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ABSTRACT: This paper addresses the estimation of the equilibrium points in uncertain genetic
regulatory networks with regulation functions of various type. The uncertainty is represented as an
unknown vector constrained in a polytope and affects the coefficients of the mathematical model of
the genetic regulatory network via affine functions. An algorithm is hence proposed for estimating
the equilibrium points, which progressively splits the concentrations space into smaller sets discarding
those that do not contain equilibrium points of the considered uncertain model. Some numerical
examples illustrate the proposed algorithm.
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INTRODUCTION

It is well-known that genetic regulatory
networks play a key role in systems biology, as
they explain the fundamental interactions
between genes and proteins in living organisms,
see e.g. [1-11]. An important problem in genetic
regulatory networks consists of determining the
equilibrium points. In fact, the knowledge of the
equilibrium points provides qualitative and
quantitative information about the temporal
evolution of mRNA and protein concentrations,
see e.g. [12] which considers the problem of
establishing stability of equilibrium points of
genetic regulatory networks. Determining the
equilibrium points amounts to solving a system
of nonlinear equations since the temporal
derivative of the mRNA and protein
concentrations is a nonlinear functions of these
concentrations. This operation is non-trivial
since there do not exist techniques that
guarantee to find all solutions of a generic
nonlinear system, see e.g. [13-16].

The problem, however, is even more difficult
in practice. In fact, mathematical models of
genetic regulatory networks are never exactly
known. This is due to various reasons, in
particular to the fact that the experimental data
used to identify the coefficients of the model are

unavoidably affected by noise and measurement
errors. This means that mathematical models
of genetic regulatory networks contain
uncertain parameters as proposed e.g. in [17].
These uncertain parameters affect the
equilibrium points that, as a result, are
uncertain as well.

This paper addresses the estimation of the
equilibrium points in uncertain genetic
regulatory networks. Specifically, regulation
functions of various type are considered through
a generalized model, and the uncertainty is
represented as an unknown vector constrained
in a polytope, which affects the mathematical
model of the genetic regulatory network through
affine functions. An algorithm is hence proposed
for estimating the equilibrium points, which
progressively splits the concentrations
space into smaller sets discarding those that
do not contain equilibrium points of the
considered uncertain model. The proposed
algorithm is illustrated through some numerical
examples.

The paper is organized as follows. The next
section introduces some preliminaries on
genetic regulatory networks. Then, we describe
the proposed algorithm and its properties. Some
numerical examples are hence provided in order
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to illustrate the proposed algorithm. Lastly, we
conclude the paper with some final remarks.

PRELIMINARIES

In this section we provide some preliminaries
about genetic regulatory networks and we state
the problem formulation. Before proceeding, let
us introduce the notation used throughout the
paper:

– R: space of real numbers;

– R
+
: space of non-negative real numbers,

i.e. {x ∈  R : x ≥ 0};

– 0
n
: null vector of size n × 1;

– ver(Z) : set of vertices of polytope Z;

– TF: transcriptor factor.

We consider genetic regulatory networks
described by differential equation models, in
particular according to

= − +& ( ) ( ) ( ( ))m t Am t b p t

where m, p ∈  R+
n are vectors containing the

concentrations of mRNA and protein; A, C and
D are diagonal positive definite matrices; and
b is a nonlinear function such that each entry
of b(p) is bounded and monotonic with respect
to each entry of p.

For instance, in genetic regulatory networks
with SUM form, the i-th entry of b(p) is
expressed as a linear combination of functions
of a single variable, i.e.

bi(p) = α i,1bi,1(p1) + … + α i,nbi,n(pn)

where α i,1,…, α i,n ∈  R and bi,1(p1),…, bi,n(pn) are
nonlinear, bounded and monotonic. In genetic
regulatory networks with PROD form, the
function b(p) is expressed as product of the
functions, i.e.

bi(p) = α ibi,1(p1)...bi,n(pn)

where α i ∈  R. Each function bi,j(pj) is typically
expressed as

bi,j(pj) = f(pj) if TF j is an activator of gene i

bi,j(pj) = 1 – f(pj) if TF j is a repressor of gene i

bi,j(pj) = γ otherwise

where γ
 
∈  R is a constant depending on the

model, in particular γ = 0 for SUM form and
γ = 1 for PROD form. The function f(x) is a
saturation function, i.e. a function satisfying the
following properties:

– f : R
+
 → [0,1]

– f(0) = 0

– f(x) → 1 as x → ∞

– f(x
2
) ≥ f(x

1
) for all x

1
, x

2
 : x

1
 ≤ x

2
.

In the case of Hill functions, f(x) has the form

f(x) = xh / (βh+ xh)

where β ∈  R and h is an integer known as Hill
coefficient.

As explained in the introduction,
mathematical models of genetic regulatory
networks always contain uncertainties on their
coefficients. This fact can be expressed by
introducing uncertain parameters in the
previous model, according to

where z is a vector containing the uncertain
parameters constrained according to

z ∈  Z

where Z is a polytope that we describe as

Z = {z ∈  Rr : z = a1z
(1) +…+ awz(w), ai ≥ 0, a1 +…+

aw = 1}

for some vectors z(1),…, z(w). The functions A(z),
C(z), D(z) and b(p, z) are affine in z and describe
an admissible genetic regulatory network for all
z ∈  Z.

The problem addressed in this paper
consists of estimating the set of possible
equilibrium points of the uncertain genetic
regulatory network, i.e.

S = {(m,p) ∈  R
+

2n : and =& 0p for some z∈ Z}.

ESTIMATING THE EQUILIBRIUM
POINT LOCATIONS

This section describes the proposed strategy. In
particular, we first explain how estimates of the
equilibrium point locations can be obtained
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through an iterative strategy based on worst-
case evaluations of some appropriate functions.
Then, we explain how these worst-case
evaluations can be performed based on the type
of functions and number of variables involved.
First of all, let us observe that S can be written
a s

S = ∪ z ∈  Z Sz

where Sz is the set of equilibrium points for the
considered value of z, i.e.

+= ∈ = =& &2{( , ) : 0 0}n
zS m p R m and p

Let us also observe that (m, p) belongs to Sz

if and only if the following system of nonlinear
equations is satisfied:

–A(z)m + b(p, z) = 0n

–C(z)p + D(z)m = 0n

m,p ∈  R+
n

From the second equation one can determine
m as a function of p since D(z) is nonsingular.
This implies that the system can be equivalently
rewritten as

A(z)D(z) –1C(z)p + b(p, z) = 0n

m = –D(z) –1C(z)p

p ∈  R+
n

Therefore, in the sequel we will focus on the
computation of the vectors p fulfilling this
system, which represent the p-part of Sz. We
indicate the set of such vectors as

Pz = {p ∈  R
+

n : A(z)D(z)–1C(z)p + b(p,z) = 0n}.

Similarly, we define the p-part of S as

P = {p ∈  R+
n : A(z)D(z)–1C(z)p + b(p, z) = 0n

for some z ∈  Z}.

The basic idea of the proposed strategy
consists of understanding whether a
hyperrectangle may contain points of P. To this,
let us denote a generic hyperrectangle as

H = {p ∈  R+
n : pi ∈  [pi-,pi+]}

for some pi-, pi+ 
∈  R

+
, and let us denote the

vertices of H as

ver(H) = {p(1),…, p(l)}.

The first step of the proposed strategy
consists of defining the function

A(H) = {p ∈  R
+

n : pi ∈  [qi-,qi+]}

where

qi- = minj=1,…,l qij-

qi+ = maxj=1,…,l qij+

and

qij- ≤ minz ∈  Z ui(p
(1), z)

qij+ ≥ maxz ∈  Z ui(p
(1), z)

where ui(p, z) is the i-th entry of the vector
function u(p,z) defined as

u(p, z) = –C(z)–1D(z)A(z)–1b(p, z).

We have that

p ∈  H ∩ P ⇒  p ∈  A(H).

Moreover,

H∩A(H) = empty-set ⇒  H∩P = empty-set.

Evaluating the function A(H) requires the
computation of the quantities q

i-
 and q

i+
 which

are the minimum and the maximum of finite
sequences. The construction of these sequences
amounts to finding bounds of the function u

i
(p,z)

for z variable over Z. In the sequel we will
explain how this step can be addressed
depending on the dependence of u(p,z) on z and
on the dimension of z.

From the function A(H) we define the
function B(H) according to the following rules:

– (Step B1) set H(0) = H and k = 0;

– (Step B2) set B
1
 = H(k) ∩ A(H(k));

– (Step B3) if B
1
 is empty, set B(H) = B

1

and exit;

– (Step B4) if B
1
 = H(k), set B(H) = B

1
 and

exit;

– (Step B5) set k = k+1, H(k) = B
1
 and go to

Step B2.

The function B(H) returns either the empty-
set, a point, or a hyperrectangle. Moreover:

B(H) is included in H

and

p ∈  H ∩ P ⇒  p ∈  B(H).

The function B(H) transforms a given
hyperrectangle via a sequence of applications
of the function A(·), and returns a set which can
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be either the empty set, a point, or a
hyperrectangle. By exploiting the function B(H)
we derive the algorithm for the computation of
the sought set P as follows.

Let H be a hyperrectangle and let us define
the function C(H,k) in the following way:

– (Step C1) if k = 0, set C(H, k) = B(H)
and exit;

– (Step C2) if B(H) is either the empty set
or a point, set C(H,k) = B(H) and exit;

– (Step C3) divide the hyperrectangle
B(H) in hyperrectangles H

1
,…, H

s
 such

that

Hi ∩ Hj = empty-set for all i ≠ j

∪ i=1,…,s Hi = H

– (Step C4) set

C(H, k) = ∪ i=1,…,s C(Hi,k-1)

and exit.

The function C(H,k) satisfies the following
properties:

C(H,k+1) is included in C(H,k)

and

P is included in C(R+
n, k).

The proposed strategy for estimating the
set of possible equilibrium points amounts to
evaluating the function C(R

+
n,k) for some

integer k ≥ 0. As explained above, the output
of this function is a set that does not increase
with k, and possibly decreases. Moreover,
for any k, the output is guaranteed to contain
all the possible equilibrium points, i.e. the
set P.

Let us observe that C(R+
n,k) is typically a

family of hyperrectangles, and that in special
cases this family can also contain isolated points
or be the empty set. Specifically, isolated points
may appear for example when A(z)D(z) –1C(z)p
+ b(p,z) = 0n admits solutions for p that are
independent on z. Then, C(R+

n,k) may be the
empty set when P is empty.

Now, let us address the construction of the
quantities qij- and qij+ which are a lower bound
and an upper bound of the function ui(p

(j),z) for
z variable over Z. We will discuss how these

bounds can be found in some cases of interest,
depending on the dependence of the function
u(p,z) on z and on the dimension of z.

First of all, let us observe that we aim to
determine bounds that are as tight as possible,
since the tighter q

ij- 
and q

ij+
 are, the less

conservative the estimate of P found is. In fact,
tighter bounds q

ij- 
and q

ij+
 yield smaller

hyperrectangles A(H), and consequently smaller
estimates B(H) and C(H,k). We indicate the
tightest values for q

ij- 
and q

ij+
 with q

ij-
*
 
and q

ij+
*

where

q
ij-

* = min
z ∈  Z 

u
i
(p(j),z)

qij+
* = maxz ∈  Z ui(p

(j),z).

Let us consider the case where the function
ui(p

(j),z) is monotonic with respect to each entry
of z. For instance, this is the case when ui(p

(j),z)
is linear in z. In such a case, qij-

*
 and qij+

* can be
simply found as

qij-
* = mink=1,…,w ui(p

(j),z(k))

q
ij+

* = max
k=1,…,w 

u
i
(p(j),z(k)).

Another case of interest is when z is a scalar,
e.g. r = 1. In fact, in such a case, ui(p

(j),z) is a
function of one (scalar) variable only, and Z is
an interval. This means that the computation
of qij-

*
 and qij+

* amounts to finding the roots of
an univariate function. Indeed:

qij-
* = minz ∈  W ui(p

(j),z)

qij+
* = maxz ∈  W ui(p

(j),z)

where W is a finite set given by

W = W1 ∪ W2

W1 = frontier of Z

W2 = {z ∈  Z : dui(p
(j),z)/dz = 0}.

Observe that, since ui(p
(j),z) is rational in z,

determining W2 (and hence W) amounts to
computing the roots of an univariate
polynomial, operation that can be easily done.

Lastly, for the case where u i(p(j),z) is a
generic rational function in z, bound qij- and qij+

(and possibly their tight values qij-
*
 and qij+

*) can
be found by solving convex optimization
problems with linear matrix inequality
constraints. See [18,19] and references therein
for details.
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ILLUSTRATIVE EXAMPLES

This section presents some illustrative
examples where the proposed strategy is
adopted to estimate the equilibrium point
locations of uncertain genetic regulatory
networks. The computations are performed with
Matlab 7 running under Windows 7 on a
standard personal computer (Intel Core 2, 3
GHz, 4 GB RAM).

Example 1

Let us start by considering a simple example
with an uncertain genetic regulatory network
described by

= − + −&
1 1 2( ) ( ) 1 ( ( ))m t m t f p t

= − + −&
2 2 1( ) 0.5 ( ) 2(1 ( ( )))m t m t f p t= − + +&1 1 1( ) ( ) (2 1) ( )p t p t z m t= − +&

2 2 2( ) 1.8 ( ) ( )p t p t m t

where f(x) is a Hill function according to

f(x) = x2/(1+ x2)

and where the uncertain parameter z is
constrained according to

z ∈  [0, 1].

This genetic regulatory network is
characterized by the fact that the TF 1 is a
regressor of the gene 2, and the TF 2 is a
regressor of the gene 1. The mathematical model
contains an uncertain parameter which affects
the linear part of the regulatory function, in
particular the dependence of the temporal
derivative of the protein concentration p1 on the
mRNA concentration m1.

Let us consider the problem of estimating
the equilibrium point locations, in particular the
set P. To this end, we adopt the proposed
strategy, which consists of evaluating the
function C(R+

2,k) for some chosen k, which
defines the number of recursive steps and hence
the accuracy of the solution.

Specifically, with k = 0 the positive quadrant
R

+
2 is shrunk via the function B(H) to the

rectangle shown in Figure 1a. With k = 1, this
rectangle is divided in four equal rectangles, on
which the function B(H) is re-applied. This

provides the three rectangles shown in Figure
1b: observe in fact that one rectangle has been
shrunk to the empty set. Proceeding in this way,
we obtain the estimates of P shown in Figure
1c (with k = 2) and Figure 1d (with k = 3).

Example 2

Let us start by considering a simple example
with an uncertain genetic regulatory network
described by

&
1 ( )m t

= -0.2m
1
(t) + (2.1 – z

1
)(1 – f(p

2
(t)))

& 2 ( )m t

 = –0.9m2(t) + (3.7 – 2z2)(1 – f(p1(t)))
+ 0.5f(p

2
(t))

&
1 ( )p t

= –0.5p1(t) + 1.4m1(t)

&
2 ( )p t

= –0.6p
2
(t) + 0.8m

2
(t)

where f(x) is a Hill function according to

f(x) = 1–exp(–x2)

and z is an uncertain parameter constrained
according to

z ∈  [–1, 1]2.

The mathematical model of this genetic
regulatory network contains two uncertain
parameters which affect the nonlinear part of
the regulatory function, in particular the
dependence of the temporal derivative of the
mRNA concentrations m1 and m2 on the protein
concentrations p1 and p2.

Let us estimate the equilibrium point
locations via the function C(R+

2, k). With k = 0
the positive quadrant R+

2 is shrunk via the
function B(H) to the rectangle shown in Figure
2a. With k = 1, k = 2 and k = 3 we obtain the
estimates shown in Figures 2b, 2c and 2d,
respectively.

Before concluding this example it is worth
observing that the saturation function is not a
Hill function, in particular f(pi) is irrational,
and there do not exist techniques able to find
all solutions of a system of nonlinear equations
with irrational nonlinearities.

Example 3

Here we consider the repressilator investigated
in Escherichia coli [20] where the coefficients
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of the mathematical model are not exactly
known. Specifically, we consider

= –mi(t) + zi(1 – f(pj(t)))

= –pi(t) + mi(t)

i = lacl,tetR,cl; j = cl,lacl,tetR

where f(x) is a Hill function according to

f(x) = x4/(1 + x4)

and z is an uncertain parameter constrained
according to

z1 ∈  [1,3]

z2 ∈  [2,5]

z3 ∈  [3,8].

The mathematical model contains three
uncertain parameters which affect the
nonlinear part of the regulatory function, in
particular the dependence of the temporal
derivative of the mRNA concentrations mi on
the protein concentrations pi.

Let us estimate the equilibrium point
locations via the function C(R+

3,k). With k = 0
the positive octant R+

3 is shrunk via the function
B(H) to the hyperrectangle shown in Figure 3a.
With k = 1, this hyperrectangle is divided in
eight equal hyperrectangles, on which the
function B(H) is re-applied. This provides the
hyperrectangle shown in Figure 3b: observe in
fact that seven hyperrectangles have been
shrunk to the empty set. With k = 2 and k = 3
we find the family of hyperrectangles shown in
Figure 3c–d.

CONCLUSION

We have proposed an algorithm for estimating
the equilibrium points in genetic regulatory
networks with polytopic uncertainties. The
proposed algorithm is based on worst-case
evaluations of some appropriate functions of
the uncertainty, and provides regions
containing all possible equilibrium points
via an iterative method that progressively
splits the concentrations space into
smaller sets discarding those that do not
contain equilibrium points of the considered
model.
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