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Abstract: In this paper, we focus on the synchronization design of coupled chaotic systems with various coupling congurations.
To handle the highly coupled nonlinear system, the T-S fuzzy model approach is adopted to model the overall system. First,
the fuzzy representation for general coupled systems is shown. Then, we discuss how to design the inner coupling matrix for
a given configuration matrix. Based on the T-S fuzzy model approach, we derive the synchronization conditions in terms of
linear matrix inequalities (LMIs) according to Lyapunov stability theory. Considering the well-known Lorenz attractors as
an example for coupled networks, we find that the LMIs are feasible for the fully connected network, a regular network, or
a small-world network. Finally, nice synchronization behavior is demonstrated via numerical simulation.
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I. INTRODUTION

Synchronization is an interesting phenomenon, which occurs
in many situations such as fire-flies light up synchronously
in the dark; the claps of audiences are spontaneously
synchronized in  a concert hall;  and so on. The
synchronization is the process where two or many systems
interact with each other and come to move together. The
technique due to synchronization finds various applications.
There are many benets of having synchronization phenomena
in engineering applications such as secure communications
[1]-[2] and harmonic oscillation generation [3]. In secure
communication, the synchronization indicates the capability
of recovering the transmitted message from the masking
signals. Here, our question is how to effectively synchronize
coupled chaotic systems for dierent type of coupling
configuration.

In 1998, Watts and Strogatz introduced networks of
coupled dynamical systems, namely small-world networks,
to model biological oscillators, Josephson junction arrays,
excitable media, neural networks, spatial games, genetic
control networks and many other self-organizing systems [4].
Compared to the regular networks and the random networks,
the small-world networks display their own importance.
Small-world networks have intermediate connectivity
properties but exhibit a high degree of clustering as in regular
networks and small average distance between vertices as in
random networks [4]-[11]. The well-known small-world
phenomenon is six degrees of separation which means that
something relates one person to another person by at most
six mediums [4]. In terms of the coupled complex systems,
the research issues in [12]-[15] focus on Turing pattern. In
[16], the stability criterion is depicted numerically in a set

of coupled Rossler-like oscillations. The threshold of the
coupling strength of a scale-free dynamical network is shown
in [17]. For any given coupling strength, it is shown in [18]
that the small-world networks will synchronize when the
numbers of nodes increase large enough. In [19], it indicates
that the synchronizability can be determined by an associated
feedback system, where the sensitive edge and the robust
edge are also introduced.

Chaotic signals are typically broadband, noise-like, and
dicult to predict. This property leads to some interesting
communications applications. For example, they can be used
in various contexts for masking information-bearing
waveforms. The chaotic signal masking technique introduced
in [20] appears to be a useful approach to secure
communications. The embedded message can be retrieved
from the information-bearing chaotic signals if the
synchronization between transmitter and receivers are
achieved. However, we notice that the treatment of the
nonlinearities for complex coupled chaotic systems is always
a challenge issue.  Nowadays,  most researches on
synchronization simplify the nonlinear systems into linear
ones based on approximated linearization at the equilibrium
points [17]-[19]. These methods may lead to ambiguous
results if the concerning signals are not close to the
equilibrium points. The T-S fuzzy approach [21]-[23] gives
a nice solution for synchronization design of coupled chaotic
systems. From the investigation of many well-known
continuous-time and discrete-time chaotic systems, we find
that an exact model without approximation error can be
constructed for each well-known chaotic system [1]-[2].
Moreover, accompanied by linear matrix inequality (LMI)
technique [24],  the analysis and design for  the

International Journal of Computational Intelligence in Control
Vol. 12 No. 2 (July-December, 2020)



106 International Journal of Computational Intelligence in Control

synchronization can be transformed into an easily solvable
problem.

The rest of the paper is organized as follows. The general
complex network model will be described in the next section.
In Section III, the proposed T-S fuzzy model method is
illustrated, where the way to design the synchronization and
the stability analysis are given. Numerical simulation results
are shown in Section IV. Finally, some conclusions with
summary are made in the Section V.

II. GENERAL COMPLEX NETWORK MODELS

We are now discussing the synchronization of coupled
chaotic system. At first, suppose that there are N independent
nonlinear dynamic systems which are with the same form
but exist individually. The N independent nonlinear systems
are listed as the following equations:

( ) ( ( )), 1, 2,...,i ix t f x t i N� �� (1)

where x
i
 � �n Rn denotes that state variables for ith system.

Different coupling configuration can affect the
synchronization behavior of coupled dynamical systems. The
coupling configuration can be described by graph theory.
Informally, a graph is simply a collection of nodes (or called
vertices) and connections (or called edges) together with a
rule about how the nodes are linked to one another with the
connections. From the small world theory [4]-[11] and the
studies of coupled complex systems [17]-[18], we know that
the coupled systems will be synchronous if appropriate
connections among the nodes exist. In this work, the coupling
connection between from node i to node j will be denoted
by c

ij
. If there is no connection between these two nodes,

then c
ij
 = 0, or else c

ij
 = 1. Hence, the structure topology of

the coupled systems can be described the matrix C = (c
ij
)

N×N
,

which is called the coupling conguration matrix. Each
diagonal entry of C is dened by

1,

( ) ( ), 1, 2, ...,
N

ii ij
j j i

c t c t i N
� �

� � �� (2)

which means that the matrix C is with zero row sum, i.e.

1

( ) 0, 1,2,...,
N

ij
j

c t i N
�

� �� (3)

A matrix satises (3) is called a diffusively coupled matrix
[18]. In each node, the coupling signals fed to and from other
nodes will be denoted by a matrix C, which will be called
the inner coupled matrix. We assume the inner coupled
matrix H is constant in this work. When the N independent
nodes in (1) are coupled with each other, the coupled network
is written as the following form:

1

( ) ( ( )) ( ) ( )
N

i i ij j
j

x t f x t c t Hx t
�

� ��� (4)

The synchronization of the coupled dynamical network
means that the state variables will be all the same; that is,
x

1
(t) = x

2
(t) = ����� = x

N
(t) = x

0
(t) as t � �, where x

0
(t) is the

solution of (1), i .e. ,  0 0( ) ( ( )).x t f x t��  To further

development, we let the synchronization error be dened as
follows:

e
i
(t) = x

i
(t) – x

0
(t), i = 1, 2, . . ., N (5)

After substituting (4) into (5), and using the property
(3), we obtain the error system for synchronization as
follows:

0 0
1 1

( ) ( ( )) ( ( )) ( ) ( ) ( ) ( )
N N

i i ij j ij
j j

e t f x t f x t c t Hx t c t Hx t
� �

� � � �� ��

0
1

( ( )) ( ( )) ( ) ( ), 1, 2, ...,
N

i ij j
j

f x t f x t c t H e t i N
�

� � � �� (6)

III. SYNCHRONIZATION ON T-S FUZZY MODEL

As mentioned in introduction, most well-known
chaotic systems can be exactly represented by Takagi-
Sugeno fuzzy linear model. In light of this, IF-THEN rules
will be employed here to deal with the synchronization
problem for the nonlinear systems (1). The exact Takagi-
Sugeno fuzzy model for the Nth independent nonlinear
dynamic systems (1) has the following fuzzy rule
representation :

Plant Rule k :

IF z
i1
(t) is F

1k
 and ����� z

iq
(t) is F

qk

THEN ( )ix t� = A
k
x

i
(t) (7)

where i = 1, 2, . . ., N and z
i1
(t) ~ z

iq
(t) are the premise

variables which would consist of the states of each system;
F

jk
 are the fuzzy sets; k  = 1, 2, ...r is the number of IF-

THEN rules; A
k
 is system matrices of appropriate

dimensions. Hence we let each system have the same
membership function F

jk
. To obtain the inferred output of

the fuzzy rules, we use the singleton fuzzier, product fuzzy
inference, and weighted average defuzzier. Therefore, we
have

1

( ) ( ( )) ( )
r

i k i k i
k

x t h x t A x t
�

� �� (8)

where i = 1, 2, . . ., N. Form the fuzzication, inference, and
defuzzication procedure, we have a properties µ

k
(x

i
(t)) =

1

( ( )),
q

jk i
j

F x t
�
� and h

k
(x

i
(t)) = µ

k
(x

i
(t)) / 

1

( ( ));
r

k i
k

x t
�

��  and

1

( ( )) 1
r

k i
k

h x t
�

�� for all t, where h
k
(x

i
(t)) � 0 are normalized

weights. Applying T-S fuzzy model approach to (6) the error
system can be rewritten as follows:

0 0
1 1

( ) ( ( )) ( ) ( ( )) ( )
r r

i k i k i k k
k k

e t h x t A x t h x t A x t
� �

� �� ��
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1

( ),
N

ij j
j

c He t
�

��  i = 1, 2, . . ., N (9)

Let ,C C H� � where � is the Kronecker product. Also we

dene

1 1 0

0

0

( ) ( ) ( )

( ) , ( ) , ( ) .

( ) ( ) ( )

N

N N

e t x t x t

e t x t and x t R

e t x t x t

� � � � � �
� � � � � �� � � �� � � � � �
� � � � � �� � � � � �

� � �

Consequently, the augmented error system is obtained
as follows:

1
1 1

( ) ( ( )) ,..., ( ( )) ( )
r r

k k k N k
k k

e t diag h x t A h x t A x t
� �

� �
� � �

� �
� ��

0 0 0
1 1

( ( )) ,..., ( ( )) ( )
r r

k k k k
k k

diag h x t A h x t A x t
� �

� �
� � �

� �
� �

( ),Ce t� (10)

After adding and subtracting the term below to (10)

0 0
1 1

( ( )) ,..., ( ( )) ( ),
r r

k k k k
k k

diag h x t A h x t A x t
� �

� �
� �
� �
� �

We can obtain the following equation:

0
1

( ) ( ( ))[ ] ( )
r

k N k
k

e t h x t I A C e t
�

� � ���

1{ , ..., } ( ),Ndiag x t� � � (11)

where

0
1 1

( ( )) ( ( )) , 1, 2, ..., .
r r

i k i k k k
k k

h x t A h x t A i N
� �

� � � �� �

However, the high dimension induced by Kronecker
product will make the solution H for synchronization
becomes hard to find. To cope with this problem, we
transpose (9) and obtain the following equation

0 0 0
1 1

( ) ( ) ( ( )) ( ) ( ( ))
r r

T T T T T
i i k k k k

k k

e t x t h x t A x t h x t A
� �

� �� ��

0
1 1

( ) ( ( )) ( ) ( ( ))
r r

T T T T
i k i k i k k

k k

x t h x t A x t h x t A
� �

� �� �

1

( ) .
N

T T
j ij

j

e t H c
�

�� (12)

Which leads to the following overall error system

1 1

0
1

( ) ( )

( ( ))

( ) ( )

T T

r
T

k k
kT T

N N

e t e t
d

h x t A
dt

e t e t �

� � � �
� � � ��� � � �
� � � �� � � �

�� �

1 1( ) ( )

( ( ))

( ) ( )

T T

T

T T
N N

e t e t

x t C H

e t e t

� � � �
� � � �� � �� � � �
� � � �� � � �

� � (13)

where we dene ( ) ( ( )) ( ) ( ( ))T T
i i ie t x t e t x t� � �  and

0
1 1

( ) ( ( )) ( ) ( ( )) ( ) ( ( ))
r r

T T T T T
i i i i k i k i k k

k k

e t x t x t h x t A x t h x t A
� �

� � �� �

It is obvious that, the high dimension structure like
C � H has vanished. We know that if C satises (3) and C is
a symmetric matrix, the eigenvalues of C are real and can
be expressed as follows:

0 = �
1
 > �

2
 ���

3
 �����������

N

Besides, C is orthogonally diagonalizable. That is, there
exists the following transformation:

1 0 0

0 0 .

0 0

T

N

D S CS

�� �
� �� �� �
� ��� �

�

After dening the transformation � �1 ( ) ( )
TT

NE S e t e t� � ,

(13) can be simplied to:

0
1

( ( )) ( ( )) .
r

T T
k k

k

E h x t EA E x t DEH
�

� � � ���

Obviously, lim 0
t

E
��

� is the goal of synchronization.

Before addressing the synchronization theorem, we need the
following assumption:

Assumption: The uncertainty ( ( ))i ix t� satises the

following bounding fashion inequalities

( ( )) ( ( )) , 1, 2,..., ,T T
i i i ix t x t WW i N� � � � (14)

with a constant matrix W.
Theorem 1: The chaotic synchronous system (4) which

satises (3) is asymptotically stable if there exist a positive
denite matrix P and a symmetric matrix H satisfy the
following inequalities

�P + P�T < 0 (15)

WP + PWT > 0 (16)

where

, 2,3,..., .T T
k iA W H i N� � � � � �

Proof : Dene a Lyapunov function candidate V = E
i
PET

i
,

where E
i
 is ith row of E. After taking time derivative, we

obtain

V� = T T
i i i iE PE E PE�� �

= (( ( ( )) )T T
i k iE A x t H P� � � �
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( ( ( )) ) )T T T T
k i iP A x t H E� � � � �

From (14), it follows that

( ) ( ) ,T Tt t WW� � �
and

( ) .T Tt P W P� �

Hence,

( ) ( )T T
i i i iE t PE E P t E� � � � T T

i i i iE W PE E PW E�

= T T
i i i iE W PE E PW E�

= ( )T T
i iE W P PW E�

If the inequality (16) is sustained. Therefore, by (17), it
follows that:

(( ) ( ) )T T T T T T
i k i k i iV E A W H P P A W H E� � � � � � � ��

Hence, if (15) is feasible, it results in 0.V ��  Hence,

( ) 0e t � as t ��� by the Lyapunov theorem.

Let PH = M, and M > 0. Then the inequality (15) can
be transformed to following LMI form:

( ) 0T T T
k k NA P PA WP PW M M� � � � � � � (18)

Hence, we can obtain P and M from (18) to get H. If no
constraints are applied to the inner coupling matrix H, the
existence of the feasible solutions is a trivial problem. But,
a higher  rank of the matrix H will make the real
implementation become harder. In light of this observation,
we now consider the case where H = KL with a column vector
K and a row vector L. Then, two cases are investigated in
the following subsections.

(A) Known K but with Unknown L

In this case, inequality (18) leads to

AT
k 
P + PA

k
 + WP + PWT + �

N
LTKTP + �

N
PKL < 0 (19)

After pre-multiply and post-multiply X = P–1 on the both
side of (19), we obtain

XAT
k
 + A

k
X + XW + WTX + �

N
XLTKT + �

N
KLX < 0 (20)

Let XLT = Y. Then (20) can be written as the following
LMIs:

XAT
k
 + A

k
X + XW + WTX + �

N
Y KT + �

N
KYT < 0 (21)

Hence, we can solve P and Y from (21) to get L.

(B) Known L but with Unknown K

In this case, we let KTP = Z. Then (19) can be written as
the follows LMIs:

AT
k
 P + PA

k
 + WP + PWT + �

N
LTZ + �

N
ZTL < 0 (22)

Hence, we can solve P and Z from (22) to get K.

IV. SIMULATIONS RESULTS

To verify the eectiveness of the proposed theoretical
derivation, we apply above method to Lorenz attractor, which

is a well known chaotic system. Every Lorenz attractor will
be coupled by other Lorenz attractors. Let x

i
(t) = [x

i1
(t), x

i2
(t),

x
i3
(t)]T. The Lorenz attractor of ith node is shown as

2 1

1 1 3 2

1 2 3

( ( ) ( ))

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

i i

i i i i i

i i i

a x t x t

x t cx t x t x t x t

x t x t bx t

�� �
� �� � �� �
� ��� �

�

1

1

0

1 ( ) ( )

0 ( )
i i

i

a a

c x t x t

x t b

�� �
� �� � �� �
� ��� �

(23)

By setting the parameters a = 10, b = 
8

,
3

 c = 28, it will

show chaotic phenomenon. According to T-S fuzzy modeling
approach, the premise variable of the fuzzy system is z

1
 =

x
i1
(t) and the fuzzy sets are

1 1 1 1
1 2

1 1 1 1

( ) ( )
, .i i i i

i i
i i i i

x t d D x t
F F

D d D d

� �
� �

� �

Indeed, D
i1
 = D, and d

i1
 = d, i = 1, 2, . . . N, for a common

region [d, D] = [50, 50] in which x
i
(t) lies.

At rst, we consider the small-world network with 10
nodes to discuss for simulation. The model of small-world
network and its coupling conguration matrix are shown in
Fig. 1 and Table 1, respectively. From the denition in [4]
and [10], we can obtain the average path length L = 1.644
and the clustering coecient C = 0.55 which show the short
average length and the high clustering coefficient.

Figure 1: The Small World Network
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Table 1
Small world Coupling Conguration Matrix

c
ij

1 2 3 4 5 6 7 8 9 10

1 -4 0 1 1 0 0 0 0 1 1

2 0 -4 1 1 0 1 0 0 0 1

3 1 1 -4 1 1 0 0 0 0 0

4 1 1 1 -4 1 0 0 0 0 0

5 0 0 1 1 -4 1 1 0 0 0

6 0 1 0 0 1 -4 1 1 0 0

7 0 0 0 1 0 1 -4 1 1 0

8 0 0 0 0 0 1 1 -4 1 1

9 1 0 0 0 0 0 1 1 -4 1

10 1 1 0 0 0 0 0 1 1 -4

The inner coupling matrix H of Table 1 obtained via
LMI toolbox is given below:

2.5966 0.2927 0

0.2927 12.984 0

0 0 13.581

� �
� �
� �
� �� �

In simulation, all initial values are set to be dierent as
shown as follows:

1 0 2 0 3 0 4 0

1 7 13 19

( ) 3 , ( ) 9 , ( ) 15 , ( ) 21 ,

5 11 17 23

x t x t x t x t

� � � � � � � �
� � � � � � � �� � � �� � � � � � � �
� � � � � � � �� � � � � � � �

5 0 6 0 7 0 8 0

25 2 8 14

( ) 27 , ( ) 4 , ( ) 10 , ( ) 16 ,

29 6 12 18

x t x t x t x t

� � � � � � � �
� � � � � � � �� � � �� � � � � � � �
� � � � � � � �� � � � � � � �

9 0 10 0

20 26

( ) 22 , ( ) 28

24 30

x t and x t

� � � �
� � � �� �� � � �
� � � �� � � �

(24)

The response of each error system and its phase portrait
are shown in Fig. 2 and Fig. 3-4 respectively. All systems
achieve synchronization rapidly. For the sake of space
consideration. In the following, we will use the regular
network with 4 nodes to discuss the case where the inner
coupling matrix H is restricted to be with rank 1.

First, the coupling conguration matrix of the regular
network is shown in Table 2. The initial values which are
set to be much dierent from each other are given below
(under the assumption that plant is still chaotic system):

1 0 2 0 3 0 4 0

1 7 13 19

( ) 3 , ( ) 9 , ( ) 15 , ( ) 21

5 11 17 23

x t x t x t and x t

� � � � � � � �
� � � � � � � �� � � �� � � � � � � �
� � � � � � � �� � � � � � � �

(25)

Case 1: Known K but with Unknown L

Here, we let K = [1 0 0]T and obtain the following L by
solving LMI (20):

L = [8.8086  7.3397  0.60156]

Figure 3: Phase Portrait between Each Node State 1 and state 2,
i = 2, 3, 4..., 10

Figure 2: Synchronization Errors between Node 1 and node i, i
= 2, 3, 4..., 10

Table 2
Coupling Conguration Matrix of the

Regular Network

c
ij

1 2 3 4

1 -2 1 0 1

2 1 -2 1 0

3 0 1 -2 1

4 1 0 1 -2
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The synchronization errors of state variables between
node 1 and node 2-4 are shown in Fig. 5.

Case 2: Known L but with Unknown K

Here, we let L = [1 0 0] and obtain the following K by solving
LMI (21):

K = 

61.651

15.918

0

� �
� �
� �
� �� �

The synchronization errors of state variables between
node 1 and node 2-4 are shown in Fig. 6.

Again, the synchronization is achieved rapidly.

V. CONCLUSION

A framework of inner  coupling matrix design for
synchronization of complex dynamical networks has been
proposed in this work. Based on the Lyapunov stability
theory, some synchronization conditions have been
established to ensure the complex dynamical networks
achieve synchronization. Moreover, the derived results are
transformed to the LMIs problem, so that suitable inner
coupling matrices can be easily obtained by using the Matlab
LMI toolbox. Lorenz chaotic attractors are adopted to verify
the theoretic results. Numerical simulations of
synchronization are shown to be consistent with theoretical
statements.
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