controller in Figure 1 (a) (marked
by “o”) and the optimal controller in Figure 1
(b) (marked by “x”). Three initial states are
tried, i.e., (0.9 0.7)T, (0.9 0.2)T, and (0.9 –0.3)T.

trajectories of the two controllers are reasonably
close to each other.
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possible to reduce the computational time by a
slight change of the problem formulation.
Details can be found in [25].
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