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ABSTRACT: This paper is concerned with robust D-stability of linear systems depending
polynomially on uncertain parameters which belong to semi-algebraic sets. The robust stability
condition is converted into checking whether a polynomial is positive over a semi algebraic set.
Based on sum-of-squares relaxations, a sufficient condition for the polynomial positivity can be
formulated as solving a linear matrix inequality (LMI). Construction of a hierarchy of the LMI
relaxations, which converge to the stability condition, is also possible via the degree increase of the
polynomial. Moreover, a condition to verify instability amounts to solving polynomial equations and
inequalities, whose LMI relaxations are available.

Keywords: Robust D-stability, Positive polynomials, Sum of squares, Instability Certificate, Linear
Matrix Inequalities

1. INTRODUCTION

Robust stability analysis of linear systems
affected by real parametric uncertainties is still
an active and a challenge research field in
control community. Precisely speaking, the
main challenge of this research field is
establishment of numerically tractable
conditions for the robust stability analysis
problems, most of which are known to be NP-
hard [2].

Concerning robust Hurwitz stability, i.e.,
robust stability with respect to the left half of
the complex plain, several appealing approaches
based on Lyapunov functions have been
extensively developed in the past two decades.
In particular, a simple approach so called
quadratic stability condition was firstly
developed in the literature (see, for example, [3]
and references therein). This approach is based
on searching for a quadratic Lyapunov function
independent of uncertain parameters, and
hence a sufficient condition for the robust
stability is formulated into solving a finite
number of linear matrix inequalities (LMIs). In
order to construct less conservative conditions,

several approaches based on Lyapunov
functions dependent of the uncertain
parameters have been proposed [1, 5, 6, 17].
These approaches lead to less conservative LMI
conditions for the robust stability. In particular,
if the Lyapunov functions are assumed to
depend polynomially on the uncertain
parameters, construction of such Lyapunov
functions can be relaxed into LMIs by some
computational tools, for instance, Kalman-
YakubovichPopov Lemma [1] or sum-of-squares
technique [5, 15]. Extensions to robust D-
stability, i.e., robust stability with respect to
some subregion D of the complex plain, have
been considered in [8, 12, 16]. In order to render
LMI conditions for D-stability test, however, the
region D must be described by an LMI [8, 12,
16]. Furthermore, it is still unproven whether
existence of a polynomially parameter-
dependent Lyapunov function is necessary for
the robust D-stability.

Alternative approaches, which are not based
on Lyapunov functions, have been proposed in
[4, 9] for robust Hurwitz stability, in [7] for
robust Schur stability, and in [19, 14, 18] for
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general robust D-stability. The approaches of
[4, 9, 7] provide sequences of LMI relaxations
that asymptotically become necessary for the
robust Hurwitz stability or the robust Schur
stability, i.e., robust stability with respect to the
unit circle in the complex plain, as the
relaxation orders increase. Extension of these
approaches to general robust D-stability test,
however, is still unclear. Siljak et al. [19]
provided a different condition based on
Bernstein polynomial expansions for the robust
D-stability.

However, this approach is limited to the case
of uncertain parameter regions described by
multi-dimensional intervals. Moreover, large
computational burden is required due to
gridding on the parameter regions. For the case
of scalar uncertain parameters, alternative
methods based on computation of uncertainty
intervals that guarantee D-stability have been
developed by [14, 18].

In this paper, we propose a new approach
to the robust D-stability test. In the current
approach, the uncertain parameter region and
the region D are assumed to be semi-algebraic
sets, i.e., they are described by polynomial
inequalities. As opposed to [8, 12, 16], neither
assumption on the LMI representation nor
assumption on convexity of the region D is
necessary in the proposed framework. As a
result, the proposed approach is applicable to
uncertain systems whose parameter regions and
regions D are in more general form than those
of [8, 12, 16, 14, 18, 19]. A sufficient condition
for the robust stability amounts to checking
whether a polynomial is positive over a semi-
algebraic set. The positivity checking is relaxed
into an LMI problem by the sum-of-squares
(SOS) technique [15]. Moreover, a sequence of
LMIs which asymptotically become necessary
for the robust D-stability can be constructed
based on the degree increase of the resulting
polynomial. In other words, a sufficient LMI
condition that is asymptotically necessary for
the robust D-stability is derived in the current
work. Several heuristic methods are provided
to reduce computation complexity when
applying the proposed stability test. We also
propose a sufficient and necessary condition for

the instability, which amounts to solving a
system of polynomial equations and
inequalities. Solving such polynomial equations
and inequalities can be again relaxed into an
LMI using the method of moment [11], which
allows to construct a hierarchy of LMI
relaxations asymptotically exact to the original
problem. Note here that such a condition for the
instability has never been proposed in the
literature.

2. SUM-OF-SQUARES POLYNOMIALS

Let R[θ] denote the set of polynomial in θ∈ Rp.
We define the notion of sum-of-squares (SOS)
polynomials as follows.

Definition 1 [15, 11] A polynomial S ∈ R[θ]
is said to be a sum of squares (SOS) if there exist
polynomials qi ∈ R[θ], i = 1,...,ν such that

2

1

( ) ( ).i
i

S q
ν

=

θ = θ∑ .

We use Σ[θ] to represent the set of SOS
polynomials. It is clear that any polynomial S
∈Σ [θ] is globally positive semidefinite, i.e., S(θ)
≥ 0, œθ ∈ Rp, but the converse is not true in
general.

A computational procedure for verifying
whether S(θ) is an SOS proceeds as follows.
Choose pairwise different monomials
u1(θ),...,unu(θ) and search for the coefficient
matrix Y in the representation

[ ]1 2 ( )
T

q q q Yuν = θL

with Y = (Y1,...,Ynu) and u(θ) = (u1(θ),...,unu(θ))T.
The polynomial S(θ) is said to be an SOS with
respect to u(θ) if there exists some Y satisfying
S(θ) = u(θ)T(Y TY )u(θ). Substituting Z = Y TY
yields the following result.

Proposition 1 [15] A polynomial S ∈ S[θ]
is an SOS with respect to the monomial basis
u(θ) if and only if there exists a symmetric matrix
Z " O with

S(θ) = u(θ)TZu(θ). (1)

Expanding the right-hand side of (1) yields
a polynomial of which coefficients depend
affinely on elements of Z. As an identity in θ,
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we can match coefficients of the polynomials in
both sides of (1). Hence the condition (1) can be
interpreted as an affine constraint in Z. This
implies that the problem to find Z " O with (1)
can be formulated as an LMI. In other words,
we can check whether S ∈Σ [θ] with respect to
some monomial basis by solving an LMI.

3. PROBLEM STATEMENT

Consider the uncertain linear time-invariant
system described by

δ[x(t)] = A(θ)x(t) (2)

where [ ( )] ( ) /x t dx t dtδ  for continuous-time

systems, or [ ( )] ( 1)x t x tδ +  for discretetime
systems, x ∈ Rn is the vector of state variables,
and the matrix A(θ) depends polynomially on
an uncertain parameter θ ∈ Rm belonging to
some compact semialgebraic set Θ = {θ ∈ Rm |
tj(θ) ≥ 0, j = 1,2,...,l} with polynomials tj’s. We
are interested in checking robust D-stability of
(2), that is, whether all eigenvalues of matrix
A(θ) lie in a given subregion D of the complex
plane for all parameter θ ∈ Θ .

The parameter θ is assumed to be time-
invariant through out this paper.

The characteristic polynomial of the system
(2) is denoted by

0

( , ) det( ( )) ( )
n

i
i

i

H s sI A h s
=

θ = − θ = θ∑ (3)

It is clear that the system (2) is robustly D-
stable if and only if all the roots of (3) lie inside
the region D for all θ ∈ Θ .

4. ROBUST D-STABILITY TEST

The key idea in the current approach is to
replace the complex variable s with two real
variables, i.e., s = x + jy, with x,y∈ R. Based on
this change of variable, the characteristic
polynomial in (3) can be transformed as

H(s, θ) = H1(x,y,θ) + jH2(x,y,θ) (4)

where H1 and H2 are polynomials with
real coefficients in m + 2 real variables. The
degrees of the variables x,yin H1 and H2 are at
most n.

We assume the region D ′ , i.e., the
complement of the region D in the complex
plane is a semi-algebraic set

D′ = {(x, y) | dj(x, y) ≥ 0,  j = 1, ..., k}

where dj’s are polynomials. Some examples of
D′ are D′c = {(x, y)|x ≥ 0} in the case of Hurwitz

stability and 2 2{( , )| 1 0}dD x y x y= + − ≥′  in the

case of Schur stability. Moreover, let

G = {(x, y, θ) ∈  Rm+2 |(x, y) ∈  D′, θ ∈ Θ }

Based on the assumptions on D′  and Θ, it is
obvious that the set G is also a semialgebraic
set. Hence, G can be written as

2{( , , ) | ( , , ) 0, 1, ..., }m
jG x y g x y j r+= θ ∈ θ ≥ = (5)

where gj’s are polynomials.

It is not difficult to see that the system (2)
is robustly D-stable if and only if there is no (x,
y, θ) ∈ G such that H1(x, y, θ) = H2(x, y, θ) = 0.
This condition can be transformed into
positivity of a single polynomial as in the
following lemma.

Lemma 1: The system (2) is robustly D-

stable if and only if there exist , [( , , )]M N x y∈ θ% % 

such that

1 2( , , ) ( , , ) ( , , ) ( , , ) 0,

( , , )

M x y H x y N x y H x y

x y G

θ θ + θ θ >
∀ θ ∈

% %
(6)

Proof: It can be proved by contradiction
that if the inequality (6) holds, then there is no
(x,y,θ) ∈ G such that H1(x,y,θ) = H2(x,y,θ) = 0 and
hence (2) is robustlyD-stable.

Conversely, if (2) is robustly D-stable, then
there holds H1(x,y,θ)2+ H2(x,y,θ)2 >0, œ(x,y,θ) ∈ G
which satisfies (6) by taking M% (x,y,θ) = H1(x,y,θ)
and 

N%

(x,y,θ) =H2(x,y,θ).

Testing the positivity in (6) is known to be
NP-hard. However, the notion of sum-of-squares
(SOS) polynomials in Section 2 leads to
construction of a computationally tractable
condition for the positivity checking. Before
proceeding, we state the following lemma which
is useful for proving the main theorem. Note
that arguments of polynomials will be omitted
for notational simplicity.
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Lemma 2 (Positivstellansatz [20]) The
following statements are equivalent: 1)

2) There exist ti ∈ R[θ], i = 1,...,m, and s0, s1,...,
sr, s12,..., sk–1,k,...,s12...k Σ[θ] such that

0 1 2 12 1 2 12...
1 1

1 ... ...
m k

i i k k k k
i i

q t s p s p p s p p p s
= =

= + + + + +∑ ∑

The main result, which provides a tractable
condition for the robust stability, is stated as
follows.

Theorem 1: The (2) is robustly D-stable if
and only if there exist polynomials M, N∈

R[(x,y,θ)], and SOS polynomials S0, S1,..., Sr,
S12,..., Sr–1,r,...,S12...r ∈Σ [(x,y,θ)] such that

1 2 0 1 1 2 121 r
i i iMH N H S g S g g S=+ = + + Σ + (7)

Proof: We firstly prove the sufficiency. By
the definition of SOS polynomials, the
constraint (7) implies that MH1 + NH2 ≥ 1 >0
for all (x,y,θ) ∈ G, and thus the system (2) is
robustly D-stable by Lemma 1.

We then prove the necessity. Suppose that
the system (2) is robustly D-stable, then there
exists no (x,y,θ) ∈ G such that H1(x,y,θ) =
H2(x,y,θ) = 0. Thus

( ) 0 1, ...,
| 0/

( ) 0 1, 2
i

j

g i r

H j

θ ≥ = 
θ = θ = = 

By Positivstellensatz, it implies that there
exist polynomials M,N ∈ R[(x,y,θ)] and SOS
polynomials S0,S1,...,Sr,S12,...,Sr–1,r,...,S12...r

∈Σ [(x,y,θ)] such that (7) holds. The constraint
(7) is affine in decision variables M,N and the
SOS polynomials Si’s. If the degrees of M, N and
the related SOS polynomials are fixed a priori,
solving for the decision variables can be cast as
a standard LMI problem using the methodology
in Section 2. Theorem 1 implies that the gap
between the LMI condition and the robust
stability condition can be arbitrarily reduced by
the degree increase of M, N and the SOS
polynomials. Note here that solving an SOS
problem can be easily implemented with the

help of available softwares, such as YALMIP
[13].

The representation in (7) contains many
terms involving SOS polynomials. The number
of such terms increases exponentially with
respect to r, which is the number of polynomials
in the characterization of the set G. Therefore,
the problem might be difficult to solve due to
high computational complexity when the
number r is large. In order to reduce the
computational complexity, we can consider a
representation with small number of SOS
terms. A specific example is the representation
which contains only terms involving a single
polynomial gi, i.e.,

1 2 0
1

1
r

i i
i

M H N H S g S
=

+ = + +∑

Moreover, the degrees of the polynomials
M,N and Si’s in (7) are not known a priori and
can be theoretically very high. In order to make
the problem solvable at moderate cost, these
degrees should be bounded by some small
values. A possible strategy is to take M,N and
Si’s in the way that the total degree p of each
term appearing in (7) is the same. Note here
that increase of the degree p yields a tighter
condition for the stability test, but at the
expense of computational complexity.

Remark: The test proposed in [19] is based
on the strict positivity of |H(x,y,θ)|2 = H1(x,y,θ)2

+ H2(x,y,θ)2. The positivity test is based on
Bernstein polynomials, and is only on the unit
circle x2 + y2 = 1. It is clear that this is a special
case of our test, corresponding to M = H1, N =
H2, and p = 2degH. It is shown by numerical
experiments that our test is tight even for
smaller values of the degree p.

5. A CONDITION FOR INSTABILITY

We have mentioned in the previous section that
the degrees of the M,N and Si’s in (7) to achieve
robust D-stability are not known a priori.
Hence, infeasibility of (7) at some finite degrees
of M,N and Si’s does not imply that the system
is not robustly D-stable. In this section, we
provide a tractable condition to certify the
instability of the system.
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Based on the decomposition in (4), the
system (2) is not robustly D-stable if and only if
there is a point (x,y,θ) ∈ G such that H

1
(x,y,θ) =

H
2
(x,y,θ) = 0. In order to verify the instability,

therefore, it is required to solve the following
polynomial systems

(x, y) ∈  D′, (8)

H1 (x, y, θ) = 0,

H2 (x, y, θ) = 0

Any (x, y) and θ satisfying (8) are referred
to as an unstable pole and a destabilizing
parameter, respectively. Since we want to find
only one unstable pole, as well as an associated
destabilizing parameter, to prove the instability
of the system, it is possible to add a criterion to
characterize the unstable pole. In the case of
Hurwitz stability, for example, it is possible to
find the unstable pole closest to the imaginary
axis by minimizing x subject to the constraints
in (8). For general regions D, we consider the
following optimization problem:

PD : minimizex,y,θ      p(x, y) (9)

subject to   gj(x, y, θ) ≥ 0,  j = 1, ..., r

H1(x, y, θ) = 0,

H
2
 (x, y, θ) = 0,

wherep (x,y) is a polynomial that characterizes
the unstable pole. Note that the problem PD is
minimizing a multivariate polynomial over a
semi-algebraic set, and hence is nonconvex in
general. However, the methodology in [11] can
be applied to construct a hierarchy of convex
LMI relaxations to PD. In particular, we can
build a sequence of

LMI problems

: m in imize ( )

( ) 0

k
D

k

P f w

subject to F w f

for k = 1,2,..., where f(w) is a linear function of
the vector w of decision variables, and Fk(w) is
an LMI constraint constructed from moment
matrices and localization matrices of
appropriate orders (see [11] for details). The

problem 

k
DP

 is referred to as the LMI relaxation

of order k to the original problem PD. Let d
denotes the maximum degree of the polynomials

p, H
1
, H

2 
and gj in PD. Valid relaxation orders

are k = k
0
, k

0 
+ 1,k

0 
+ 2,..., where k

0 
is the minimal

relaxation order such that k
0 

= d/2 if d is even,
and k

0 
= (d + 1)/2 if d is odd [11, 10]. It was

proved in [11] that solving a sequence of LMI

relaxations 

k
DP

, k = k0,k0 + 1,k0 + 2,... provides a

sequence of lower bounds which converges to

the optimal value of PD, i.e., 

* *
0,k

D DP P k k≤ ∀ ≥

and

* *lim ,k
k D DP P→∞ =

 where *k
DP and 

*
DP

 denote the

optimal values of the problems 

k
DP

 and PD,

respectively. Moreover, if the optimal solution

of 

k
DP

satisfies some algebraic conditions at some

k, then the LMI relaxation 

k
DP

 is exact, that is,

* * .k
D DP P=

 In this case, we can extract the

optimal solution of PD from that of k
DP  and verify

that the system is not robustly D-stable. Note
here that construction of the LMI relaxations
can be easily performed using the software
Gloptipoly [10].

The rest of this section is devoted for
discussion of some computational issues in
solving the polynomial optimization problem
PD. In fact, it was shown by numerical
experiments [11, 10] that the optimal value PD

*

is often attained by solving an LMI problem

k
DP

 with a low order k. In some cases, however,

the sequence of lower bounds 

*k
DP

converges

slowly to 

* ,DP

 and thus we need to solve 

k
DP

 of

high order to obtain the optimal value and the
optimal solution of PD. Since the size of the

matrices and the number of variables in 

k
DP

grow rapidly as k increases, the LMI problem
might be difficult to solve due to high
computational complexity. This issue can be
partially addressed by following the heuristic
method suggested in [9]. The idea is illustrated
here by considering a robust instability
certificate problem with respect to the
Hurwitz stability, which amounts to solving
the following polynomial optimization
problem
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minimizex,y,θ x

subject to x ≥ 0

tj(θ) ≥ 0, j = 1,..., l

H
1
(x, y, θ) = 0,

H2 (x, y, θ) = 0,

where tj(θ)’s are polynomials characterizing the
uncertainty region. It is clear that the system
is not robustly Hurwitz stable if and only if the
optimal value of the optimization problem above
is nonnegative, that is, x* ≥ 0. By considering
an LMI relaxation Pk for the problem above, if
Pk* ≥ 0 at some order k, then x* ≥ Pk* ≥ 0.
Therefore, we can conclude that the system is
not robustly Hurwitz stable even though the
optimal value x”has not been found, and further
increase of the relaxation order is not necessary
in this case. Generalization of this idea to other
robust instability certificate problems with
respect to general regions D can be done in
similar manners.

6. NUMERICAL EXAMPLES

The tests described in Sections 4 and 5 are
applied with the following example. All the
computation is performed on YALMIP [13] and
Gloptipoly [10]. withSeDuMi [21] as an SDP
solver. The computer is equipped with Pentium-
III 1200 MHz and 248 MBytememory.

Example1 (Hurwitz stability): Consider
the uncertain system

(10)

studied in [9] with the system matrix

1 1

2

1 2 1

2 0 1

( ) 0 3 0 ,

1 1 4

A

− + θ − + θ 
 θ = − + θ 
 − + θ − + θ − + θ 

where θ = (θ1, θ2) ∈ [–γ, γ]2 is the uncertain
parameter.

In this example, we want to compute the
maximum value of γ ∈ R such that the system
(10) is robustly Hurwitz stable over [–γ, γ]2.

The characteristic polynomial of the system
(10) is

H(s, θ) = s3 + (9 – 2θ
1
 – θ

2
)s2

+ (25 – 10θ1 – 6θ2 + 2θ1θ2)s

+(21 – 12θ1 – 7θ2 + 4θ1θ2)

After substitution of s = x + iy in the above
equation, we obtain the polynomials H

1
(x,y,θ

1
,θ

2
)

and H
2
(x,y,θ

1
,θ

2
) of degree 3 in (4). The region G

in (5) is given by

We perform the stability test by searching
for polynomials M,N ∈ R[(x,y,θ1,θ2)] and SOS
polynomials S0,S1,S2,S3 ∈Σ [(x,y,θ1,θ2)] satisfying

2 2 2 2
1 2 0 1 2 1 3 21 ( ) ( ).MH N H S S x S S+ = + + + γ − θ + γ − θ

(11)

Here, we fix the degree of polynomials M, N
and SOS polynomials S

0
,S

1
,S

2
,S

3 
in (11) such

that the degree of the terms appearing there is
4, e.g., deg M= degN= 1, degS

0 
= 4, degS

1 
= degS

2

= degS
3 

= 2.

Let γ* denote the maximum value of γ such
that (11) is feasible. By performing bisection on
γ, we obtain γ* = 1.7416. For each fixed γ, the
computational time for solving the LMI from
(11) is about 0.9 seconds by using YALMIP.
When γ = 1.76, we verify instability of (10) by
solving the optimization problem

PD : minimizex,y,θ1, θ2
x

subject to x ≥ 0,

Hj(x, y, θ1, θ2) = 0,  j = 1,2.

By using Gloptipoly, we obtain the unstable
pole x = 0.0806 with the destabilizing parameter
θ = (1.76,1.76) at the LMI relaxation of order
k = k0 = 2. The computational time for solving
the LMI is about 0.4 seconds. Tightness of the
testing conditions is revealed by the numerical
results. In fact, the system (10) is marginally
stable at θ = (1.75,1.75).

Note that we can not verify the robust
stability of (10) when γ ∈ (1.7416,1 .75) by
solving (11). However, the conservatism in this
case can be reduced by increasing the degree of
the terms in (11), or solving the SOS constraint
(7) instead.
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Example 2 (Schur stability): Consider the
following characteristic polynomial

5 4( , ) (11 3 ) (5 3 ) (1 ) (1 )H s s s sθ = − + θ + + θ + α + θ + α − θ
(12)

with an uncertain parameter θ ∈ [–1,1], and with
a constant α. We want to check the robust Schur
stability of the polynomial (12) for various
values of α.

The total degree of H(s,θ) as a polynomial
in (s,θ) is 6, and hence the total degrees of the
polynomials H

1 
and H

2 
in (4) are 6. We fix the

degree of polynomials M, N and SOS
polynomials in (7) such that the degree of the
terms appearing there is 8. Solving (7) for
various values of α , it turns out that the
polynomial (12) is robustly Schur for –3.3261 ≤
α ≤ 2.9999. For a fixed α, the time required for
solving the resulting LMI from (7) is about 2.0
seconds.

We also verify the instability of (12) for α
outside the interval [–3.3261,2.9999]. By
applying the methodology in Section 5, the
instability of (12) can be proved for the most
values of α 6∈ [–3.3261,2.9999], by solving LMI
relaxations of low orders.

7. CONCLUSIONS

A necessary and sufficient condition for the
robust D-stability of linear systems was derived
as checking positivity of a polynomial, whose
hierarchy of LMI relaxations was constructed
by the notions of sum-of-squares polynomials.
On the other hand, instability of the systems
can be ensured by solving a system of
polynomial equations and inequalities. A
hierarchy of LMI relaxations for the problem
can be constructed using the method of
moments. Numerical experiments shown that
the proposed conditions, for both the stability
and instability test, yield accurate results in
many cases even the relaxations of low orders
were used for the tests.
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