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Abstract: This paper presents a genetic approach for real-time identification and control of a helicopter plant. The proposed
approach employs a dual-stage strategy to keep track of the dynamic system as well as to optimize the corresponding
control parameters in the real-time control system. In order to evaluate the true potential of the online GA control, experiments
are conducted on a 2-degree-of-freedom helicopter plant and the overall control system is implemented on the dSPACE
DS1103 DSP controller board. Through different experiment setups, the robustness and effectiveness of the proposed
evolutionary technique for online identification and control are validated.
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1. INTRODUCTION

Genetic algorithms (GAs) are a class of stochastic search
techniques inspired by the principles of evolution and natural
genetics. With a selection procedure based on the Darwinian
principle of “survival of the fittest” and a recombination
process that entails the exchange of information, GAs are
recognized to have properties such as robustness, parallelism,
and the ability to sample multiple potential solutions
simultaneously. Therefore, it is not surprising that genetic
techniques for real-world problems [2], [3], [13], [14], [16]
have been gaining significant attention from researchers in
various fields.

In the context of control system design, GAs are finding
widespread applications in the design of control systems
through parameter optimization [6], [7], [10], [15], [17],
[19], [20]. The application of GAs to control engineering
can be broadly classified into two main areas: 1) offline
design and analysis and 2) online adaptation and tuning. In
the case of offline applications, GAs can be employed as a
search and optimization engine. For example, suitable
control laws can be evolved for a known plant to satisfy the
given performance criteria or to search for optimal parameter
settings for a particular controller structure. On the other
hand, genetic techniques may be used as a learning
mechanism to identify characteristics of unknown or dynamic
systems in the case of online applications.

Kristinsson and Dumont [8] conducted the initial
research for applying standard GAs to online system
identification. The algorithm is tried on a real plant, a tank
system that has controllable inflow and measurable water
height. Specifically, the GA is used to estimate the poles

and zeros of the tank system with experimental data obtained
online. Based on the estimates, an adaptive pole placement
controller is then designed. However, they were not able to
carry out any online control on the tank.

Lennon and Passino [9] studied a general genetic
adaptive control system (GGAC) which essentially uses GAs
for both identifying the plant model and tuning of the
controller at the same time. Their particular application is
the cargo ship steering control. In this application, GA
evolves the model parameters by looking at the past input-
output values and attempting to minimize the error between
the cargo ship heading and the output of the cargo ship
model. The best cargo ship model is passed directly to the
genetic adaptive controller for its fitness evaluation of the
population of controllers. Fixed plant models and controllers
are incorporated into the population as a guarantee policy.
On the other hand, assessment of the scheme is conducted
by means of simulation.

According to Linkens and Nyongesa [11], there are three
general approaches to the use of GAs for online control
optimization: (1) by utilizing a process model, (2) by utilizing
the process directly, and (3) by permitting restricted tuning
of an existing controller. It should be noted that very few
applications involving actual real-time use of GAs for control
have been reported so far [4]. In one of such rarity, Ahmad
et al [1] used GAs for online tuning of a Proportional-Integral
(PI) controller for the temperature regulation in a heating
system. Their stated objective is to achieve the desired
temperature as quickly as possible with minimum or no
overshoot and results are presented for both time-invariant
and time-variant cases. In the latter case, the plant model is
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updated after a number of samples using a recursive least
square (RLS) estimator. A single generation of GA, using a
plant model, is evaluated between the sampling intervals.
The best solution found for that generation is allowed to
control the real plant. However, there are concerns about
the computation limitation between samples which further
confines the application of GAs to process control.

In this paper, a dual-stage genetic strategy is presented
to keep track of the dynamic system as well as to optimize
the corresponding control parameters in the real-time control
system. The first stage is the genetic identification loop which
evolves the system model that is used to evaluate the fitness
of the candidate controllers. These controllers are actually
evolved in the genetic control-tuning loop and the best
controller will be implemented for real-time control. In order
to validate the potential of GAs for real-time control
applications, the proposed real-time genetic identification
and control architecture is applied to a 2-degree-of-freedom
(2DOF) helicopter plant.

The organization of the paper is as follows. Section 2
provides a brief overview of the 2DOF helicopter plant used
to validate the performance of real-time genetic control. This
is followed by the description of the system architecture as
well as the real-time genetic identification and control stages
in Section 3. In Section 4, experiments are conducted on
the 2DOF helicopter plant to examine the performance of
the proposed genetic approach. Conclusions are drawn in
Section 5.

2. 2-DEGREE-OF-FREEDOM HELICOPTER CONTROL
SYSTEM

The control objective of this paper is to design a controller
that is capable of (1) stabilizing the hovering helicopter
model and (2) providing set-point tracking in the presence
of modeling uncertainty. Therefore, the first issue to be
addressed is the identification of a linear time-invariant (LTI)
model which captures the main dynamical features of the
hovering helicopter.

The test bed used in the experiment is a 2DOF flight
simulator consisting of a helicopter model mounted on a
fixed base. The helicopter model has two propellers driven
by DC motors. The pitch propeller and the yaw propeller
are used to control the pitch and yaw of the model,
respectively. Motion about the two degrees of freedom is
measured using two encoders. The control objective is to
command a desired pitch and yaw angle. The coupling
between the pitch and yaw motor torques results in a coupled
2-input-2-output system. Electrical signals and power from
the pitch encoder and the motors are transmitted via a slip
ring, which allows for unlimited yaw and eliminates the
possibility of wires tangling on the yaw axis.

Consider the 2DOF diagram shown in Figure 1. The pitch
propeller is driven by a DC motor whose speed is controlled
via input voltage V

p
. The speed of rotation results in a force

that acts normal to the body at a distance R
p
 from the pitch

axis. The rotation of the propeller, however, also causes a load
torque T

p
 on the motor shaft which is in turn seen at the yaw

axis (parallel axis theorem). Thus, rotating the pitch propeller
does not only cause motion about the pitch axis but also about
the yaw axis. Similarly, the yaw motor causes a force F

y
 to act

on the body at a distance R
y
 from the yaw axis as well as a

torque T
y
 which is experienced about the pitch axis. The

simplified equations of motion are then given by,
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where p and y are the pitch angle and yaw angle; F
y
 and F

p

are the forces generated by the propellers; R is the horizontal
distance of the center of mass from the pivot point; T

y
 and

T
p
 are the torques at the propeller axes; G

y
 and G

p
 are the

nonlinear functions representing the coupling; G
d
 is a

gravitational constant disturbance; J
pp

 and J
yy

 are the
moments of inertia of the body about the pitch and yaw axes,
respectively.

3. REAL-TIME GENETIC IDENTIFICATION AND
CONTROL

3.1. System Architecture for Real-Time Genetic
Identification and Control

The real-time identification and control architecture of the
2DOF helicopter is based on the general genetic adaptive
controller (GGAC) developed by Lennon and Passino [9].
The system architecture is represented by the block diagram
in Figure 2. The system can be viewed as having two layers.
Starting from the first layer, we have a typical control
feedback loop comprising of the helicopter plant and its
decoupled PID controllers. Adaptation and optimization of
control parameters are achieved by means of the genetic
learning layer. This layer is composed of two concurrent GA
loops: (1) the identification loop which evolves the best
model for the real-time plant and (2) the control-tuning loop
which evolves the PID controller parameters based on the
evolved plant model.

Figure 1: Transformation Frames of 2DOF Helicopter
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3.2. Genetic Identification

The evolved model from the identification loop is used for
the evaluation of candidate controller parameters in the GA
control-tuning loop. The use of a simulation model is
necessary because real system evaluation is not possible in
this case. Intuitively, the fundamental issue here is the
accuracy of the evolved model as well as the amount of effort
devoted to the optimization process. In this paper,
identification is performed online and the simulation model
is replaced whenever substantial difference between the
current plant model and best model in the evolving
population is detected.

The genetic identification procedure takes the
measurements of two motor voltage inputs, V

p
 and V

y
, and

the output degrees of pitch and yaw motion, p and y. The
purpose of genetic modeling here is to identify a linear time-
invariant (LTI) model, which captures the main dynamical
features of the hovering helicopter. Since the helicopter has
significant cross coupling, a state-space multi-input-multi-
output (MIMO) identification method is preferred.
Linearization of standard nonlinear aero-dynamical
equations at the hovering state provides a suitable structure
for the model. Given that there is a gravitational disturbance
term, integrators are needed in the loop. Thus, two new states,
d and z, are defined and the augmented state space
representation is given by,
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where k
11

, k
12

, k
21

, k
22

 are the unknown parameters to be
evolved by the genetic identification loop.

The simplicity of the model structure described above
allows us to focus the identification on just the relevant

frequency band. Specifically, the experimental data is pre-
processed to reduce the effects of the trim. Once a data range
is selected, the initial condition is removed and the data is
sent through a 4th order Butterworth bandpass filter F above
0.3 Hz as depicted in Figure 3.

Figure 2: Block Diagram of Real-time GA Adaptive Control
System

Figure 3: Identification Scheme
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The overall system can be modeled by the transfer
function,

ˆ( ) ( , ) ( )y t G q u t� � (3)

where � denotes the set of parameters to be identified and q
is the standard forward shift operator. The corresponding z
operator will be omitted for simplicity. Given a description
in (3) properly parameterized by the specific form and the
input-output data, u and y, the prediction error e can be
computed as follows,

e(t) = y(t) – G(�, q) u(t) (4)

For multi-output systems, the identification method
consists of determining the parameter estimates by
minimizing the following quadratic criterion using GA,

1

1ˆ arg min det ( ) ( )
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where e(t) is the prediction error and N is the size of the
model estimation window or the number of time steps the
fitness is accumulated.

3.3. Genetic Controller Tuning

Since it is very difficult, if not impossible, to find an exact
representation of the actual dynamic model, the goal of the
control-tuning loop is to evolve a robust set of control
parameters. In general, robust controllers can be evolved
by taking into account the presence of uncertainties in the
real system. In dynamic model identification, uncertainty is
inherent to the evolved model due to the noisy nature of the
sensors. Apart from the continuous identification process
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maintained by the genetic identification loop to reduce the
mismatch between the evolved model and the real plant, the
change for a set of new control parameters and simulation
model is also triggered when the discrepancy between the
desired and actual response exceeds a certain threshold.

In this paper, the PID controller is considered for the
control of the helicopter plant. It should be noted that the
same approach can be easily extended to other control
schemes. The digital PID controllers are governed on the
discrete-time set {0, T, 2T, …, kT, …} by control law
equations of the form,

( ) ( 1)
( ) ( ) ( )p i d

e k T e k T
u k T K e k T K z k T K

T

� �� �� � �� �� � (6)

e(k)T = v – y(k)T (7)

z(k + 1)T = z(k)T + Te(k) T � R+ (8)

where T is the sampling period, e is the error, v is the set-
point, and z � R+ is the integral of error. From (6), we note
that the task of the control-tuning loop is to evolve the set of
proportional, integral, and derivative gains {K

p
, K

i
, K

d
} that

optimizes system performance. The fitness is evaluated using
a time-weighted integral of the absolute value of error (ITAE)
given as,

0
( )

T
ITAE t e t dt� � (9)

This criterion balances error size and duration and
avoids positive and negative errors canceling.

3.4. Implementation

When applying GA for online optimization in the real-time
control experiment, conditions have to be made regarding
some problems such as low computational efficiency, low
convergence rate, and premature convergence. In order to
reduce computational overhead due to the background
operations of real-time identification and control-tuning, the
evolutionary process is halted when satisfactory system
performance is attained. On the other hand, the optimization
procedure can be triggered whenever performance
deterioration is detected. Therefore, considering one
optimization instance of the two GA optimization loops
involved in the experiment, the tuning time can be computed
as,

T = (N � T
S
) + T

M
 + T

C
(10)

where N is the model estimation window size, T
S
 is the data

sampling time, T
M
 and T

C
 are the computational time for the

two genetic loops.

Real-coded representation, where the parameters of the
plant model and the controllers are coded in floating point
and concatenated to form an individual in the GAs, is adopted
in both genetic loops since it is more efficient, provides
increased precision, and allows for a continuous domain [18].
In this paper, elitism is implemented by allowing the best

individual to survive into the next generation, otherwise the
best individual may disappear due to sampling error,
crossover, or mutation. Individuals are selected to a mating
pool through a binary tournament selection of the evolving
population. The selection criterion is based on the fitness
function described in (5) and (9) for the identification and
control-tuning loop, respectively.

3.5. Real-Time System Setup

Real-time hardware and software interfaces are
accomplished by means of dSPACE DS1103, MATLAB,
Real-Time Workshop, and Control Desk. Figure 4(a)
illustrates the functional connections between the control
system utilizing dSPACE hardware and the helicopter plant
while the complete design process is illustrated in Figure
4(b). The different software components, such as MATLAB,
Real-Time Workshop, MICROTEC C/C++ compiler, and the
software interface utility are run on the host PC. The
helicopter control system is first modeled on the ground with
block diagrams using MATLAB/Simulink. The Real-Time
Interface (RTI) provides additional Simulink blocks for the
connection of I/O channels to the controller model as shown
in Figure 5. Then, the real-time C code for the complete
system is automatically generated by the Real-Time
Workshop in conjunction with the dSPACE RTI. The
download utility initializes the dSPACE hardware, loads the
application executable file into the DS1103’s memory area,
and initiates program execution. Another dSPACE software
utility, MLIB/MTRACE, allows online adjustment of
Simulink schematic parameters while the executable code
for the schematics is running on the dSPACE board without
interrupting the experiment. Incremental encoder interfaces
and D/A outputs make the board a powerful tool for rapid
control prototyping [5], [12].

4. RESULTS

In order to evaluate the effectiveness of the proposed real-
time genetic controller, simulations are carried out for
different cases in this section. Specifically, the performance

Figure 4: (a) DS1103 Real-time Control System and (b) Real-
Time Software Design Process
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of the identification loop is analyzed with respect to the
measured model while the control-tuning loop is examined
based on its ability to reject noise and track set-point
changes. The parameter setting used in the experiments is
tabulated in Table 1. The real-time genetic identification
and control are implemented in MATLAB and all the
simulations are performed on an Intel Pentium III 933 MHz
computer.

The frequency response of the final evolved model and
the associated open-loop response for one optimization
instance with respect to the real helicopter plant response
are shown in Figure 6(a)-(d) and Figure 7(a)-(d),
respectively. The performance of the evolved controller
under the influence of external disturbances and changing
set-points are illustrated in Figure 8(a)-(b) and Figure 9(a)-
(b), respectively. In the simulation studies, the model
estimation is performed over a 10s time window with N =
1000 and T

S
 = 0.01 and the average computational time is

T
M
 = 20s for plant modeling and T

C
 = 30s for controller

tuning.

From Figure 6, it can be noted that the genetic
identification loop is capable of evolving a model that can
match the measured data well in the frequency range of 0
to 10 rad/s. In addition, from Figure 7, we are able to
validate that the characteristics of the open-loop step
responses of the evolved model and the real plant are very
similar. From the system response under the influence of
external disturbances in Figure 8(a)-(b), it can be observed
that the evolved controller is inherently robust and capable

Figure 5: dSPACE Real-time Interface with Actual Systems

of returning to the desired set-point. Furthermore, by
comparing the system response to the application of
external disturbances at different times, it can be noted that
the evolving controller has the potential of adapting quickly
to the environment. Similar behavior can be observed
from the system response to set-point changes in Figure
9(a)-(b).

(a)
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(b)

(c)

Figure 6: Frequency Response of Identified model vs. Real Plant
(a) G

p11
(s) (Pitch-Up), (b) G

p22
(s) (Pitch-Uy), (c) G

p21
(s)

(Yaw-Up), and (d) G
p22

(s) (Yaw–Uy)

(d)

(a)

(b)

(c)
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(d)

Figure 7: Open-loop Step Response of Identified Model vs. Real
Plant (a) G

p11
(s) (Pitch-Up), (b) G

p22
(s) (Pitch-Uy), (c)

G
p21

(s) (Yaw-Up), and (d) G
p22

(s) (Yaw–Uy)

(a)

(b)

Figure 8: Evolved Controller under the Influence of External
Disturbance for (a) Pitch and (b) Yaw

(a)

Figure 9: Evolved Controller Tracking Changing Set-point for (a)
Pitch and (b) Yaw

(b)

5. CONCLUSION

In this paper, a real-time genetic identification and control
architecture is presented. This system architecture employs
a dual-stage genetic strategy to update the simulation model
of a dynamic system and optimize the associated control
parameters for real-time control. In the first stage, a genetic
identification loop, which evolves the system model, is
employed. In the second stage, which is the genetic control-
tuning loop, candidate controllers are evolved and evaluated
based on the evolved plant model. Subsequently, the best
controller will be implemented for real-time control
whenever certain conditions are satisfied.

Table 1
Parameter Setting for the Different Genetic Loops for

One Optimization Instance

Evaluation Population Crossover Mutation
Size rate rate

Identification loop 5 10 0.8 0.02

Control-tuning Loop 20 30 0.8 0.02
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In order to validate the potential of GAs for real-time
control applications, the proposed approach is applied to a
2DOF helicopter plant. In the experiments, it is noted that
the real-time genetic identification and control architecture
is capable of monitoring the system dynamics as well as set-
point variations. Furthermore, it is able to adapt to external
disturbances in the system by updating the model parameters
using data collected from the real plant and the evolution of
the corresponding controllers. This implies the applicability
of the proposed method to the control of dynamic systems
that may be exposed to large disturbances.
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