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Abstract: Researchers have observed that multistage clustering can accelerate convergence and improve clustering quality.
A two-stage and two-phase fuzzy C-means (FCM) algorithms have been reported. A pyramid multistage approach, however,
has not been applied to FCM. This paper describes pyramid FCM clustering, where in the first stage the FCM uses an
arbitrary partition matrix applied to a low resolution input sample. Next, the resultant partition matrix is used to seed the
following, higher resolution stage where the sample size is doubled. The process of seeding higher resolution FCM using
the results of lower resolution FCM, continues until the entire data is clustered. The utility and validity of the traditional
FCM, two-stage FCM, two-phase FCM, and pyramid FCM are tested through fuzzy clustering of synthetic data and natural
color images. The pyramid FCM outperforms the two-stage and two-phase multistage variants and obtains a speedup of
~3X, while maintaining the same or slightly better clustering quality than the traditional FCM. The two-stage and two-
phase multistage variants achieve a speedup of about 2X with slight degradation in performance. Furthermore, all the
multistage variants can be used to identify several local optimum solutions at the same time the traditional C-means identifies
one solution.
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1. INTRODUCTION

Numerous clustering, optimization, and classification
algorithms, apply a training-phase where the system adjusts
parameters using a subset of the data, referred to as the
training-set. Examples of such algorithms include K-means,
fuzzy C-means (FCM), ISODATA, Kohonen Neural
networks, and simulated annealing [12, 16, 27, 33, 44]. 
Researchers observed that a multistage based training-
procedure can accelerate convergence and improve the
quality of the training as well as the quality of the
classification/decision phases of many of these algorithms
[2, 22, 26, 38]. Research reports show that the pyramid K-
means clustering algorithm and multi-resolution Kohonen
neural networks yield two-to-four times convergence
speedup [41, 42].

The FCM algorithm provides a soft (fuzzy) assignment
of patterns to clusters. The assignment is represented by a
partition matrix. The algorithm starts with an initial partition
matrix and attempts to improve the partition according to a
given quality criterion. Seeding the FCM is done by selecting
an initial partition matrix. Alternatively and equivalently the
seeding can be accomplished by selecting initial cluster
centers. Improvements to FCM due to a two-stage approach
are reported in [2]. A two-phase framework where the first
phase includes linear multistage sampling with no
replacement has been reported in [10]. There are no reports,
however, on the performance of pyramid FCM which is
another form of multistage FCM.

In multistage FCM, clustering of low resolution data-
samples is used to seed FCM with a higher resolution sample.
The objective of this procedure is to reduce the
computational cost and improve the quality of the clustering
process. The two-stage algorithm reported in [2] starts with
a low resolution data-sample, and clusters this data. The
initial partition matrix for this stage is chosen through
commonly used methods reported in the literature [6, 25].
The clustering performed in the low resolution stage is used
to seed FCM with the entire training-data. The two-phase
approach of [10] refines the two-stage algorithm. The first
phase applies several stages where data is accumulated in a
linear fashion through sampling with no replacement. As data
is accumulated, the results of clustering are refined. The first
phase terminates after clustering a portion of the entire data.
The second phase uses the results of the first phase to cluster
the entire data.

The pyramid multistage FCM is a refinement of the two-
stage and the two-phase approaches; which accumulates
training-data exponentially. The proposed method involves
a number of stages. The first stage starts with a low resolution
sample. For each successive stage, the data-set is re-sampled
with replacement with twice the resolution of the previous
stage. The final partition matrix obtained in stage  is used
as the initial partition matrix for stage I + 1. The process is
repeated until the sample set is equal to the original data-
set.
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This paper describes the pyramid multistage FCM
procedure and provides an extensive comparative study
comparing the pyramid FCM to the two-stage/two-phase
FCM. The FCM algorithm and the multistage variants are
tested through clustering of a set of synthetic data and
quantization of natural color images. The validity of clustering
is assessed using a Binomial Monte Carlo analysis [24]. In
the average case, the FCM obtains a speedup of 3X over the
traditional FCM, while maintaining the same or a slightly
better quantization quality. On the other hand, the comparison
study shows that the pyramid FCM outperforms the two-stage
and the two-phase FCM variants which achieve a speedup of
about 2X with slight quality degradation. Moreover, the two-
stage, two-phase, and the pyramid FCM variants can be used
to identify several local optimum solutions at the same time
the traditional FCM identifies one solution.

The rest of the paper is organized in the following way.
Section 2 reviews related research and presents two
multistage FCM algorithm variants the two-stage and the
two-phase. Section 3 introduces the theoretical background
of the FCM algorithm, lists metrics used to assess the quality
of clustering, and provides the details of the traditional, and
pyramid implementations of the algorithm. Section 4
describes a set of experiments conducted to assess the
performance and validity of FCM, two-stage, two-phase, and
pyramid FCM. Finally, section 5 includes conclusions and
proposals for further research.

2. REVIEW OF RELATED RESEARCH

2.1. Iterative Optimization Clustering Techniques

Clustering is a widely-used data classification method
applied in numerous research fields including image
segmentation, vector quantization, data mining, and data
compression [11, 13, 30, 32, 40, 45]. K-means is one of the
most commonly used clustering algorithms, and the LBG
vector quantization (VQ) algorithm with unknown
probability distribution of the sources, which is a variant of
K-means, is utilized in many applications [30, 33]. The LBG
algorithm has been intensively researched. Some of these
research results which are relevant to K-means and fuzzy
C-means are reviewed next.

Lloyd proposes an iterative optimization method for
quantizer design; which assumes that the distribution of the
data is unknown and attempts to identify the optimal
quantizer [31]. This approach is equivalent to 1-means (that
is K-means; with k = 1). While Lloyd’s method yields optimal
minimum mean square error (MMSE) for the design of one
dimensional quantizer, its extension to multi-dimensional
data quantizer (i.e., vector quantization) with unknown
distributions is not guaranteed to yield optimal results [31].
Consequently, K-means with k > 1 is not guaranteed to reach
a global optimum.

Linde, Buzo, and Gray (LBG) method for vector
quantization (VQ) with unknown underlying distribution

generalizes Lloyd’s iterative method and sets a VQ design
procedure that is based on K-means [30]. The LBG VQ
procedure is currently the most commonly used/researched
VQ approach. Garey has shown that the LBG VQ converges
in a finite number of iterations, yet it is NP complete [17].
Thus, finding the global minimum solution or proving that
a given solution is optimal is an intractable problem. Another
problem with K-means is that the number of clusters (k) is
fixed and has to be set in advance of executing the algorithm.
ISODATA is a generalization of K-means which allows
splitting, merging, and eliminating clusters dynamically [4,
6]. This might lead to better clustering (better local optimum)
and eliminate the need to set k in advance. ISODATA,
however, is computationally expensive and is not guaranteed
to converge [44].

Several clustering algorithms and combinatorial
optimization techniques, such as genetic algorithms and
simulated annealing, have been devised in order to enforce
the clustering algorithm out of local minima [1, 12]. These
schemes, however, require long convergence time, especially
for large clustering problems. Fuzzy C-means (FCM) and
fuzzy ISODATA generalize the crisp K-means and
ISODATA. The FCM clustering algorithm is of special
interest since it is more likely to converge to a global
optimum than many other clustering algorithms including
K-means. This is due to the fact that the cluster assignment
is “soft” [7, 25]. On the other hand, the FCM attempt to
“skip” local optima may bear the price of numerous soft
iterations and can cause an increase in computation time.
FCM is used in many applications of pattern recognition,
clustering, classification, compression, and quantization
including signal and image processing applications such as
speech coding, speech recognition, edge detection, image
segmentation, and color-map generation [5, 7, 10, 20, 25,
35, 39, 46]. Thus, improving the convergence time of the
FCM is of special importance.

2.2. Accelerating Clustering Convergence Rate

Multistage processing is a well known procedure used for
reducing the computational time of several applications;
specifically, image processing procedures. This method uses
a sequence of reduced resolution versions of the data to
execute an image processing task. Results of execution at a
low resolution stage are used to initialize the next, higher
resolution, stage. For example, Coleman proposes an
algorithm for image segmentation using K-means clustering
[11]. Hsiao, have applied Coleman’s technique for texture

segmentation [22]. He has used a 
1

16
-sample of the image

to identify k. Huang and Zhu have applied the Coleman
algorithm to DCT based segmentation and color separation

respectively [23, 47]. Like Hsiao, they have used -of the
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image-pixels to set up the parameters of the final clustering
algorithm; where the final clustering is performed on the
entire image. They have found that the final cluster-centers
obtained in the training-stage are very close to the final
cluster-centers obtained from clustering the entire image.
This lends itself to a two-stage K-means procedure that uses
one low resolution sample to initiate the parameters of the
actual clustering. Pyramid processing is a generalization of
the two-stage approach where the resolution of samples is
growing exponentially; each execution stage doubles the
number of samples.

Additional applications of multistage architectures are
reported in the literature [10, 21]. Rosenfeld surveys the area
and proposes methods for producing the multistage snapshots
of an image [38]. Kasif shows that multistage linking is a
special case of ISODATA [26], and Tilton uses multistage
for clustering remote sensing data [43]. Tamir introduces a
pyramid multistage method to non supervised training in the
context of K-means, and neural networks. He has shown that
the pyramid approach significantly accelerates the
convergence of these procedures [41, 42].

Several papers deal with accelerating the convergence
of FCM [9, 21, 28]. Altman has implemented a two-stage FCM
algorithm [2]. The first stage operates on a random sample of
the data, and the second stage uses the cluster centers obtained
in the first stage to cluster the entire set. Instead, we use a
multistage pyramid approach with multiple stages; each stage
operates on higher resolution data where the resolution grows
in an exponential fashion. Our method is compared to Altman’s
two-stage approach, and we show a significant improvement
in performance. Cheng improves the method proposed by
Altman and has investigated a two phase approach. The first
phase implements a linear multistage algorithm which operates
on small random slices of the data. Each slice contains ∆% of
the data. The algorithm finds the cluster centers of the first
slice (say S

1
), then use these centers as initial centers for

clustering a sample that contains the first slice and an
additional slice (S

2
) obtained through random sampling. After

running the multistage phase for n stages, the final centers for
the combination of slices {S

1
, S

2
, ... S

n
} which contain nΛ%

of the entire data are obtained. Next, in the second phase,
these centers are used to cluster the entire data. The research
reported in this paper, however, extends this method, and rather
than using two phases and linear multistage sampling with no
replacement; we use a pyramid sampling (i.e., exponential
growth in the sampling). Another difference is that our method
uses sampling with replacement which is less susceptible to
bias. Results presented in this paper show that the pyramid
approach outperforms Cheng’s two-stage approach. Other
approaches for improving the convergence rate of clustering
include data reduction techniques and data sampling using
hypothesis testing [14, 34].

A related research effort deals with clustering of very
large data-sets which are too big to fit available memory.

One approach to this problem is using incremental algorithms
[18, 29]. Several of these algorithms load a slice of the data,
where the size of a slice is constraint by available memory,
and cluster this slice [8, 15]. Results of clustering current
slices (e.g., centers, partition matrices, dispersion, etc.) are
used in the process of clustering upcoming slices. Hore has
proposed a slice based single-pass FCM algorithm for large
data-sets [21]. The proposed method lumps data that has
been clustered in previous slices into a set of weighted points
and uses the weighted points along with fresh slices to
commence with the clustering of the entire set in one path
[21]. Another approach for clustering large data-sets is to
sample, rather than slice, the data [34].

It is interesting to note that K-means, FCM, Neural
Networks (e.g., Kohonen Neural networks), and many other
iterative optimization algorithms have two main modes of
operation, the batch mode and the parallel-update mode. For
example, in the batch mode execution of FCM, each iteration
considers every pattern individually, and the centers are
updated with respect to every pattern considered. The
parallel-update mode, which is less computationally
expensive and the predominantly used mode in most current
applications, assigns all the patterns to the relevant clusters
and then updates the centers. In this context, the slice
approach which is used for large data-sets can be considered
as a hybrid of batch and parallel-update.

This brings the issue of parallel processing of clustering
algorithms. Several ways to partition and distribute the
clustering task have been considered [3, 21, 36, 37, 43, 45].
One potential way it to assign a set of samples or a slice of
data to each processor and eventually merge the cluster
centers obtained from each processor into one set of
centers. We plan to address this problem as a future research
subject.

3. THE FUZZY C-MEANS AND MULTISTAGE FUZZY
C-MEANS CLUSTERING ALGORITHM

The fuzzy C-means algorithm (FCM) is a generalization of
the crisp K-means clustering. Actually, the generalization is
quite intuitive. In the K-means algorithm, set membership
is crisp. Hence, each pattern belongs to exactly one cluster.
In the FCM, set membership is fuzzy and each pattern
belongs to each cluster with some degree of membership.
The following section formalizes this notation.

Let X = {x
1
, x

2
, ..., x

m
}, where x

i
 ∈  Rn, be a set of m, n-

dimentsional vectors representing the data to be clustered
into c clusters S = {S

1
, S

2
, ..., S

c
} with cluster centers

Ω = {ω
1
, ω

2
, ..., ω

c
}. Under the FCM each element x

j
 belongs

to every cluster S
i
 with some degree of membership u

ij
.

Hence, the matrix U = [u
ij
], referred to as the partition matrix,

represents the fuzzy cluster assignment of each vector x
j
 to

each cluster S
i
. The goal of FCM is to identify a partition

matrix U, such that U optimizes a given objective function.
A commonly used FCM objective function is defined to be:
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[EQ-4]

Where q > 1 is weighting exponent. In this research q is set
to 2.

The most common measures for FCM clustering quality
are: (1) The value of objective function, (2) the partition
coefficients, (3) the classification entropy, (4) measures of
deviation of the partition matrix from a matrix obtained with
uniformly distributed data, and (5) measures of induced
fuzziness [6, 7, 24]. It should be noted that some of the
quality criteria are derived from distortion measures. Hence,
in this case the goal is to minimize distortion, and high quality
means low distortion. In other words, the quality can be
considered as the inverse of distortion. Measures 1 trough
5, assume that the end result of the clustering is soft.
Nevertheless, in many cases, it is desirable to obtain “hard
clustering” assignment to be used for vector quantization,
image segmentation, or other classification applications. In
these cases two additional quality criteria can be considered:
6) the rate distortion function, and 7) the dispersion matrix
[24, 44]. Of all these measures, 1, 6, and 7 are most
commonly used. In specific, metric 1, the functional J

q
 can

be interpreted as a generalized distortion measure which is
the weighted sum of the squared distances from all the points
in the cluster domain to their assigned cluster center. The
weights are the fuzzy membership values [7, 25]. Hence,
this metric is proportional to the inverse of the quality of
FCM. Lower distortion denotes higher quality. Metrics 6 and
7 are further elaborated in the next section.

In general, the rate distortion function is used when the
FCM is utilized for quantization. In this case, after
convergence, the matrix U = [u

ij
] is defuzzified; e.g., by using

a nearest neighbor assignment. The compression rate of fuzzy
C-means is fixed by the selection of c. Hence, the rate
distortion quality-measure boils down to the MMSE; given
by:

1

1
|| ||

j i

c

j i
i x

D x
m = ∈ω

= − ω∑ ∑ [EQ-2]

Again, lower distortion denotes higher quality. When
the clustering is used for classification, a quality criteria that
measure the density of cluster as well as the relative distance
between clusters can be used to estimate the recognition
accuracy. In this case a dispersion measure can be used. To
elaborate: Let S = {S

1
, S

2
, ..., S

c
} be the set of clusters

obtained through “hard clustering,” and let Ω = {ω
1
, ω

2
, ...,

ω
c
} be the set of the corresponding cluster centers, then, W

i

the Within Dispersion Matrix of the cluster S
i
 is defined to

be the covariance matrix of the set of elements that belong
to S

i
. The within dispersion matrix of S, (W), is a given

function of the entire set of the within dispersion matrices
of the individual clusters. For example, the elements of W

can be the averages of the compatible elements of W
i
 for

1 ≤ i ≤ c. The Between dispersion matrix of S, (B), is the
covariance matrix of Ω. The quality of the clustering can be
expressed as a function of the within dispersion matrix W
and the between dispersion matrix B. A commonly used
dispersion function is [24]:

D = tr(W) / tr(B) [EQ-3]

where tr(M) is the trace of the matrix M.

3.1. The Fuzzy C-means Algorithm

The FCM consists of two main phases; setting/updating the
membership of vectors in clusters and setting/updating
cluster centers. Some variants of FCM start with a set of
centers which induces a partition matrix [7, 25]. In this case,
seeding the algorithm relates to the initial selection of centers.
Other variants initialize a partition matrix which induces
initial centers [6]. Hence, seeding these FCM variants;
amounts to initializing the partition matrix. The two
approaches are virtually equivalent choosing one over the
second is just a matter of convenience related to the format
of data and the form of the application. We are using the
second approach where the seeding relates to selecting the
initial partition matrix. Hence, in the seeding step, the
membership matrix is initialized. In the next iterations, the
cluster centers are calculated and the partition matrix is
updated. Finally, the value of the objective function for the
current classification is calculated. The algorithm terminates
when a limit on the number of iterations is reached or a “short
circuit condition” is met. A commonly used termination
condition halts the algorithm when the derivative of the
distortion function is small. Because the C-means algorithm
is sensitive to the seeding method, a variety of procedures
have been proposed for selecting seed points [1, 3]. The
following paragraphs include formal definition of the
algorithm as well as pseudo-code.

Given a set of vectors X = {x
1
, x

2
, ..., x

m
}, where x

i
 ∈  Rn

and an initial partition matrix U(0), the FCM is an iterative
algorithm for partitioning a set of vectors into c clusters S =
{S

1
, S

2
, ..., S

c
}, with cluster centers Ω = {ω

1
, ω

2
, ..., ω

c
}. In

iteration l the algorithm uses the cluster

centers (1) ( ) ( ) ( )
1 2{ , , , }l l l

cΩ = ω ω ωL  induced by the partition

matrix U(l) to re-partition the data-set and obtain a new
partition matrix U(l+1). Cluster centers at iteration l are
computed according to:

( ) ( )1 1( ) ( ) ( )

1 1

/
m m

q ql l l
i ij j ij

j j

u x u
− −

= =

   
ω = ⋅      

∑ ∑ [EQ-4]

The matrix ( 1) ( 1)[ ]l l
ijU u+ +=  is calculated according to

2
( ) 1

( 1) ( 1)
( )

1

|| ||
[ ]

||

lc q
j il l

ij l
l j l

x
U u

x

−
−

+ +

=

 − ω
= =  − ω 

∑ [EQ-5]
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The process of center induction, data partition, and
matrix update continues until a given termination condition
which relates to an optimization criteria or limit on the
number of iterations is met. The following is a commonly
used criterion[30]:

( 1) ( )

( 1)

l l
q q

l
q

J J

J

−

−

−
< ε [EQ-6]

The following is a pseudo code of the algorithm.

Algorithm-1 baseline FCM:

1. Parameters:
a. X = {x

1
, x

2
, ..., x

m
}, (x

j
 ∈  Rn)- a set of vectors. 2. Set k = 0, choose an initial partition matrix U(0)

b. m - the number of vectors 3. In iteration k ≥ 0 let

( ) ( ) ( ) ( )
1 2{ , ,..., }k k k k

cΩ = ω ω ω

 be the

c. c - the number of partitions induced clustering centers computed by equation 4.

d. q – a weighting exponent (q > 1) a. Set U(k+1) =
( 1)[ ]k
iju +

 according to equation 5.

e.
( ) ( )[ ]k k

ijU u= − the partition matrix at iteration k b. Compute J(k+1) according to equation 1.

f.

( ) ( ) ( ) ( )
1 2{ , ,..., }k k k k

cΩ = ω ω ω

 - the set of clustering c. Set k = k + 1.

centers at iteration k
g.  N- the maximum number of iterations 4. Stop if k = N; or if k > 1, and equation 6 holds for a small

h.
( )k
qJ − the objective-function’s value at iteration k ε such as ε = 10–6. Otherwise, go to (2).

The idea behind the multistage methods reported in the
next section is that an estimate of the partition matrix and
the location of the cluster-centers can be obtained by
clustering a sample of the data. There is however, a trade-
off that relates to the sample size. A small sample is expected
to produce a fast yet less reliable estimation of the cluster-
centers. This leads to a multistage approach, which involves
several stages of sampling (with replacement) of the data
and estimating the membership matrix for the next stage.
The size of the first sample should be as small as possible.
On the other hand it should be statistically significant [24].
Each of the stages includes more objects from the data and
sets the initial partition matrix of stage I according to the
final partition matrix of stage I – 1.

3.2. The Pyramid FCM and Other Multistage FCM
Algorithm

The pyramid procedure consists of the following stages: In
the first stage, FCM is applied to an initial under-sampling
of the data. The partition matrix for the first stage is
initialized by any of the traditional methods for partition
matrix initialization e.g., random initialization or uniform
distribution initialization [6, 7]. FCM is performed on the
sample until it converges. In stage I the original data-set is
re-sampled with twice the resolution of stage I – 1. The
membership matrix obtained in stage I – 1 is used to initiate
the C-means clustering of the stage I.

The procedure is repeated until a resolution of 1: 1 is
reached. At this stage, the C-means algorithm is performed
on the entire input data and the resultant membership matrix,
which implies cluster assignments and centers, is reported.

Every stage of the pyramid C-means increases the
resolution by a factor of two. Since the estimation of the

membership matrix for the clustering in every stage
(excluding the first stage) is based on previous stage results,
and utilizes an increasing sample of the data, it is expected
to be closer to the final value of the membership matrix
obtained from the complete data-set. This decreases the total
number of weighted iterations (iterations are weighted by
the number of data elements executed) required for reaching
stability. In addition, since the under-samplings are smaller
than the original data-set, each low-resolution stage of the
FCM requires fewer computations. Therefore, it is expected
that the under-sampling method would decrease the
computational cost of FCM clustering.

For the pyramid execution we assume the availability
of a procedure f cm() which implements the base-line FCM
algorithm (Algorithm 1) described above. Let:

( ) ( ) ( )( , , , )I I I
in outf cm c X U U

 be a procedure with the following
inputs (1) the number of clusters (c), (2) an input set of
vectors (X(I)), and (3) an input partition matrix of ( ) ( ), ( ).I I

inX U
The function implements the algorithm describes in section
3.1 and outputs the final partition matrix ( )( ).I

outU  In this
notation, (I) stands for stage I in the multistage algorithm.
The pyramid algorithm, using f cm() is described next.

The two-stage and two-phase algorithms, described in
section 2.2, are similar to the pyramid FCM algorithm. The
main differences are the number of stages, the down sampling
resolution at each stage, the exponential versus linear
accumulation of samples, and the sampling method (i.e.,
sampling with, or without, replacement).

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

The FCM, two-stage FCM, two-phase FCM, and pyramid
FCM are applied numerous times to different data-sets, using
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different parameters. Two sets of data are used for the
experiments performed; the first set includes synthetic data
with known centers and known distribution. The second set
consists of the Red, Green, and Blue (RGB) components of
color images used for color quantization. The experiments
compare and contrast the performance of the FCM and the
multistage variants. Three types of output data/results are
collected: (1) Execution time and solution quality (i.e.,
inverse of distortion), (2) the results of a Binomial Monte
Carlo validity testing of assertions concerning the execution
time and quality, and (3) Records of convergences (i.e.,
distortion per iteration).

The execution time is approximated through a weighted
number of iterations. Since there is almost no overhead in
the down-sampling procedure, then a single multistage FCM

iteration applied to a sample which contains
1

z
 of the data

points takes about the same amount of time as  of a

traditional FCM iterations performed on the entire data-set.
Thus, for the multistage FCM, the weighted number of total

iterations N
P
 is given by:  Where, p is

the total number of stages, N(I) is the number of iterations at
stage I of the pyramid algorithm, and R(I) is the sampling
rate at stage I. The termination condition in all the
experiments is a fixed number of iterations (set to 150) or a
“short circuit” related to a negligible change in the first
derivative of the distortion [30]. In most of the experiments
the “short circuit” is encountered before the maximum
number of iterations is reached.

The objective function (J
q
) affects the partition matrix

obtained by the FCM, the MMSE of hard clustering, the
rate distortion function, and the dispersion. For this reason,
in this research, we use the objective function (EQ-1) to
assess the quality of FCM procedures. Since J

q
 is a distortion

measure, then low values of J
q
 denote high clustering quality.

A Binomial Monte Carlo validity testing of assertions
concerning the results of execution time and distortion is
implemented. The results of each experiment are translated
into “success” or “failure” of basic assertions or hypothesis
related to validity. Analysis of the execution time and solution
quality is accomplished by computing histograms showing
the distribution of execution time and distortion.

4.1.1. Synthetic Data

A set of C (4 ≤ C ≤ 32) random cluster centers with m vectors
per cluster (4096 ≤ m ≤ 16384) is generated. The vectors
within a cluster are distributed with variances of 0.01 to 0.05
according to a normal distribution around the center. These
patterns are used for the experiments with the synthetic data.
The first level of under-sampling used in the experiments

varies from 
1

128
 to . This supplies an average of 128-

512 elements per cluster and is above the number of elements
per partition which are required in order to guarantee a tight
and acceptable 95% confidence interval. In this research,
an acceptable confidence interval lies above 0.5 [24].

4.1.2.Monte Carlo Analysis of Experiments with Synthetic
Data

An extensive set of experiments using synthetic data is
conducted and performance is recorded. In addition, the

Algorithm-2 Pyramid FCM

1. Parameters: 3. At stage I ≥ 0 :

a. X-the entire set of input vectors. a. Call f cm 

b. c - the number of partitions b. Compute Ω(I) using ( )I
outU  according to equation 4

c. I - the stage number c. Set 

d. X(I) - the set of input vectors at stage I. d. Set R(I+1) = min (|X|, 2 ⋅ R(I))
e. |X(I)| - the cardinality of the set X(I) e. Set X(I+1) to be the set obtained from X by randomly

choosing every R(I+1) element from X
f. R(I)– an under-sampling index at stage I. f. Set I = I + 1
g. z– an initial under sampling rate (e.g., 128). 4. If R(I) < |X| then got to stage (2).

h. ( )I
inU - the initial partition matrix at stage I 5. If R(I) = |X| then

i. - the final partition matrix at stage I. a. call f cm (

j.
( )I
qJ – the final clustering quality at stage I. b. Compute Ω using  according to equation 4

2. Set I = 0, set R(0) = z, set X(0) to be the set obtained c. Output Ω and 

from X by randomly choosing every R(0) element d. Stop

from X, and choose an initial partition matrix 
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experiments are designed to enable Monte Carlo analysis
for validation of assertions about the relations between the
traditional FCM and the multistage FCM variants (two-stage,
two-phase, and pyramid). Overall, thousands of experiments
are performed. In general, each set of experiments is used
for accepting or rejecting one assertion. The validation of
an assertion is done using Binomial Monte Carlo procedure.
Under this approach, the “success” of an experiment is
defined in tandem with an assertion. The estimated
probability of success in a set of experiments and the exact
95% confidence interval are used to assess the significance
of the results which implies the validity of the assertion.
Some of the assertions, however, may require hundreds of
experiments in order to ensure a tight and acceptable 95%
confidence interval.

Generally, each set of experiments is divided into groups
of 100 experiments per group. The difference between
experiments within a group is due to the fact that the initial
partition matrices are randomly initiated, the sub sampling
is random, and due to the fact that initial sub-sampling of
the multistage FCM variants is selecting different sub-
samples. Within a set of experiments only one element of
the experiment is changing. For example, one set of
experiments is used to compare the performance of the
multistage FCM variants to traditional FCM where the
number of clusters synthetically generated is 16, and the
number of centers sought by the FCM procedure, is 8.

The following assertions are examples of assertions that
are validated or rejected through the Monte Carlo
experiments:

1. INS> IS; where INS denotes the number of
weighted iterations with the traditional FCM, where
no sampling is applied, and IS denotes the number
of weighted iterations under one of the multistage
FCM variants. Hence, if this assertion is true then
the number of weighted iterations required for
convergence of the multistage FCM variant is
smaller than the number of weighted iterations
required for convergence of the traditional FCM

2. DNS < DS: where D stands for distortion (. Hence,
if this assertion is true, then the distortion obtained
by the traditional FCM is smaller than the distortion
produced by the multistage FCM variant. Thus, the
quality of the traditional FCM clustering is higher
than the clustering quality of the multistage variant.

4.1.3. Color Quantization

The problem of color quantization can be stated in the
following way: given an image with N different colors,
choose C<<N colors such that the resulting C-color image
is the least distorted version of the original image [19, 40,
47]. Color quantization can be implemented by applying the
FCM clustering procedure to the image-pixels where each
pixel represents a vector in some color representation system.

Nevertheless, the FCM produces a fuzzy assignment of
clusters to centers, while the quantization requires a crisp
assignment of patterns to colors. For this end, the final
partition matrix is defuzzified and each pattern is assigned
to one cluster e.g., the nearest cluster. For example, the
clustering can be performed on the three-dimensional vectors
formed by the red, green, and blue (RGB) color components
of each pixel in the image. After clustering and
defuzzification, each three-dimensional vector (pixel) is
represented by the cluster-number to which the vector
belongs, and the cluster centers are stored in a color-map.
The C-value image along with the color-map is a compressed
representation of the N-colors, original image. The
compressed image can be used to reconstruct the original
three-dimensional data-set by replacing each cluster-number
by the centroid associated with the cluster. In the case of
k=64 with 8 bit per color component, the original 24 bit per
pixel image is represented by a 6 bits per pixel image along
with a small color map. Hence, about 4 times compression
is achieved.

4.1.4.Monte Carlo Analysis of Experiments with Color
Quantization

Several RGB images are used to assess convergence rate
and the distortion (J

q
) of the traditional FCM and the FCM

multistage variants. As in the case of synthetic data, we have
performed an extensive set of experiments to enable a Monte
Carlo analysis of assertions about the algorithms. For
example, one set of tests is performed on the image Lena
with C=8 (C is the number of clusters sought). Another set
of experiments uses C=16. Similarly, C=8 and C=16 are
used with other images too.

4.2. Experimental Results

4.2.1. Experiments with Synthetic Data

This section provides detailed results of one set of
experiments, and general results of the entire set of
experiments where the FCM, two-stage FCM, two-phase
FCM, and pyramid FCM (these last three methods are
referred to as the multistage FCM variants) have been applied
to 2-dimensional synthetic data. The data is generated by
randomly selecting 16 centers within the unit square [0 1; 0,
1] and randomly distributing 16384 samples, with two
dimensional normal distribution, around these centers. The
variance for each center is randomly selected to be in the
range (0.01, 0.05). As a result, the boundaries between

clusters are not crisp. The initial quantization level is 
1

32
.

The traditional FCM and its multistage variants, with
C = 16, are run 100 times with different sets of random
patterns, produced as described above, and different random
selection of initial cluster centers. In each run the maximum
number of iterations is 150. A short circuit termination
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condition stops the run if the change in the derivative of the
distortion measure (J

q
) is below a small threshold.

Figure 1 shows a histogram with the distribution of the
number of weighted iterations for the traditional FCM and
for each of the FCM multistage variants. The figure shows
that the number of weighted iterations obtained in most of
the runs of the pyramid FCM are located below 35 (i.e., these
runs converge in less than 35 weighted iterations) while most
of the runs of the traditional FCM require more than 75
iterations before convergence. The number of weighted
iterations for the two-stage and two-phase FCM are centered
in the middle of the histogram with no significant difference
between these two variants. The two-phase, however, slightly
outperforms the two-stage variant. Consequently, Figure 1
demonstrates that pyramid FCM has higher potential for
speed up than two-phase FCM which has higher potential
for speedup than the two-stage FCM. Overall, the same trend
is apparent in the results of all of the other sets of data, where
the distribution of number of iterations for the traditional
FCM is at the high end of the histogram, the distribution for
the pyramid variant is at the low end of the histogram, and
the distribution of the other two variants is at the mid-range.

Figure 2a shows the average speedup relative to the
traditional FCM obtained with every multistage variant of
the FCM. The figure demonstrates that pyramid FCM
provides a speed-up of about 2.75X, while two-phase FCM
provides a speedup of 2.4X, and two-stage FCM provides a
speedup of 2X. Again, the pyramid FCM outperforms the
other multistage variants. Overall, the same trend is apparent
in the results of all of the other sets of data where pyramid
FCM provides a speedup of 2X to 3.5X , two-stage FCM

provides a speedup that is close to, and generally slightly
lower than 2X, and the two-phase algorithm provides a
speedup that is slightly above 2X.

Figure 2b shows the average values of the distortion
obtained with the traditional FCM and its multistage variants.
The quality of the traditional FCM and different multistage
variants is very similar. The quality is assessed via the FCM

objective function: Since J
q
 is

a distortion measure, then low values of J
q
 denote high

clustering quality. In this specific case the pyramid approach
outperforms the rest of the multistage variants, but the
difference is not significant (< 2%). Overall, after running
numerous experiments and obtaining about the same quality
(distortion) from many different experiments we conclude
that almost all of the runs provide a solution that is very
close to the global optimum. Hence, in this case, we cannot
demonstrate a significant improvement in quality due to the
multistage approach.

Figure 3 shows the convergence rate for the traditional
FCM and the multistage variants for one out of the 100
experiments. The x-axis represents the number of weighted
iterations required for convergence and the y-axis shows the
distortion in each of the weighted iterations. The
discontinuities in the curves of the multistage variants are
due to a “jump” in distortion that occurs when moving from
one stage to the next where centers from previous stage are
used as seed for the next stage. Overall, the pyramid
approach has the best convergence rate and converges to
the lowest value. A similar trend is observed in the rest of
the experiments.

Figure 1: Histograms of the Distribution of the Number of Iterations (Synthetic Data)
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Table 1 summarizes the results of Monte Carlo
validation for this set of experiments. The assertion tested
for the 100 members of this set of experiment and analyzed
using exact estimation for the confidence intervals of
binomial distribution are: (1) INS > IS; where INS denotes
the number of weighted iterations with no sampling, 2) INS
> 2 × IS, 3) INS > 3 × IS, 4) INS > 4 × IS, 5) DNS > DS;
where D stands for distortion (J

q
), and 6) DNS < DS. The

table shows the number of successes in the binomial tests as
well as the exact 95% confidence interval. It can be observed
that in the case of pyramid FCM, assertions 1, and 2, hold
while assertions 3, 4, 5, and 6 fail (a part of the confidence
interval is below 0.5).

This further validates the speedup results shown in
figure 2a and the distortion results shown in figure 2b. In
addition, the table shows that assertions 1 is the only
assertions that hold true for the two-stage and two-phase
approaches, and the rest of the assertions fail. Again, this is

consistent with the results depicted in figures 2a and 2b. In
specific, the fact that both assertion 5 and 6 fail for all of
the experiments shows that there is no significant difference
in the distortion obtained from the different algorithms.
Similar and consistent results are obtained with other sets
of experiments. The conclusion from the observations
obtained from experiments with synthetic data is that the
pyramid FCM can be used to extend the speedup obtained
with the other multistage variants, while providing the same
or slightly better quality.

4.2.2. Experiments with Color Quantization

This section provides detailed results of one set of
experiments, and general results of the entire set of
experiments where the FCM, two-stage FCM, two-phase
FCM, and pyramid FCM have been applied to color Images.
The image used for this set is an RGB version of Lena with
resolution of 512 × 512 pixels. The initial quantization level

Figure 2a: Average Speedup (Synthetic Data) Figure 2b: Average Distortion (Synthetic Data)

Figure 3: Convergence Rate of the FCM Algorithms (Synthetic Data)

Table 1
Summary of Monte Carlo Validation Tests (Synthetic Data)

Assertion / INS > IS INS > 2 × IS INS > 3 × IS INS > 4 × IS DNS > DS DNS < DS
FCM Variant

Two-Stage 86 [0.78,0.92] 58 [0.48,0.68] 41 [0.31,0.51] 27 [0.19,0.39] 47 [0.37,0.57] 53 [0.43,0.63]

Two-Phase 99 [0.95,0.99] 57 [0.47,0.67] 25 [0.17,0.35] 9 [0.00,0.16] 46 [0.36,0.56] 54 [0.44,0.64]

Pyramid 95 [0.89,0.98] 76 [0.76,0.84] 58 [0.48,0.68] 51 [0.41,0.61] 57 [0.47,0.67] 43 [0.33,0.53]
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is
1

.
32

 The traditional FCM and its multistage variants (two-

stage FCM, two-phase FCM, and pyramid FCM), with, C =
16 are run 100 times with different random selection of initial
cluster centers. In each run the maximum number of
iterations is 150. A short circuit termination condition stops
the run if the change in the derivative of the distortion
measure (J

q
) is below a small threshold.

Figure 4 shows a histogram with the distribution of the
number of weighted iterations for the traditional FCM and
for all the FCM multistage variants. The figure shows that
the number of weighted iterations obtained in most of the
runs of the pyramid FCM is located below 35 while most of
the runs of the traditional FCM require more than 100
iterations before convergence. The number of weighted
iterations for the two-stage and two-phase FCM is centered
in the middle of the histogram with no significant difference
between the two multistage variants. As in the case of
synthetic data, the two-phase variant slightly outperforms
the two-stage variant. Overall, the same trend is apparent in
the results of all of the other sets of images.

Figure 5a shows the average speedup relative to the
traditional FCM obtained with every multistage variant of
the FCM. The figure demonstrates that pyramid FCM
provides a speed-up of about 3.1X while two-phase FCM
provides a speedup of 2.6X and two-stage FCM provides a
speedup of 1.9X. Again, the pyramid FCM outperforms the
other FCM multistage variants. Overall, the same trend is
apparent in the results of other sets of images where pyramid

FCM provides a speedup of 2X to 4X, two-stage FCM
provides a speedup that is between 1.5X to 3X, and the two-
phase algorithm provides a speedup that is slightly better
than the two-stage speedup. Figure 5b shows the average
values of the solution quality obtained with the traditional
FCM and its multistage variants. The quality (inverse of
distortion) of the traditional FCM and different multi stage
variants is very similar with a difference of less than 1%
between variants. Nevertheless, the pyramid approach
outperforms the rest of the approaches. Again, after running
numerous experiments with different images and obtaining
about the same quality from many different experiments
(when applied to the same image) we conclude that almost
all of the runs provide a solution that is very close to the
global optimum, and we cannot demonstrate a significant
improvement in quality due to the multistage approach.

Figure 6 shows the convergence rate for the different
multistage variants for one out of the 100 experiments. The
x-axis shows the number of weighted iterations required for
convergence and the y-axis shows the distortion in each of
the weighted iterations. The discontinuities in the curves of
the multistage variants are due to a “jump” in distortion that
occurs when moving from one stage to the next; where
centers from previous stage are used as seed for the next
stage. Overall, the pyramid approach has the best
convergence rate and converges to the lowest value. A similar
trend is observed in the rest of the experiments in this and
other sets of experiments.

Table 2 summarizes the results of Monte Carlo
validation for this set of experiments. The assertion tested

Figure 4: Histograms of the Distribution of the Number of Iterations (Lena)
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Table 2
Summary of Monte Carlo Validation Tests (Lena)

Assertion / INS > IS INS > 2 × IS INS > 3 × IS INS > 4 × IS DNS > DS DNS < DS
FCM Variant

Two-Stage 87 [0.78,0.93] 60 [0.50,0.70] 41 [0.31,0.52] 37 [0.78,0.47] 43 [0.33,0.53] 57 [0.65,0.83]

Two-Phase 93 [0.86,0.97] 53 [0.43,0.63] 24 [0.16,0.34] 10 [0.05,0.18] 56 [0.46,0.66] 44 [0.34,0.54]

Pyramid 97 [0.91,0.99] 82 [0.73,0.89] 69 [0.59,0.78] 58 [0.47,0.68] 69 [0.59,0.78] 31 [0.22,0.41]

Figure 6: Convergence Rate of the FCM Algorithms (Lena)

Figure 5a: Average Speedup (Lena) Figure 5b: Average Distortion (Lena)

for the 100 members of the set of experiment and analyzed
using exact confidence levels for binomial distribution are:
1) INS > IS, 2) INS > 2 × IS, 3) INS > 3 × IS, 4) INS > 4 × IS,
5) DNS > DS, and 6) DNS < DS. The table shows the number
of successes in the binomial tests as well as the exact 95%
confidence interval. It can be observed that in the case of
pyramid FCM, assertions 1, 2, 3, and 5, hold while assertions
4 and 6 fail (a part of the exact confidence interval is below
0.5). In addition, the table shows that assertions 1 and 2 are
the only assertions that hold true for the two-stage approach,
and assertion 1 is the only assertion that holds true for the
two-phase approach. Again, this is consistent with the results
depicted in figures 5a and 5b. Similar and consistent results
are obtained with other sets of experiments. Finally, the
conclusion for the observations obtained from experiments
with color image data is that the pyramid FCM can be used
to extend the speedup obtained with the other multistage
variants, while providing the same or slightly better quality.

5. CONCLUSIONS

The quality of clustering and the computational cost of the
FCM depend on the initialization of the partition matrix.
The multistage FCM variants set the matrix using data-
samples. Consequently, these methods can provide
improvement in convergence rate. The results show that the
multistage FCM can be tuned to improve convergence rate
without significant impact on quality. Of the multistage FCM
variants, the pyramid approach is the most cost effective.
We were not able to demonstrate a significant improvement
in clustering quality. Nevertheless, in some cases, it is
conceivable that the saving in time due to the multistage
framework can be translated into better quality via multiple
runs of the multistage procedure.

We plan to expand this research and investigate a general
framework for multistage approach in optimization
algorithms including fuzzy ISODATA and expectation
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maximization. In addition, we plan to investigate a hybrid
of the linear sampling of the two-phase approach with the
exponential sampling of the pyramid FCM variant.
Furthermore, we plan to investigate the utility of methods
for merging the results of different runs of clustering in
parallel multistage FCM and large data FCM applications.
Finally, we plan to use the validation technique developed
in this research to compare the performance of algorithm
from different domains; for example, K-means versus FCM.
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