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Abstract: This paper presents a genetic approach for real-time identification and control of a helicopter plant. The proposed
approach employs a dual-stage strategy to keep track of the dynamic system as well as to optimize the corresponding
control parametersin the real-time control system. In order to evaluatethetrue potential of the online GA control, experiments
are conducted on a 2-degree-of-freedom helicopter plant and the overall control system is implemented on the dSPACE
DS1103 DSP controller board. Through different experiment setups, the robustness and effectiveness of the proposed
evolutionary technique for online identification and control are validated.
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1. INTRODUCTION

Genetic algorithms (GAs) are a class of stochastic search
techniquesinspired by the princi ples of evolution and natural
genetics. With a selection procedure based on the Darwinian
principle of “survival of the fittest” and a recombination
process that entails the exchange of information, GAs are
recognized to have propertiessuch asrobustness, paralleism,
and the ability to sample multiple potential solutions
simultaneoudly. Therefore, it is not surprising that genetic
techniques for real-world problems|[2], [3], [13], [14], [16]
have been gaining significant attention from researchersin
variousfields.

In the context of control system design, GAsarefinding
widespread applications in the design of control systems
through parameter optimization [6], [7], [10], [15], [17],
[19], [20]. The application of GAs to control engineering
can be broadly classified into two main areas: 1) offline
design and analysisand 2) online adaptation and tuning. In
the case of offline applications, GAs can be employed as a
search and optimization engine. For example, suitable
control laws can be evolved for aknown plant to satisfy the
given performancecriteria or to search for optimal parameter
settings for a particular controller structure. On the other
hand, genetic techniques may be used as a learning
mechanism toidentify characterigtics of unknown or dynamic
systemsin the case of online applications.

Kristinsson and Dumont [8] conducted the initial
research for applying standard GAs to online system
identification. Thealgorithmistried on areal plant, atank
system that has controllable inflow and measurable water
height. Specifically, the GA is used to estimate the poles

and zeros of the tank system with experimental data obtained
online. Based on the estimates, an adaptive pole placement
controller isthen designed. However, they were not able to
carry out any onlinecontrol on thetank.

Lennon and Passino [9] studied a general genetic
adaptive control system (GGAC) which essentially uses GAs
for both identifying the plant model and tuning of the
controller at the same time. Their particular application is
the cargo ship steering control. In this application, GA
evolves the model parameters by looking at the past input-
output valuesand attempting to minimizethe error between
the cargo ship heading and the output of the cargo ship
model. The best cargo ship model is passed directly to the
genetic adaptive controller for its fitness evaluation of the
population of contrallers. Fixed plant modelsand controllers
are incorporated into the population as a guarantee policy.
On the other hand, assessment of the scheme is conducted
by meansof simulation.

According to Linkensand Nyongesa[11], therearethree
general approaches to the use of GAs for online control
optimization: (1) by utilizing aprocessmodd, (2) by utilizing
the processdirectly, and (3) by permitting restricted tuning
of an existing controller. It should be noted that very few
applicationsinvolving actual real-timeuse of GAsfor contral
have been reported so far [4]. In one of such rarity, Ahmad
et al [1] used GAsfor onlinetuning of aProportional-Integral
(P1) controller for the temperature regulation in a heating
system. Their stated objective is to achieve the desired
temperature as quickly as possible with minimum or no
overshoot and results are presented for both time-invariant
and time-variant cases. In the latter case, theplant modd is
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updated after a number of samples using arecursive least
square (RLS) estimator. A single generation of GA, usinga
plant model, is evaluated between the sampling intervals.
The best solution found for that generation is allowed to
control the real plant. However, there are concerns about
the computation limitation between sampleswhich further
confines the application of GAsto process control.

In thispaper, a dual-stage genetic strategy is presented
to keep track of the dynamic system aswell as to optimize
the corresponding control parametersin thereal-time control
system. Thefirst sageisthe geneticidentification loop which
evolvesthe system model that isused to evaluate thefitness
of the candidate controllers. These controllers are actually
evolved in the genetic control-tuning loop and the best
controller will beimplemented for real-timecontrol. In order
to validate the potential of GAs for real-time control
applications, the proposed real-time genetic identification
and control architectureisapplied to a 2-degree-of-freedom
(2DOF) helicopter plant.

The organization of the paper is as follows. Section 2
providesabrief overview of the 2DOF helicopter plant used
tovalidate the performance of real-timegenetic contradl. This
is followed by the description of the system architecture as
well asthereal-time genetic identification and control stages
in Section 3. In Section 4, experiments are conducted on
the 2DOF helicopter plant to examine the performance of
the proposed genetic approach. Conclusions are drawn in
Section 5.

2. 2-DEGREE-OF-FREEDOM HELICOPTER CONTROL
SYSTEM

The control objective of this paper isto design a controller
that is capable of (1) stabilizing the hovering helicopter
model and (2) providing set-point tracking in the presence
of modeling uncertainty. Therefore, the first issue to be
addressed istheidentification of alinear time-invariant (LTI)
model which captures the main dynamical features of the
hovering helicopter.

The test bed used in the experiment is a 2DOF flight
simulator consisting of a helicopter model mounted on a
fixed base. The helicopter model has two propellersdriven
by DC motors. The pitch propeller and the yaw propeller
are used to control the pitch and yaw of the model,
respectively. Motion about the two degrees of freedom is
measured using two encoders. The control objective is to
command a desired pitch and yaw angle. The coupling
between the pitch and yaw motor torquesresultsin acoupled
2-input-2-output system. Electrical signals and power from
the pitch encoder and the motors are transmitted viaaslip
ring, which allows for unlimited yaw and eliminates the
possibility of wirestangling on theyaw axis.

Consider the 2DOF diagram shown in Figure 1. The pitch
propeller isdriven by a DC motor whose speed is controlled
viainput voltage \A The speed of rotation resultsin aforce
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Figure 1: Transformation Frames of 2DOF Helicopter

that acts normal to the body at a distance R from the pitch
axis. Therotation of thepropd ler, however, also causesaload
torque T on themotor shaft which isin turn seen at the yaw
axis (paralld axistheorem). Thus, rotating the pitch propeller
does not only cause mation about the pitch axisbut also about
theyaw axis. Similarly, theyaw motor causes aforce F toact
on the body at a distance R from the yaw axis aswell asa
torque T, which is experienced about the pitch axis. The
simplified equations of motion arethen given by,

J, P=RF, +G,(T,)+G,(p)

Jy ¥=RF+G,(T,) @
where p and y are the pitch angle and yaw angle; F and F
aretheforces generated by the propellers; Risthe horizontal
distance of the center of mass from the pivot point; T, and
T are the torques at the propeller axes; G, and G, are the
nonlinear functions representing the coupling; G, is a
gravitational constant disturbance; I and J, are the

moments of inertia of the body about the pitch and yaw axes,
respectively.

3. REAL-TIME GENETIC IDENTIFICATION AND
CONTROL

3.1. System Architecture for Real-Time Genetic
Identification and Control

Thereal-timeidentification and control architecture of the
2DOF helicopter is based on the general genetic adaptive
controller (GGAC) developed by Lennon and Passino [9].
The system architectureisrepresented by the block diagram
in Figure 2. The system can be viewed ashaving two layers.
Starting from the first layer, we have a typical control
feedback loop comprising of the helicopter plant and its
decoupled PID contraollers. Adaptation and optimization of
control parameters are achieved by means of the genetic
learning layer. Thislayer iscompased of two concurrent GA
loops: (1) the identification loop which evolves the best
model for thereal-time plant and (2) the control-tuning loop
which evolves the PID controller parameters based on the
evolved plant model.
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Figure 2: Block Diagram of Real-time GA Adaptive Control
System

3.2. Genetic ldentification

The evolved model from the identification loop is used for
the evaluation of candidate controller parametersin the GA
control-tuning loop. The use of a simulation model is
necessary because real system evaluation isnot possiblein
this case. Intuitively, the fundamental issue here is the
accuracy of the evolved model aswell astheamount of effort
devoted to the optimization process. In this paper,
identification is performed onlineand the simul ation model
is replaced whenever substantial difference between the
current plant model and best model in the evolving
population is detected.

The genetic identification procedure takes the
measurements of two motor voltage inputs, \A and \# and
the output degrees of pitch and yaw motion, p and y. The
purpose of genetic modding hereistoidentify alinear time-
invariant (LTI) model, which capturesthe main dynamical
features of the hovering helicopter. Sincethe helicopter has
significant cross coupling, a state-space multi-input-multi-
output (MIMO) identification method is preferred.
Linearization of standard nonlinear aero-dynamical
equations at the hovering state providesa suitable structure
for themodd. Given that thereisagravitational disturbance
term, integrators areneeded in theloop. Thus, two new gates,
d and z, are defined and the augmented state space
representation isgiven by,
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where k,, k., K., k,, are the unknown parameters to be
evolved by the genetic identification loop.

The simplicity of the model structure described above
allows us to focus the identification on just the relevant

frequency band. Specifically, the experimental dataispre-
processed to reducethe effects of thetrim. Onceadatarange
is selected, theinitial condition isremoved and the datais
sent through a 4™ order Butterworth bandpassfilter F above
0.3 Hz asdepicted in Figure 3.
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Figure 3: Identification Scheme

The overall system can be modeled by the transfer
function,

y(f) = G(©, q)u(t) 3)

where ® denotesthe set of parametersto beidentified and q
isthe standard forward shift operator. The corresponding z
operator will be omitted for smplicity. Given adescription
in (3) properly parameterized by the specific form and the
input-output data, u and y, the prediction error e can be
computed as follows,

&(t) = y(t) — G(©, g) u(t) ©

For multi-output systems, the identification method

consists of determining the parameter estimates by
minimizing thefollowing quadratic criterion using GA,

R , 13 T
© = aigmindet {W,le et)e (t)} (5)

where g(t) is the prediction error and N is the size of the
model estimation window or the number of time steps the
fitnessisaccumulated.

3.3. Genetic Controller Tuning

Sinceit is very difficult, if not impossible, to find an exact
representation of the actual dynamic model, the goal of the
control-tuning loop is to evolve a robust set of control
parameters. In general, robust controllers can be evolved
by taking into account the presence of uncertaintiesin the
real system. In dynamic model identification, uncertainty is
inherent to the evolved model dueto the noisy nature of the
sensors. Apart from the continuous identification process
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mai ntained by the genetic identification oop to reduce the
mismatch between the evolved model and thereal plant, the
change for a set of new control parameters and simulation
model is also triggered when the discrepancy between the
desired and actual response exceeds a certain threshold.

In this paper, the PID controller is considered for the
control of the helicopter plant. It should be noted that the
same approach can be easily extended to other control
schemes. The digital PID controllers are governed on the
discrete-time set {0, T, 2T, ..., kT, ...} by control law
equationsof theform,

u(k)T =K, (e(k)T +K zZ(K)T + K, w) ©)
9T = V= y(9T -
Zk+ DT=2zKT+Te(k Te R (8)

where T is the sampling period, eisthe error, v is the set-
point, and z € R" istheintegral of error. From (6), we note
that thetask of the control-tuning loop isto evol ve the set of
proportional, integral, and derivative gains{ K, K, K o that
optimizes system performance. Thefitnessiseval uated using
atime-weghted integral of the absolute valuecof error (ITAE)
given as,

ITAE = [ t]e(t)|ct ©)

This criterion balances error size and duration and
avoids positive and negative errors canceling.

3.4. Implementation

When applying GA for online optimization in thereal-time
control experiment, conditions have to be made regarding
some problems such as low computational efficiency, low
convergence rate, and premature convergence. In order to
reduce computational overhead due to the background
operations of real-timeidentification and control-tuning, the
evolutionary process is halted when satisfactory system
performanceisattained. On the other hand, the optimization
procedure can be triggered whenever performance
deterioration is detected. Therefore, considering one
optimization instance of the two GA optimization loops
involved in theexperiment, the tuning time can be computed
as,

T=(N-TYQ+T,+T, (10)
where N isthe model estimation window size, T isthedata
samplingtime, T,, and T_ arethe computational timefor the
two genetic loops.

Real-coded representation, wherethe parameters of the
plant model and the controllers are coded in floating point
and concatenated toform an individua in the GAs, isadopted
in both genetic loops since it is more efficient, provides
increased precision, and allowsfor acontinuous domain [18].
In this paper, eitism is implemented by allowing the best
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individual to surviveinto the next generation, otherwisethe
best individual may disappear due to sampling error,
crossover, or mutation. Individuals are sel ected to amating
pool through abinary tournament sel ection of the evalving
population. The selection criterion is based on the fithess
function described in (5) and (9) for the identification and
control-tuning loop, respectively.

3.5. Real-Time System Setup

Real-time hardware and software interfaces are
accomplished by means of dSPACE DS1103, MATLAB,
Real-Time Workshop, and Control Desk. Figure 4(a)
illustrates the functional connections between the control
system utilizing dSPACE hardware and the helicopter plant
while the complete design processis illustrated in Figure
4(b). Thedifferent software components, such as MATLAB,
Real-TimeWorkshop, MICROTEC C/C++ compiler, and the
software interface utility are run on the host PC. The
helicopter control system isfirst modeled on the ground with
block diagramsusing MATLAB/Simulink. The Real-Time
Interface (RTI) providesadditional Simulink blocksfor the
connection of 1/O channelsto the controller model as shown
in Figure 5. Then, the real-time C code for the complete
system is automatically generated by the Real-Time
Workshop in conjunction with the dSPACE RTI. The
download utility initializesthe dSPACE hardware, loadsthe
application executablefileintothe DS1103’'smemory area,
and initiates program execution. Another dSPACE software
utility, MLIB/MTRACE, allows online adjustment of
Simulink schematic parameters while the executable code
for the schematicsis running on the dSPA CE board without
interrupting the experiment. Incremental encoder interfaces
and D/A outputs make the board a powerful tool for rapid
control prototyping [5], [12].

4. RESULTS

In order to evaluate the effectiveness of the proposed real -
time genetic controller, simulations are carried out for
different casesin this section. Specifically, the performance
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Figure 5: dSPACE Real-time Interface with Actua Systems

of the identification loop is analyzed with respect to the
measured model whilethe control-tuning loop isexamined
based on its ability to reject noise and track set-point
changes. The parameter setting used in the experimentsis
tabulated in Table 1. The real-time genetic identification
and control are implemented in MATLAB and all the
simulations are performed on an Intel Pentium 111 933 MHz
computer.

The frequency response of the final evolved model and
the associated open-loop response for one optimization
instance with respect to the real helicopter plant response
are shown in Figure 6(a)-(d) and Figure 7(a)-(d),
respectively. The performance of the evolved controller
under theinfluence of external disturbances and changing
set-pointsareillustrated in Figure 8(a)-(b) and Figure 9(a)-
(b), respectively. In the simulation studies, the model
estimation is performed over a 10s time window with N =
1000 and T, = 0.01 and the average computational timeis
T, = 20s for plant modeling and T_ = 30s for controller
tuning.

From Figure 6, it can be noted that the genetic
identification loop is capabl e of evolving amodel that can
match the measured data well in the frequency range of O
to 10 rad/s. In addition, from Figure 7, we are able to
validate that the characteristics of the open-loop step
responses of the evolved model and the real plant are very
similar. From the system response under the influence of
external disturbancesin Figure 8(a)-(b), it can be observed
that the evol ved controller isinherently robust and capable

of returning to the desired set-point. Furthermore, by
comparing the system response to the application of
external disturbances at different times, it can be noted that
the evolving controller hasthe potential of adapting quickly
to the environment. Similar behavior can be observed
from the system response to set-point changes in Figure
9(a)-(b).
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Table 1
Parameter Setting for the Different Genetic Loops for
One Optimization Instance

Evaluation Population Crossover Mutation

Sze rate rate
Identification loop 5 10 0.8 0.02
Control-tuning Loop 20 30 0.8 0.02

5. CONCLUSION

In this paper, a real-time genetic identification and control
architectureis presented. This system architecture employs
adual-stage genetic strategy to update the simulation model
of a dynamic system and opti mize the associated control
parametersfor real-timecontrol. In thefirst stage, agenetic
identification loop, which evolves the system model, is
employed. In the second stage, which isthe genetic control-
tuning loop, candidate controllersare evolved and eval uated
based on the evolved plant modd. Subsequently, the best
controller will be implemented for real-time control
whenever certain conditions are satisfied.



In order to validate the potential of GAs for real-time

control applications, the proposed approach is applied to a
2DOF helicopter plant. In the experiments, it is noted that
thereal -time geneticidentification and control architecture
is capable of monitoring the system dynamics aswell as set-
point variations. Furthermore, it isable to adapt to external
disturbancesin the system by updating the model parameters
using data collected from thereal plant and the evolution of
the corresponding controllers. Thisimpliesthe applicability
of the proposed method to the control of dynamic systems
that may be exposed to large disturbances.
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