
IJCIC : Volume 6 • Number 1 • January-June 2014

A DNA Number System and its Applications

P. V. Gopalacharyulu1 and G. P. Raja Sekhar2

1Research Scientist, Biosystems Modelling, VTT Technical Research Center of Finland, Tietotie 2
Espoo, P. O. Box – 1000, 02044VTT, Finland, E-mail: cugopal@gmail.com

2Associate Profesor, Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
E-mail: rajas@maths.iitkgp.ernet.in

Abstract: In this paper, we present a DNA number system to represent numbers in terms of DNA strands instead of numerical
digits. Triplets of nucleotides, called codons, serve as digits in our DNA number system. In this number system, we distinguish
integers from real numbers based on the length of the corresponding DNA sequence representation. Further in this paper,
we describe a search method that performs the task in a unit time, irrespective of the input size. This method uses the novel
idea of the DNA annealing property. We also propose a classical cryptosystem in terms of a DNA algorithm.

Key words : DNA sequence, Number system, Searching, Cryptosystem.

1. INTRODUCTION

DNA computing is a fast growing area of research concerned
with the use of DNA molecules for the implementation of
computational processes. It is a multidisciplinary area of
research involving interplay between molecular biology and
information science. Since the first practical example by
Adleman [1], there has been intensive research into the use
of DNA molecules as a tool for calculations, simulating the
digital information processing procedures in conventional
computers [2-11]. It has been shown by many research
accomplishments that any process that could naturally be
described as an algorithm can be realized by DNA
computation. Computing with DNA offers the advantages
of massive degree of miniaturization and parallelism.
However, the main application of DNA in computing
technology will be rather to perform complex molecular
constructions, diagnostics and evolutionary tasks [8, 12, 13].

Adleman described in detail a library of operations,
which are useful when working with a molecular computer
and estimated that given an arbitrary pair of plain-text and
cipher-text, one can recover the Data Encryption Standard
(DES) key in about four months of work. Furthermore, it
was shown that under chosen plain-text attack, it is possible
to recover the DES key in one day using suitable
preprocessing. This method can be generalized to break any
cryptosystem, which uses keys of length less than 64 bits
[14, 15]. Another hard solvable problem is the factorization
of a large number into its prime factors. This may be used to
break a public key cryptosystem. There are a number of hard
solvable problems from graph theory and operations research
which may be solvable by DNA computing [8, 13]. While
there are advantages of DNA computation like parallelism,
high information density, and the DNA reaction speed etc,

some disadvantages also exist, most important one being the
lack of a unique generalization. The DNA encoding and the
possible methodology in handling a problem may not be
applicable to other problem.

In this paper, we propose a new DNA number system
and its applications to searching and cryptosystems. DNA
strands are sequences of 4 nucleotides A, T, G and C. In the
present work, we describe a method to represent numbers
in terms of these DNA strands instead of numerical digits
and call this system, the DNA number system (DNA – NS).
In order to distinguish integers from real numbers, every
integer is represented as a DNA sequence whose length is a
multiple of 3 and every real number is represented as a DNA
sequence of length one more than a multiple of 3. We use
the concept of codons to define a DNA number function
(DNF) to represent negative numbers. Further, we shall
describe a search method that performs the task in a unit
time, once the input is given, irrespective of the input size.
This method uses the novel idea of DNA annealing property.
We also propose a classical cryptosystem in terms of a DNA
algorithm.

2. REVIEW OF POSITIONAL NUMBER SYSTEMS

Usually, numbers are represented in the decimal form. In
the decimal number system, any number is a sequence of 10
digits or bases {0, 1, 2, … 9}. Since the number of base
symbols is 10, this number system is called base 10 number
system or simply the decimal number system. The digital
computers make use of binary numbers i.e., numbers to the
base 2. In the binary system any number is a sequence of 0's
and 1’s.

In general, any positive integer can be used as the base
of a number system. Let b be a positive integer. With b as

International Journal of Computational Intelligence in Control
Vol. 12 No. 2 (July-December, 2020)

133

14 IJCIC

the base, any real number can be represented using symbols
from the set {0, 1, 2… b-1} as digits. When we write base b
numbers we keep b as a suffix to the number to indicate that
the representation is to the base b. For example: (1101)

2

stands for a binary number with digits 1101.

Since the decimal number system is the most commonly
used system, realizing the decimal equivalents of base b
numbers and vice versa would be an important task. A base
b number (b

k
b

k-1
 … b

1
b

0
. b

-1
b

-2
b

-3
…b

-r
)

b
 – where “.” is the

decimal separator, the digits b
j
 for j in {0, 1, 2, 3… k}

represent the integer part and digits b
-j
 for j in {1, 2, …, r}

represent the decimal or precision part – has its decimal
equivalent

b
k
bk+b

k-1
bk-1+ … + b

1
b+b

0
+b

-1
b-1+b

-2
b-2+…+b

-r
b-r .

Conversely, base b equivalent of a given decimal number
(N.F)

10
 (N is the integer part of the decimal number and F is

the precision) can be obtained as follows: the base b
equivalent of the decimal integer N

10
 is given by (N)

b
 = [N/

b]
b
#(N%b), where [N/b] represents the integer part of N/b

(i.e. the largest integer ≤ N/b), N%b represents remainder
when N is divided by b and the operator # is the
concatenation of strings over the alphabet {0, 1, 2 … b–1}.
The base b equivalent of the precision F is given by (F)

b
 =

[F*b] # (F*b – [F*b])
b
 where [f] represents the integer part

of any real number f. Then, base b equivalent of the real
number (N.F)

10
 is: (N)

b
.(F)

b
.

Example 2.1

1. The number (101101.011)
2
 is equivalent to the decimal

number

1*25+0*24+1*23+1*22+0*21+1*20+0*2-1+1*2-2+1*2-3

= 32 + 8 + 4 + 1 + 0.25 + 0.125

= 45.375

2. (10.1125)
10

 = (1010.0001110011001100…)
2

2|10 0.1125 * 2 = 0.225

2| 5 – 0 0.225 * 2 = 0.45

2| 2 – 1 0.45 * 2 = 0.9

1 – 0 0.9 * 2 = 1.8

0.8 * 2 = 1.6

0.6 * 2 = 1.2

0.2 * 2 = 0.4

0.4 * 2 = 0.8

Table 2.1 A worked example of computing the binary
equivalent of a decimal number.

With this background, we introduce the DNA number
system below.

3. DNA NUMBER SYSTEM

DNA strands are sequences of 4 nucleotides A, T, G and C.
In what follows, we shall describe a method to represent

numbers in terms of these DNA strands instead of numerical
digits and call this system, the DNA number system (DNA –
NS). To be able to distinguish integers from real numbers,
every integer is represented as a DNA sequence whose length
is a multiple of 3 and every real number is represented as a
DNA sequence of length one more than a multiple of 3.

Before describing the representation of integers under
the new number system, let us define a codon. A codon is a
triplet of the nucleotides A, T, G or C. Example: ATG, GCT,
AAC etc. are codons.

3.1. Representing Integers from 0 to 63

We shall define the number system using the codons as the
digits. Since the number of nucleotides is 4, there exist 43 =
64 distinct codons. A number system which uses the codons
as digits would therefore be numerically equivalent to the
base 64 number system. The problem of defining the number
system thus reduces to defining a mapping between the
codons and the numbers 0, 1, 2… 63.

A natural way to do this is to associate the 64 distinct
codons with all three digit numbers to the base 4 (which are
exactly 64 in number). Note that, the smallest and largest
three digit numbers to the base 4 are 0 and 63 (=43-1)
respectively. Also note that every number between 0 and 63
has a unique base 4 representation.

Therefore, our idea is to assign a one – one
correspondence between the sets I = {0, 1, 2, 3} and D =
{A, T, G, C} and hence represent the corresponding numbers
from 0 to 63 in terms of the codons.

Let us define f: I → D as follows:

f(0) = A, f(1) = T, f(2) = G, f(3) = C (1)

Now, using the correspondence given in (1) we have,

AAA = (000)
4
= 0 AGA = (020)4 = 8

AAT = (001)
4
= 1 CCC = (333)

4
= 63

AAG = (002)
4
= 2 GCT = (231)

4
= 45 etc.,

It may be noted that f is bijective. In fact, in a similar
way, one can define a total number of 4! (=24) such bijective
functions from I to D and correspondingly in each case, one
can obtain a unique number associated with each codon.

Definition 3.1: DNA Number Function (DNF)

Since each of the 4! functions such as the one defined in (1)
gives rise to a unique number system, it is very important to
know which function is in use for computing the numerical
equivalent of a DNA strand or vice versa. Let us call each
of these functions as a DNA number function (DNF)

3.2. Representing Numbers Beyond 63

Now let us proceed with the numbers beyond 63. Let c
0
, c

1
,

c
2
, … , c

r
 be any numbers from {0, 1, 2, … , 63} (where

134

A DNA Number System and its Applications 15

r ≥ 0). Then the number (crcr-1 … c1c0) to the base 64 has
the decimal equivalent

c
r
*64r + c

r-1
*64r-1 + … + c

1
*641 + c

0
*640

= c
r
*64r + c

r-1
*64r-1 + … + c

1
*64 + c

0

In the DNA number system, the role of each c
i
 is played

by a codon. Thus any number greater than or equal to 64 is
a sequence of two or more codons whose value is computed
to the base 64 using the above interpretation of codons as
numbers from 0 to 63.

Example 3.2.1

With the DNF defined in equation (1), we have:

1. AGT TGA AGT= (021)
4
= 9

= 9*64+24 TGA= (120)
4
= 24

= 576+24

= 600

2. GCC TAG AGA GCC= (233)
4
= 31

= 31*642 + 18*64+8 TAG= (102)
4
= 18

= 31*4096+18*64+8 AGA= (020)
4
= 8

= 126976+1152+8

= 128136.

3. 757739 = AAG CGA CCC GGC

4 757739

4 189434 3

4 47358 2

4 11839 2

4 2959 3

4 739 3

4 184 3

4 46 0

4 11 2

4 2 3

4 0 2

C

G

G

C

C

C

A

G

C

G

=

=

=

=

=

=

=

=

=

=

L

L

L

L

L

L

L

L

L

L

Note that, the approach of using codons as digits
constrains the length of a DNA strand representing a number
to be a multiple of 3. This constraint on the length will be
exploited to distinguish the floating point numbers from
integers, as described later.

Example 3.2.2

1. AGT GTA 2.AGT GTA

= (020120)
4

= (9Y)
64

 where Y=24

= 0*45+2*44+0*43+1*42+2*41+0 = 9*641+Y

= 512+64+16+8 = 576+24

= 600 = 600

So far, we have described a way to represent non-
negative integers. We can extend our system to represent
negative integers as well as real numbers.

3.3. Representing Negative Integers

One way to represent the negative numbers could be to make
it a convention that every negative number starts with a codon
whose numerical equivalent is “0” with respect to the DNF
in use. If we use any other codon whose numerical equivalent
is non-zero, it would create ambiguity as to whether the first
codon represents the sign or the first digit of the number. In
contrast, if we use the codon whose numerical equivalent is
0, the net value remains the same, because appending 0 prior
to a number does not alter the net value. In the example
number system that we have described above using the DNF
given in equation (1) (see section 3.1), the codon AAA equals
“0”. Hence, in this number system, the negative numbers
can be represented with DNA strands starting with AAA.

Example 3.3.1

1. AAA TGC CGA

= - (123320)
4

= - (1024+512+192+48+8+0)

= -1784.

2. –51 = AAA CAC.

The following example illustrates the ambiguity caused
by using a randomly chosen codon whose value is non-zero
to represent the minus sign.

Example 3.3.2: The DNA equivalent of 75 is AAT AGC.

Choosing AAT to represent the negative sign, we have

75 = AAT AGC = - (023)
4
 = -11.

Hence the codon AAT fails to unambiguously represent
the negative sign. The same holds true for any codon whose
numerical equivalent is non-zero. Therefore, one has to
choose the codon whose numerical equivalent is 0 to
represent the negative sign.

3.4. Representing Real Numbers

To represent the real numbers, let us fix the first nucleotide
to represent the sign and reserve some fixed number of
codons to represent the integral part (unsigned) of the real
number followed by some fixed number of codons to
represent the decimal part.

To convert a real number into a DNA sequence, we will
first set the nucleotide representing the sign accordingly, find
the base 64 equivalent of the number and replace each base
64 digit in the so-obtained base 64 representation of the real
number by its equivalent codon. In doing this, one particular
DNF is chosen and is fixed.

Similarly to find the numerical equivalent of a DNA
strand, we will first check whether the strand is of length

135

16 IJCIC

3p+1 for some p = 0, 1, 2, 3 … If not, the corresponding
DNA strand does not represent a real number. If the length
condition is satisfied, then first we will set the sign by looking
at the first nucleotide. Next, by knowing the DNF in use,
each codon is recognized with its equivalent number.
These numbers are the digits of the base 64 representation
of the real number we are looking for. Hence by
knowing the number of codons used to represent integral
part and the decimal part, one can compute the required real
number.

The number of codons that have to be reserved depends
upon the magnitudes of numbers present in the
problem under consideration. Suppose in a particular
case, the highest real number has its integer part equal to an
integer “a”. One has to find the first natural number n such
that a ≤ 64n. Then n number of codons can be used to
represent the integer part. And the number of codons to
represent the precision can be chosen depending on the
maximum number of significant digits in the precision to be
used.

Definition 3.4.1: DNA Sign Function

The sign of the real number is determined by a 1 - 1 function
from the set {+, -} to a subset of {A, T, G, C}. There are
exactly 4C

2
 * 2! = 12 such functions. We call each of these

12 functions a DNA sign function (DSF).

Suppose that 5 codons are used to represent integral
part and 5 codons are used for decimal part. Then using the
DNF defined in equation (1) (see section 3.1) to determine
codons as numerical digits, we have:

G AGT TAA CGT GAT ATA ATA TCA CTT CCT AAA

= + (9*644+16*643+57*642+33*64+4+4/64+28/642+53/
643+61/644+0/645)

= 150994944 + 4194304 +233472 +2112 + 4 + 0.0625 +
0.0068359375 + 0.000202178955078125
+0.000003635883331298828125

= 155424836.069541752338409423828125.

3.4.1. A Better Representation for Real Numbers

An improvement for the representation of real numbers
presented in previous section could be to add two more
codons as follows: the two codons are added after the first
nucleotide that represents the sign of the real number. These
two codons are used to represent the number of codons in
the integral part and the precision part respectively. This
modified representation can be used to represent the above
example as follows:

[Number of codons in the precision]

G ATT ATT AGT TAA CGT GAT ATA ATA TCA CTT CCT AAA

[Number of codons in integer part]

We prefer this modified representation of real numbers
to the previous representation. In the later sections, whenever
we refer to the DNA strand representation of a real number,
unless otherwise mentioned, it is this improved method of
representation that we refer to and not the one that is
described in the example 3.4.1 or prior to it. But we have
come across the previous method for better understanding.
However, it should be noted that, this representation puts a
theoretical limit on the magnitude of numbers that could be
represented. For instance, the fact that one codon is used to
indicate the number of codons constituting the integer part
implies that the integer part is at most 6463-1. While
representing higher magnitude numbers can be naturally
achieved by increasing the number of codons to indicate how
many codons will be used in integer part and precision, we
believe that one codon as described above is sufficient for
most practical purposes.

Example 3.4.2: Using the functions defined in (1) and
(2) (see section 3.1 and example 3.4.1) and considering five
significant digits in precision we have

150.96 = GAAGATTAAGTTGCCTTCAAGGACCTTC

Because

0.96*64=61.44 61 → CCT
0.44*64=28.16 28 → TCA
0.16*64=10.24 10 → AGG
0.24*64=15.36 15 → ACC
0.36*64=23.04 23 → TTC

3.4.2. Computer Algorithm

We summarize the number system described above into two
computer algorithms. The first procedure DNA-
NS_DNA_to_NUMBER(DNA strand) converts the DNA
strand into its equivalent number.

The second procedure DNA-NS_NUMBER_
to_DNA(Number) does the opposite; it converts the Number
to its equivalent DNA strand representation.

3.4.2.1. Algorithm to convert a DNA strand into a Number

(a) DNA-NS_DNA_to_NUMBER (DNA strand)

L ← length of DNA strand;

If (L % 3 = 0) then

Number ← Convert_to _integer (DNA strand);

else if (L % 3 = 1 and L > 1) then

Number ← Convert_to_real (DNA strand)

else DNA strand is invalid

Exit

(b) Convert_to_integer (DNA strand)

i ← 1

num ← 0

136

A DNA Number System and its Applications 17

While (DNA stand [i] ≠ EOF)

num = num * 4 + atoi (DNA strand[i])

i ← i + 1

sign(DNA strand, num)

return (num)

(c) atoi (ch)

Input: A DNF / This procedure is given for DNF in (1).
The return statements that appear in the subsequent lines in
the procedure will change according to the DNF that is
inputted /

if (ch = ‘A’)

return 0

if (ch = ‘T’)

return 1

if (ch = ‘G’)

return 2

if (ch = ‘C’)

return 3

(d) sign (DNA strand, num)

if (the first three characters in DNA strand are AAA)

then

return(- num)

else

return(num)

(e) Convert_to_real (DNA strand)

S ← DNA strand [1]

Cod1 ← the string formed by 2nd, 3rd and 4th characters in
the DNA strand

Cod2 ← the string formed by 5th, 6th and 7th characters in the
DNA strand For j ← 8 to (Cod1+7)

Str1 [j – 7] ← DNA strand [j]

For k ← (Cod1+8) to (Cod1+Cod2+7)

Str2 [k – Cod1 – 7] ← DNA strand [k]

A ← absolute value of (Convert_to_integer (Str1))

B ← Convert_to_precision (Str2)

Num ← Set_sign(A.B, S)

return (Num)

(f) Convert_to_precision (str)

i ← 1

den ← 4

sum ← 0

while (str [i] ≠ EOF)

sum ← sum + atoi(str[i])/den

den ← den * 4

return (sum)

(g) Set_sign (num, S)

Input: A DSF / This procedure is given for the DSF defined
in Example 3.4.1/

If (S = ‘G’)

then return (num)

else return (- num)

3.4.2.2 Algorithm to convert a number into a DNA strand

(a) DNA-NS_NUMBER_to_DNA (Number)

If Number is real

then

DNA strand ← Real_to_DNA (Number)

If Number is integer

then

DNA strand ← Integer_to_DNA (Number)

(b) Integer_to_DNA (Number)

DNA strand ← Conversion (Number)

If (Number < 0) then

DNA strand ← concatenation of (‘AAA’, DNA strand)

return (DNA strand)

(c) Conversion (Number)

i ← 1

j ← 1

num ← absolute value of Number

while (num > 0)

r ← num % 4

strand [j] ← itoc (r)

j ← j + 1;

num ← num/10

L ← (j – 1) /the length of “strand” /

If (L%3 ≠ 0)

For k ← 1 to L%3

strand ← concatenation of (‘A’, strand)

return (strand)

(d) itoc(r)

/this procedure changes according to the DNF /

137

18 IJCIC

if (r = 0)

return (‘A’)

if (r = 1)

return (‘T’)

if (r = 2)

return (‘G’)

if (r = 3)

return (‘C’)

(e) Real_to_DNA (Number)

n ← the least possible number such that 64n ≥ Number

m ← the number of codons representing the precision digits
required to be displayed (depends on the user’s requirement)

DNA strand ← conversion (n)

DNA strand ← concatenation of (DNA strand, conversion
(m))

Num ← integer part of Number

DNA strand ← concatenation of (DNA strand, conversion
(Num))

F ← Number – Num

DNA strand ← concatenation of (DNA strand, findflo (F,m))

if (Number < 0)

then

DNA strand ← concatenation of (‘C’, DNA strand)

else

DNA strand ← concatenation of (‘G’, DNA strand)

(f) findflo (F, m)

for i ← 1 to m

F ← F * 64

R ← integral part of F

Str ← concatenation of (Str, conversion (R))

F ← F – R

return (Str)

4. POLYNUCLEOTIDE NUMBER SYSTEM

Another straight forward method for representing numbers
as DNA strands is to find the base 4 equivalent of the number
and to replace its digits by nucleotides using a DNF. Note
that negative numbers can be represented as a DNA strand
with its first nucleotide equivalent to zero in the DNF in
use.

But with this representation, there is no way to
distinguish between integers and real numbers, because such
sequences could be of arbitrary length. In other words, the
function µ from the set of all DNA strands to the set of all

real numbers defined by µ (x) = N, where x is the DNA
representation of N under the present representation scheme,
is not one – one.

However, we shall call this straight forward number
system as polynucleotide number system (PN-NS). This may
be useful in some situations where it is known that only
integers or only real numbers are dealt with (for example
see section 3.1 or 3.4).

4.1. Computer Algorithm for Polynucleotide Number
System

Since we have already observed that the function µ defined
above is not one – one, we present only one algorithm that
converts a given number into its polynucleotide
representation.

(a) PN-NS_NUMBER_to_DNA (Number)

If Number is real then

DNA strand ← Real_to_DNA (Number)

If Number is integer then

DNA strand ← Integer_to_DNA (Number)

(b) Integer_to_DNA (Number)

DNA strand ← Conversion (Number)

If (Number < 0) then

DNA strand ← concatenation of (‘A’, DNA strand)

return (DNA strand)

(c) Conversion (Number)

i ← 1

j ← 1

num ← absolute value of Number

while (num > 0)

r ← num % 4

strand [j] ← itoc (r)

j ← j + 1;

num ← num/10

return (strand)

(d) itoc(r)

/this procedure changes according to the DNF /

if (r = 0)

return (‘A’)

if (r = 1)

return (‘T’)

if (r = 2)

return (‘G’)

if (r = 3)

return (‘C’)

138

A DNA Number System and its Applications 19

(e) Real_to_DNA (Number)

n ← the least possible number such that 4n ≥ Number

m ← the number of nucleotides (representing the precision)
to be displayed (depends on the user’s requirement)

DNA strand ← conversion (n)

DNA strand ← concatenation of (DNA strand, conversion
(m))

Num ← integer part of Number

DNA strand ← concatenation of (DNA strand, conversion
(Num))

F ← Number – Num

DNA strand ← concatenation of (DNA strand, findflo (F,m))

If (Number < 0)

then

DNA strand ← concatenation of (‘C’, DNA strand)

else

DNA strand ← concatenation of (‘G’, DNA strand)

(f) findflo (F, m)

for i ← 1 to m

F ← F * 64

R ← integral part of F

Str ← concatenation of (Str, conversion (R))

F ← F – R

return (Str)

5. AN EFFICIENT SEARCHING ALGORITHM USING
DNA COMPUTATION

Several computational problems require a particular item to
be searched from a given list of items. For example in a
database, one has to search a number of times, particular
record that could be identified uniquely by a key. There are
several algorithms for searching [16].

The most basic method that works all the time is the
linear search. When there is a list of “n” items, this algorithm
performs the task in O(n) time. Another method is the binary
search, which works when the given list is sorted either in
ascending order or in descending order. This algorithm
requires O(log n) time to search a particular item from a list
of “n” items. Another method uses binary search tree. In
this method the list of “n” items is organized into a binary
search tree and searching takes O(log n) time.

Now, we present a method that performs the task in a
unit time, once the input is given, irrespective of the input
size. This method uses the novel idea of DNA annealing
property.

5.1. DNA Algorithm for Searching

Suppose we have a set of numbers S = {a
1
, a

2
, a

3
… a

k
} (where

k ≥ 1) and a target number N. Let N be the item to be searched

in the set S. We present the new DNA algorithm to achieve
the search below as a stepwise procedure.

Step 1: Encode the given numbers {a
1
, a

2
, a

3
… a

k
} as

follows:

The DNA strand corresponding to a
j
 (1 ≤ j ≤ k) consists

of three (logical) parts, namely:

(1) The Polynucleotide representation of the number j
(refer to the definition of a Polynucleotide number explained
in section 4), which specifies the position of the number a

j

in the list

(2) A special codon, “GGG” to recognize that the
number is from the list (this is essential to prevent
‘unnecessary’ annealing of DNA strands corresponding to
different numbers in the set S)

(3) The DNA representation of the number a
j
.

The Polynucleotide number representing j is realized
with the function

f(0) = C, f(1) = G, f(2) = A, f(3) = T.

The DNA number corresponding to aj is realized with the
function

f(0) = A, f(1) = T, f(2) = G, f(3) = C.

And the strand corresponding to aj is the concatenation
of all the three strands described above.

Example 5.1: Suppose that the task is to search the
number 23 from the list of numbers 8, 2, 16, 23, 61, and 55.
Table 5.1 shows encryption of each aj

Table 5.1
Encryptions of Each Number a

j

Given Number Position Value a
j

8 = a
1

G AGA GGGGAGA
2 = a2 A AAG AGGGAAG
16 = a

3
T TAA TGGGTAA

23 = a
4

GC TTC GCGGGTTC
61 = a5 GG CCT GGGGGCCT
55 = a

6
GA CTC GAGGGCTC

Step 2: Synthesize DNA strand equivalent to the number
N which is to be searched, with the function f(0) = T, f(1) =
A, f(2) = C, f(3) = G and pad special codon CCC before
the strand equivalent to the number N. This special codon
works as an identification mark for the number to be
searched. For the above example, N = 23 and hence the
encoding of N is: CCCAAG.

Step 3: Pour all these strands into a 0.5 ml microfuge
tube. Mix the components well, spin briefly, and incubate
the mixture at 4 degrees centigrade to allow the annealing
reaction take place. If the target strand finds a match, it binds
to its complement to form a double strand.

For the above example, the following double strand
would be formed.

139

20 IJCIC

GCGGGTTC
CCCAAG

Step 4: The so-formed double strand is separated by
using hydroxyapatite column chromatography [17]. If double
strand is not formed, then column chromatography will not
give any result meaning that the item is not found. Success
of the column chromatography experiment for the above
example indicates the presence of the following double
strand:

GCGGGTTC
CCCAAG

Step 5: To read the position of the item found, an
enzyme called Taq DNA polymerase is added to the double
strand. As a result, the full-length double strand will
be formed. For the above example, the result of this step
would be the formation of the following full-length double
strand:

GCGGGTTC
CGCCCAAG

Step 6: Finally, the full-length double strand is
sequenced and the position is read. In the above example,
the position is read as GC which is equal to 4, which means
the item is found at location 4 in the list.

Complexity: Step 3 is the place where searching is
performed. The parallelism offered by DNA is highly
exploited at this step. The DNA annealing is so powerful
that the complementary strands bind together just in
nanoseconds irrespective of the number of other strands
present in the centrifuge. Each of the subsequent steps also
require just a constant time irrespective of the number of
items in the given set. Thus the above algorithm performs
searching in a constant time.

6. A CLASSICAL CRYPTOSYSTEM USING DNA

6.1. Introduction to Cryptography

Cryptography is the study of coding messages [18] into
a hidden form such that only some people who share
a particular secret information with the sender will be
able to decode the message and retrieve the actual
information.

The actual message is called the plain text and the coded
message is called the cipher text. The set of alphabets that
constitute the plain text messages is denoted by P and that
of cipher text messages is denoted by C.

An enciphering transformation or a cryptosystem is a
1-1 function f: P→→→→→C that converts the plain text message
into a cipher text. Note that, for every enciphering
transformation the inverse function is well defined. There
are many cryptosystems designed using conventional
mathematics [18]. Now, we shall describe a new
cryptosystem which is constructed on an entirely different
background, namely DNA.

6.2. DNA Cryptosystem

Let us describe the cryptosystem below in multiple steps.

Step 1: Let the plain text be the English language with
some punctuation marks namely ‘space’, ‘comma’ and ‘full
stop’ etc.:

i.e., P = {A, B, C,…, Z, , , , . } (3)

Let the cipher text alphabet be the following set of 64
characters:

C = {A, B, C,…,Z, a, b, c,…,z,+,-,*,/,%,@,#,$,!,?,>,< }(4)

Associate the values 0, 1, 2… 63 with each of the
characters in C respectively. This correspondence between
the elements of C and numbers from 0 to 63 is shown in
Table 6.2.1. In fact, the cryptosystem that we propose works
well with the same set C (described in (4)) independent of
the set P i.e. for any P we can follow the same method that
is being described to convert the plain text message units to
the cipher text over the alphabet C. We have fixed P as in
(3) just for the sake of convenience.

Table 6.2.1
The Correspondence between the Cipher Text Characters

(Elements of C) and Numbers from 0 to 63

Element Number Element Number
of C assigned of C assigned

A 0 g 32
B 1 h 33
C 2 i 34
D 3 j 35
E 4 k 36
F 5 l 37
G 6 m 38
H 7 n 39
I 8 o 40
J 9 p 41
K 10 q 42
L 11 r 43
M 12 s 44
N 13 t 45
O 14 u 46
P 15 v 47
Q 16 w 48
R 17 x 49
S 18 y 50
T 19 z 51
U 20 + 52
V 21 - 53
W 22 * 54
X 23 / 55
Y 24 % 56
Z 25 @ 57
a 26 # 58
b 27 $ 59
c 28 ! 60
d 29 ? 61
e 30 > 62
f 31 < 63

140

A DNA Number System and its Applications 21

Step 2: Assign DNA sequences to each element of P
such that the length of each strand is a multiple of 3. Let us
fix the length of our strands to 6 for the current discussion.
At this step, it is mandatory that no two distinct elements of
P are assigned the same DNA strand i.e., there should be a
one – one correspondence between the elements of the set P
and their corresponding DNA codes. The choice of DNA
sequences that are assigned to elements of P is purely on
the random basis. One such correspondence given in Table
6.2.2 is chosen for our discussion.

Table 6.2.2
Assignment of DNA Strands to the Plain Text Characters

Alphabet DNAcoding Alphabet DNAcoding

A GCGATA P GAGCGA

B CGATTC Q CCGCAG

C ATTAGC R TTTGGG

D AGTACA S AGCTAG

E ACGAAT T GGAATT

F GATGCA U CCTTGG

G GGCAAC V ACGTTT

H CATCAT W GGTTAA

I CTGGTT X TTCCGG

J ATAGCT Y TGCATG

K TATTCG Z CCCCCC

L TCGCGA , TTTTTT

M CAATAT . AGTAGT

N CTTGAA

O AACACA (SPACE) CGCGCG

Encryption (Step 3 through Step 6)

Step 3: Now, collect all DNA strands corresponding to each
character in the plain text message into a test tube to make a
union. For instance, if the plain text message is “MATHS”,
then the test tube contains the DNA strands which code for
M, A, T, H and S respectively. In our example this turns out
to be the union of the strands, CAATAT, GCGATA,
GGAATT, CATCAT, and AGCTAG.

Step 4: Now, run PCR (polymerase chain reaction) to
get the complementary sequence [19] for each single strand
present in the test tube. For the above example, the PCR
results in obtaining the following double strands.

CAATAT GCGATA GGAATT CATCAT AGCTAG
GTTATA CGCTAT CCTTAA GTAGTA TCGATC

Step 5: Identify the codons in the complementary DNA
strands (Table 6.2.3) from the double strands formed in step
4, and compute the numerical equivalent of each codon using
the following one – one function:

f(A) = 0, f(T) = 1, f(G) = 2, f(C) = 3 (5)

Table 6.2.3
The Codons in the Complementary Strands Obtained in
Step 4, their Numerical Equivalents, and the Equivalent

Cipher Text Characters

codons Numericale Corresponding
quivalent Character

GTT 37 l

ATA 4 E

CGC 59 $

TAT 17 R

CCT 61 ?

TAA 16 Q

GTA 36 k

GTA 36 k

TCG 30 e

ATC 7 H

Step 6: The Cipher text is the sequence of characters of
the set C numerically equivalent to the numbers obtained in
the step 5. From Table 6.2.3 we get the cipher text as
“lE$R?QkkeH” corresponding to the above example.

6.3. Decryption

The person on the receiving end, on receiving the cipher
text, follows the sequence of steps described below in order
to decode the cipher text. This consists of reading the actual
message and recognizing the numbers equivalent to each
character in the cipher text. Then synthesizes the
corresponding DNA codons, ligates them in that order, runs
PCR, logically divides the complementary sequence into 6-
base units (the length of the encoding strands) and retrieves
the actual message by looking up the association between
6-base length DNA sequences and plain text characters.
Table 6.3.1 shows the deciphering process. The result
obtained is “MATHS” as required.

6.4. The Secret Key of the Cryptosystem

Table 6.2.1, Table 6.2.2 and (4) together constitute the secret
key for the cryptosystem described above.

6.5. Security

The cryptosystem described above is not a public key
cryptosystem. But one can increase the security of the
cryptosystem by increasing the length of the DNA strands
assigned to each character in P (That is, by increasing the
length of the DNA strands in the Table 6.2.2). Because, if
the length of the DNA strands is n, then the number of trials
needed to correctly guess the DNA strand corresponding to
a particular character is 4n (in the worst case). So when n is
increased, it would be very difficult for the intruders to guess
the key, thus increasing the level of security of the
cryptosystem.

141

22 IJCIC

6.6. Complexity

PCR generates the complementary strands of each DNA
strand in parallel. This massive parallelism offered by DNA
makes this cryptosystem more efficient over the general
cryptosystems, which encode or decode messages letter by
letter using some mathematical function (enciphering/
deciphering transformations). Especially this cryptosystem
will be more appropriate when the message to be encoded
or decoded is very lengthy.

7. CONCLUSION

In this paper, we presented a DNA number system to
represent numbers in terms of DNA strands instead of
numerical digits. We have described a search method that
performs the task in a unit time, once the input is given,
irrespective of the input size. Further, we proposed a classical
cryptosystem in terms of DNA algorithm.

REFERENCES

[1] Adleman L. M: Molecular Computation of Solutions to
Combinatorial Problems. Science 1994, 266(11): 1021-
1024.

[2] Lipton R. J.: DNA Solution of Hard Computational
Problems. Science 1995, 268, (5210): 542-545.

[3] Winfree E., Yang X., Seeman N. C.: Universal
Computation via Self-assembly of DNA: Some Theory
and Experiments. In: Proceedings of DIMACS workshop:
1999 1996: American Mathematical Society; 1996.

[4] Roweis S., Winfree E., Burgoyne R., Chelyapov N. V.,
Goodman M. F., Rothemund P. W. K., Adleman. L. M.:
A Sticker-based model for DNA Computation. Journal
of Computational Biology 1998, 5(4): 615-629.

[5] Pãun G: DNA Computing Based on Splicing:
Universality Results. Theoretical Computer Science
2000, 231(2): 275-296.

[6] Okamoto A., Tanaka K., Saito I.: DNA Logic Gates.
Journal of American Chemical Society 2004, 126(30):
9458-9463.

[7] Wang X., Bao Z., Hu J., Wang S., Zhan A.: Solving the
SAT Problem using a DNA Computing Algorithm based
on Ligase Chain Reaction. Biosystems 2008, 91(1): 117-
125.

[8] Ignatova Z., Zimmermann K. H., Martínez-Pérez I: DNA
Computing Models: Springer-Verlag New York Inc; 2008.

[9] Qian L., Winfree E.: A Simple DNA Gate Motif for
Synthesizing Large-scale Circuits. DNA Computing
2009, 5347/2009: 70-89.

[10] Qian L., Soloveichik D., Winfree E.: Efficient Turing-
Universal Computation with DNA Polymers. In: The 16th
International Conference on DNA Computing and
Molecular Programming: June, 14-17 2010; Hong Kong
University of School of Science and Technology, Hong
Kong, China; 2010.

[11] Liu X, Wang S: Development of an in Vivo Computer
for SAT Problem. Mathematical and Computer
Modelling 2010, In press.

[12] Krasnogor N.: Systems Self-assembly: Elsevier Science
Ltd; 2008.

[13] Condon A., Harel D., Kok J. N., Salomaa A., Winfree
E.: Algorithmic Bioprocesses; 2009.

[14] Wang X., Zhang Q.: DNA Computing-based
Cryptography. In: 2009: IEEE; 2009: 1-3.

[15] Singh H., Chugh K., Dhaka H., Verma A. K.: DNA based
Cryptography: an Approach to Secure Mobile Networks.
International Journal of Computer Applications IJCA
2010, 1(19): 82-85.

[16] Cormen T. H., Leiserson C. E., Rivest R. L., Stein C.:
Introduction to Algorithms, Third Edition edn: The MIT
Press; 2009.

[17] Lodish H. F., Berk A: Molecular Cell Biology: WH
Freeman; 2008.

[18] Katz J., Lindell Y.: Introduction to Modern Cryptography:
Chapman & Hall / CRC; 2008.

[19] Mullis K. B., Ferré F., Gibbs R. A.: The Polymerase
Chain Reaction: Springer Science & Business; 1994.

Table 6.3.1
The Table Explaining the Deciphering Process

Cipher text l E $ R ? Q k k e H

Numerical Equivalents 37 4 59 17 61 16 36 36 30 7

Corresponding codons GTT ATA CGC TAT CCT TAA GTA GTA TCG ATC

After PCR: CAA TAT GCG ATA GGA ATT CAT CAT AGC TAG

After dividing
into 6- base units CAATAT GCGATA GGAATT CATCAT AGCTAG

Plain text: M A T H S

142

