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Abstract - This paper presents a novel model for 
describing the position of robotic arms using quantum-
computing tools.  
Because of the successful use and implementation of the 
quaternions in the rigid bodies and robotic arms’ 

kinematics modelling, this research examines the 
equivalence between the quaternions and the Pauli 
matrices in the context of modelling the robotic arm’s 

position. Consequently, the paper proposes a model 
based on the established equivalence between the 
quaternions and the Pauli gates through the formulation 
of the quaternions in the 2-D matrix representation. This 
equivalence offers the possibility of defining quantum 
circuits and algorithms for modelling robotic arm 
movement. 
As an illustrative example, the paper presents a SCARA 
robotic arm model using this new technique. The 
simulation results underline that the classic methods and 
the quantum-based model appear to be equivalent in 
vector spaces and emphasize the effectiveness of the 
proposed method. 

As a main result, the quantum model of the position of 
the robotic arm can be implemented using only one 
qubit, which brings compactness to the proposed model. 
Unlike the classic computers that compute the position 
models using successive rotations and translations, 
involving many multiplications and additions operations, 
including many bytes, depending on the machine’s 

resolution, this model is very important as it contributes 
to the reduction of the computing resources for the 
future quantum computers. 
 
Index Terms - Quantum computing, Quaternion, Pauli 
matrices, Robotic arm, Position’s model. 

INTRODUCTION 

Quantum computing is a rapidly expanding field of 
research that is expected to revolutionize computers and 
software in the near future. New concepts are being 
developed all around the world to support the engineering of 
practical quantum computers. Most of the progress achieved 
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so far has focused on control, electrical and electronics 
engineering related concepts, namely the quantum Laplace 
transform [1, 2] and Fourier transform [3], [4], solving 
systems of linear differential equations [5-12] and 
optimization based on the Grover algorithm [13, 14]. The 
field remains replete with opportunities for innovation as 
well as improvement and optimization of the tools 
developed to date [15, 16]. 

The quantum technological revolution is of special 
interest in mechatronics-related fields and robotics. Robotic 
arm kinematics models express the spatial position and 
orientation of an end-effector relative to the base frame 
using the angular status of joints, and vice versa. In forward 
models, Denavit-Hartenberg formalism is used to establish 
joint frames and determine the homogenous matrices that 
allow pas-sage from one joint variable frame to the next 
until the end-effector frame is reached [17-22]. The product 
of these matrices yields the Cartesian x–y–z positional 
function of the joint variables. Another recent approach to 
robotic arm position and orientation modelling is to use 
quaternions, single and dual [23-28]. To the best of our 
knowledge, no quantum-computing-based model of 
industrial robotic arms has been published, nor has the 
quaternions based Pauli matrices model for arm modelling 
purposes. 

As a first step in this direction, we examine a quantum 
forward kinematics model of a robotic arm, implemented 
successfully based on results that match those of classical 
approaches, namely quaternions and Denavit-Hartenberg 
formalism. We feel that this represents a major step forward 
in robotics and in solid body quantum modelling and 
simulation in general. 

MATERIALS AND METHODS 

I. Articulated robotic arm modelling 

In the sections below, we present the quantum-tool-based 
quaternions approach to robotic arm kinematics modelling 
and introduce the equivalence between quaternions and 
quantum computing formalism based on Pauli matrices. 

 
• Quaternions: Discovered by Sir William Hamilton in 

1843 [28], quaternions are hyper-complex numbers that 
have a real part and three imaginary parts. A typical 
quaternion can be written in a unique form where 𝑟 is 
the real part and 𝑥, 𝑦 and 𝑧 the imaginary parts. 

𝑞 = 𝑟 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 (1) 
𝑖, 𝑗 and 𝑘 are pure imaginary numbers that satisfy the 
condition 

𝑖2 = 𝑗2 = 𝑘2 = −1 (2) 
Numbers 𝑖, 𝑗 and 𝑘 also satisfy the following 
conditions: 

{
 
 

 
 
𝑖𝑗 = 𝑘
𝑗𝑘 = 𝑖
𝑘𝑖 = 𝑗
𝑗𝑖 = −𝑘
𝑘𝑗 = −𝑖
𝑖𝑘 = −𝑗

 (3) 

A three-dimensional vector 𝑣(𝑥, 𝑦, 𝑧)can be expressed 
as a pure imaginary quaternion: 

𝑞 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 (4) 
The conjugate of which can be defined as follows: 

𝑞∗ = 𝑟 − 𝑥𝑖 − 𝑦𝑗 − 𝑧𝑘 (5) 
A unit quaternion has a unit norm ‖𝑞‖ = 1, given the 
quaternion’s norm: 

‖𝑞‖ = √𝑟2 + 𝑥2 + 𝑦2 + 𝑧2 (6) 
Given this definition of quaternion norm, the inverse of 
a quaternion is computed as: 

𝑞−1 =
𝑞∗

‖𝑞‖
 (7) 

A quaternion in a (4×4) dimension space can be 
represented as follows: 

𝑞 = (

𝑟 −𝑥
𝑥 𝑟

−𝑦 −𝑧
−𝑧 −𝑦

𝑦 𝑧
𝑧 −𝑦

𝑟 −𝑥
𝑥 𝑟

) (8) 

A quaternion can also be represented in (2×2) 
dimension space as follows: 

𝑞 = (
𝑟 + 𝑥𝑖 −𝑦 − 𝑧𝑖
𝑦 − 𝑧𝑖 𝑟 − 𝑥𝑖

) (9) 

Which can be linked directly to the quantum domain 
using the new entities, 𝐼𝑥, 𝐼𝑦  and 𝐼𝑧 

𝑞 = 𝑟𝐼 + 𝑥𝐼𝑥 + 𝑦𝐼𝑦 + 𝑧𝐼𝑧 (10) 

Where 𝐼 is the (2 × 2) identity matrix (1 0
0 1

)and 𝐼𝑥, 𝐼𝑦  

and 𝐼𝑧 are defined as follows: 

𝐼𝑥 = (
−𝑖 0
0 𝑖

), 𝐼𝑦 = (
0 1
−1 0

), 𝐼𝑧 = (
0 −𝑖
−𝑖 0

) 

The product of two quaternions 𝑞1 = 𝑟1 + 𝑥1𝑖 + 𝑦1𝑗 +
𝑧1𝑘 and 𝑞2 = 𝑟2 + 𝑥2𝑖 + 𝑦2𝑗 + 𝑧2𝑘can be expressed as 
follows: 

𝑞1𝑞2 = 𝑟12 + 𝑥12𝑖 + 𝑦12𝑗 + 𝑧12𝑘 (11) 
The product of two quaternions is another quaternion, 
with the real part 𝑟12 and the imaginary parts 𝑥12, 𝑦12 
and 𝑧12 defined as follows: 

𝑟12 = 𝑟1𝑟2 − 𝑥1𝑥2 − 𝑦1𝑦2 − 𝑧1𝑧2 
𝑥12 = 𝑥1𝑟2 + 𝑟1𝑥2 − 𝑧1𝑦2 − 𝑦1𝑧2 
𝑦12 = 𝑦1𝑟2 + 𝑧1𝑥2 + 𝑟1𝑦2 − 𝑥1𝑧2 
𝑧12 = 𝑧1𝑟2 − 𝑦1𝑥2 + 𝑥1𝑦2 + 𝑟1𝑧2 

For computing purposes, it is more convenient to 
represent the quaternion product as matrix product. 
Hence, a quaternion 𝑞1 can be represented in (4x4) 
dimension space by the matrix 𝑀1. Therefore, the 
quaternions product can be expressed as follows 

𝑞1𝑞2 = 𝑀1𝑄1 (12) 
Where 
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𝑀1 = (

𝑟1 −𝑥1
𝑥1 𝑟1

−𝑦1 −𝑧1
−𝑧1 −𝑦1

𝑦1 𝑧1
𝑧1 −𝑦1

𝑟1 −𝑥1
𝑥1 𝑟1

)and𝑄1 = (

𝑟2
𝑥2
𝑦2
𝑧2

) 

• Expressing positions and rotations using 
quaternions: An angle θ rotation around a unit vector 

𝑢 = 𝑢𝑥𝑖 + 𝑢𝑦𝑗 + 𝑢𝑧𝑘√𝑢𝑥
2 + 𝑢𝑦

2 + 𝑢𝑧
2 = 1) is given 

by the quaternion defined below: 

𝑞𝑅 = 𝑐𝑜𝑠 (
𝜃

2
) + 𝑠𝑖𝑛 (

𝜃

2
) 𝑢 = 𝑐𝑜𝑠 (

𝜃

2
) +

𝑠𝑖𝑛 (
𝜃

2
) (𝑢𝑥𝑖 + 𝑢𝑦𝑗 + 𝑢𝑧𝑘) (13) 

An angle θ rotation of a vector 𝑣 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 
around u is given by the sandwich product 
𝑞𝑅𝑣𝑞𝑅

∗where the conjugate of 𝑞𝑅 

𝑞𝑅
∗ = 𝑐𝑜𝑠 (

𝜃

2
) − 𝑠𝑖𝑛 (

𝜃

2
) 𝑢 = 𝑐𝑜𝑠 (

𝜃

2
) +

𝑠𝑖𝑛 (−
𝜃

2
) 𝑢 (14) 

Since 𝑞𝑅 is a unit quaternion, its conjugate is also its 
inverse. 
Translation from an initial position 𝑞𝑖 to a final position 
𝑞𝑓 can be represented as quaternion 𝑞𝑇 = 𝑥𝑇𝑖 + 𝑦𝑇𝑗 +
𝑧𝑇𝑘, meaning that: 

𝑞𝑓 = 𝑞𝑖 + 𝑞𝑇 (15) 
Therefore, if a vector 𝑣𝑖rotates and then translates, the 
transformation that yields the final value 𝑣𝑓can be 
expressed as follows: 

𝑣𝑓 = 𝑞𝑇 + 𝑞𝑅𝑣𝑖𝑞𝑅
∗ (16) 

II. Quantum computing’s basics 

Quantum computing rules and tools depend mainly on 
quantum mechanics and concepts reasoned by Dirac [31]. 
The definitions in the sections that follow will establish the 
equivalence between quantum computing principles and 
quaternion representations [29-31]. 
• The qubit: The qubit is the basic element of 

information in quantum computing. Unlike the classic 
bit, which exists in state 0 or 1 with 100% probability, a 
qubit’s state, denoted by |𝜑⟩ (“ket phi”),has the 
following expression: 

|𝜑⟩ = 𝛼|0⟩ + 𝛽|1⟩ (17) 
Where α and β are complex numbers such that |𝛼|2 +
 |𝛽|2 = 1. Some authors regard |𝛼|2as the probability 
that the qubit state is |0⟩ and |𝛽|2 as the probability that 
its state is |1⟩. 
Superposition is a linear combination of two qubit 
states. The relationship (17) is obtained from the 
principle of superposition. It may be thought of as the 
possibilities for the qubit state to be |0⟩ or |1⟩ with their 
respective probabilities of |𝛼|2and |𝛽|2. 
The qubit state can also be expressed as a vector, as 
illustrated in Figure 1, also known as the Hilbert space. 
In the Dirac two-dimensional vector space, the qubit 
state is expressed as the following vector: 

|𝜑⟩ = (
𝜑1
𝜑2
) = (

𝛼
𝛽) (18) 

Where (1
0
) denotes the qubit’s state |0⟩ and (0

1
) 

denotes state |1⟩. 
 

 
 

FIGURE 1 
SPHERICAL REPRESENTATION OF A QUBIT 𝜑 (KNOWN AS THE BLOCH 

SPHERE). 
 
• The joint state of a system of qubits: The joint state of 

two qubit states  |𝜑⟩ = 𝛼|0⟩ + 𝛽|1⟩ and |𝜓⟩ = 𝛼′ |0⟩ +
𝛽′ |1⟩ may be thought of as the mean of the tensor 
product operation on the two states, which can be 
computed as follows: 

|𝜑𝜓⟩ = |𝜑⟩ ⊗ |𝜓⟩ = 𝛼𝛼′|00⟩ + 𝛼𝛽′|01⟩ +
𝛽𝛼′|10⟩ + 𝛽𝛽′|11⟩ (19) 

The joint state of three qubits |𝜑1⟩ = 𝛼1|0⟩ + 𝛽1|1⟩, 
|𝜑2⟩ = 𝛼2|0⟩ + 𝛽2|1⟩ and |𝜑3⟩ = 𝛼3|0⟩ +
𝛽3|1⟩likewise can be computed as follows: 

|𝜑1𝜑2𝜑3⟩ = |𝜑1⟩ ⊗ |𝜑2⟩ ⊗ |𝜑3⟩ =
𝛼1𝛼2𝛼3|000⟩ + 𝛼1𝛼2𝛽3|001⟩ + 𝛼1𝛽2𝛼3|010⟩ +
𝛼1𝛽2𝛽3|011⟩ + 𝛽1𝛼2𝛼3|100⟩ + 𝛽1𝛼2𝛽3|101⟩ +
𝛽1𝛽2𝛼3|110⟩ + 𝛽1𝛽2𝛽3|111⟩ (20) 

Once normalized, the result of the operation should be a 
valid qubit state. A qubit state thus can be expressed as 
a linear combination of basic states. 

• Measuring a qubit: The inner product of two qubit 
states |𝜑⟩ = 𝛼|0⟩ + 𝛽|1⟩ and |𝜓⟩ = 𝛼′ |0⟩ + 𝛽′ |1⟩ is a 
complex number given by the following operation: 

⟨𝜑|𝜓⟩ = 𝛼′
∗
𝛼 + 𝛽′∗𝛽 (21) 

Where 𝛼′∗ and 𝛽′∗ are the complex conjugates of 𝛼′and 
𝛽′. The inner product of a qubit state and itself ⟨𝜑|𝜑⟩ 
yields the number𝑅𝑒(𝛼)2 + 𝑅𝑒(𝛽)2. The inner product 
of a state |0⟩ or |1⟩ with a qubit state |𝜑⟩ will give the 
corresponding coefficient 𝛼or 𝛽. 
The outer product of two qubit states yields a matrix 
given by the inner products: 

|𝜑⟩⟨𝜓| = (
𝛼′𝛼∗ 𝛼′𝛽∗

𝛽′𝛼∗ 𝛽′𝛽∗
) (22) 

It is possible to measure a qubit by reading the 
information stored within it or querying it to see if its 
status is 0 or 1. Many researchers view the result in 
terms of probability, meaning that measuring the qubit 
defined in the equation (17) will give the state |0⟩ with 
the probability |𝛼|2 or the state |1⟩ with the probability 
|𝛽|2. One can obtain these measurements in the 
projection forms |⟨0|𝜑⟩|2 and |⟨1|𝜑⟩|2,respectively. 
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• The most common gates and operators:  
The X gate:The X gate is the quantum version of the 
NOT gate. The operator X defined below is its matrix 
representation. 

𝑋 ≡ (
0 1
1 0

) 𝑖. 𝑒. 𝑋 = |0⟩⟨1| + |1⟩⟨0| (23) 

The Y gate: The Y gate matrix representation and 
operator are defined as follows: 

𝑌 ≡ (
0 −𝑖
𝑖 0

) (24) 

𝑌 = −𝑖|0⟩⟨1| + 𝑖|1⟩⟨0| (25) 
𝑖is thethe imaginary number √−1. 
The Z gate: The Y gate matrix representation and 
operator are defined as follows: 

𝑍 = |0⟩⟨0| − |1⟩⟨1| (26) 

𝑍 ≡ (
1 0
0 −1

) (27) 

The rotation gates or basic spins: Three rotation gates 
are used in quantum computing: 𝑅𝑥(𝜃), 𝑅𝑦(𝜃) and 
𝑅𝑧(𝜃). Also called quantum spins, they represent the 
simple rotations around the 𝑥, 𝑦 and 𝑧 axes, defined in 
matrix form as follows: 

𝑅𝑥(𝜃) = (
𝐶
𝜃

2
−𝑖𝑆

𝜃

2

−𝑖𝑆
𝜃

2
𝐶
𝜃

2

) (28) 

𝑅𝑦(𝜃) = (
𝐶
𝜃

2
−𝑆

𝜃

2

𝑆
𝜃

2
𝐶
𝜃

2

) (29) 

𝑅𝑧(𝜃) = (𝑒
−𝑖
𝜃

2 0

0 𝑒𝑖
𝜃

2

) (30) 

Quantum circuits:Circuits often represent the quantum 
algorithms. Horizontal lines symbolise the qubits and 
rectangular symbols denote the gates that act on the line 
from left to right. The initial state of the qubit appears 
at the left. Figure 2 shows a circuit representation of a 
Y gate. 

 

 
 

FIGURE 2 
EXAMPLE OF A QUANTUM CIRCUIT. 

 
Pauli Hermitian matrices: Pauli matrices are useful 
for defining quantum operators’ frames as follows: 

𝜎0 = 𝐼 = (
1 0
0 1

) , 𝜎1 = 𝜎𝑥 = (
0 1
1 0

) , 𝜎2 = 𝜎𝑦 =

(
0 −𝑖
𝑖 0

) , 𝜎3 = 𝜎𝑧 = (
1 0
0 −1

) (31) 

Every operator in quantum computing can be defined as 
a linear combination using these Hamiltonian matrices. 
For example, operators 𝑅𝑥(𝜃), 𝑅𝑦(𝜃) and 𝑅𝑧(𝜃) can be 
written using 𝜎0, 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧as follows: 

𝑅𝑥(𝜃) = 𝐶 (
𝜃

2
)𝜎0 − 𝑖𝑆 (

𝜃

2
)𝜎𝑥 (32) 

𝑅𝑦(𝜃) = 𝐶 (
𝜃

2
)𝜎0 − 𝑖𝑆 (

𝜃

2
)𝜎𝑦 (33) 

𝑅𝑧(𝜃) = 𝐶 (
𝜃

2
)𝜎0 − 𝑖𝑆 (

𝜃

2
)𝜎𝑧 (34) 

On close examination, Pauli matrices 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧are 
none other than the matrix representations of the X, Y 
and Z gates defined above in equations (23), (25) and 
(27). The Pauli matrices possess the following 
properties: 

{
 
 

 
 𝜎𝑗

2 = 𝜎0, 𝑗 = 1,2,3

𝜎𝑥𝜎𝑦 = −𝜎𝑦𝜎𝑥 = 𝑖𝜎𝑧
𝜎𝑦𝜎𝑧 = −𝜎𝑧𝜎𝑦 = 𝑖𝜎𝑥
𝜎𝑧𝜎𝑥 = −𝜎𝑥𝜎𝑧 = 𝑖𝜎𝑦

 (35) 

The first property supports the fundamental principle of 
quantum gate reversibility. In fact, quantum operators 
have strong reversibility properties, meaning that when 
applied twice and successively, a quantum operator will 
restore the qubit to its initial state, which is not always 
possible to obtain using classical logic gates. 

METHODOLOGY 

I. Expressing quaternions using Pauli matrices 

The matrix representation of a quaternion as defined above 
(10) can be formulated using Pauli matrices, considering the 
relations defined below: 

𝐼 = (
1 0
0 1

) = 𝜎0 (36) 

𝐼𝑥 = (
−𝑖 0
0 𝑖

) = −𝑖𝜎𝑧 ⇒ 𝜎𝑧 = 𝑖𝐼𝑥 (37) 

𝐼𝑦 = (
0 1
−1 0

) = −𝑖𝜎𝑦 ⇒ 𝜎𝑦 = 𝑖𝐼𝑦 (38) 

𝐼𝑧 = (
0 −𝑖
−𝑖 0

) = −𝑖𝜎𝑥 ⇒ 𝜎𝑥 = 𝑖𝐼𝑧 (39) 

A quaternion therefore can be expressed in 2D Hilbert space 
using Pauli matrices and thus computed using the Pauli 
gates X, Y and Z, as follows: 

𝑞 = 𝑟𝜎0 − 𝑖(𝑥𝜎𝑧 + 𝑦𝜎𝑦 + 𝑧𝜎𝑥) = 𝑟𝐼 + 𝑥𝐼𝑥 +

𝑦𝐼𝑦 + 𝑧𝐼𝑧 (40) 
The entities 𝐼𝑥, 𝐼𝑦  and 𝐼𝑧represent a new basis possessing the 
following properties: 

{
 
 

 
 𝐼𝑥

2 = 𝐼𝑦
2 = 𝐼𝑧

2 = −𝐼

𝐼𝑥𝐼𝑦 = −𝐼𝑦𝐼𝑥 = −𝐼𝑧
𝐼𝑦𝐼𝑧 = −𝐼𝑧𝐼𝑦 = −𝐼𝑥
𝐼𝑧𝐼𝑥 = −𝐼𝑥𝐼𝑧 = −𝐼𝑦

 (41) 

Indeed, considering the expression of a quaternion in (2×2) 
space (equation 10) and the properties set forth in definition 
(3) as well as the Pauli matrix properties (35), the following 
relations readily become apparent: 

{
 
 

 
 𝐼𝑥

2 = 𝐼𝑦
2 = 𝐼𝑧

2 = (𝑖𝜎𝑥)
2 = (𝑖𝜎𝑦)

2
= (𝑖𝜎𝑧)

2 = −𝐼

𝐼𝑥𝐼𝑦 = 𝑖𝜎𝑧. 𝑖𝜎𝑦 = −𝜎𝑧. 𝜎𝑦 = 𝜎𝑦. 𝜎𝑧 = 𝑖𝜎𝑥 = −𝐼𝑦𝐼𝑥 = −𝐼𝑧
𝐼𝑦𝐼𝑧 = 𝑖𝜎𝑦 . 𝑖𝜎𝑥 = −𝜎𝑦. 𝜎𝑥 = 𝜎𝑥 . 𝜎𝑦 = 𝑖𝜎𝑧 = −𝐼𝑧𝐼𝑦 = −𝐼𝑥
𝐼𝑧𝐼𝑥 = 𝑖𝜎𝑥 . 𝑖𝜎𝑧 = −𝜎𝑥 . 𝜎𝑧 = 𝜎𝑧. 𝜎𝑥 = 𝑖𝜎𝑦 = −𝐼𝑥𝐼𝑧 = −𝐼𝑦

 (42) 
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Therefore, the quantum-computing-based quaternions model 
for robotic arm position can be established by converting the 
equivalent Pauli gate model to quaternions. 

I. Main result 

Determining the spatial orientation and end effector position 
of an articulated robotic arm relative to the base frame 
requires accurate and precise quantitation of successive 
rotations and translations, which has been achieved 
previously using quaternions. 
Based on the definitions of rotation and translation 
quaternions, simple rotations, and translations around and 
along the axes x, y and z are expressed using the following 
quaternions and hence quantum operators: 

{
 
 
 

 
 
 𝑞𝑅𝑥 = 𝑐𝑜𝑠 (

𝜓

2
) + 𝑠𝑖𝑛 (

𝜓

2
) 𝑖 ≡ 𝑐𝑜𝑠 (

𝜓

2
) 𝐼 + 𝑠𝑖𝑛 (

𝜓

2
) 𝐼𝑥 ≡ 𝑐𝑜𝑠 (

𝜓

2
) 𝜎0 − 𝑖𝑠𝑖𝑛 (

𝜓

2
) 𝜎𝑧

𝑞𝑅𝑦 = 𝑐𝑜𝑠 (
𝜃

2
) + 𝑠𝑖𝑛 (

𝜃

2
) 𝑗 ≡ 𝑐𝑜𝑠 (

𝜃

2
) 𝐼 + 𝑠𝑖𝑛 (

𝜃

2
) 𝐼𝑦 ≡ 𝑐𝑜𝑠 (

𝜃

2
) 𝜎0 − 𝑖𝑠𝑖𝑛 (

𝜃

2
) 𝜎𝑦

𝑞𝑅𝑧 = 𝑐𝑜𝑠 (
𝜙

2
) + 𝑠𝑖𝑛 (

𝜙

2
) 𝑘 ≡ 𝑐𝑜𝑠 (

𝜙

2
) 𝐼 + 𝑠𝑖𝑛 (

𝜙

2
) 𝐼𝑧 ≡ 𝑐𝑜𝑠 (

𝜙

2
) 𝜎0 − 𝑖𝑠𝑖𝑛 (

𝜙

2
) 𝜎𝑥

𝑞𝑇𝑥 = 𝑥𝑇𝑖 ≡ 𝑥𝑇𝐼𝑥 ≡ −𝑖𝑥𝑇𝜎𝑧
𝑞𝑇𝑦 = 𝑦𝑇𝑗 ≡ 𝑦𝑇𝐼𝑦 ≡ −𝑖𝑦𝑇𝜎𝑦
𝑞𝑇𝑧 = 𝑧𝑇𝑘 ≡ 𝑧𝑇𝐼𝑧 ≡ −𝑖𝑧𝑇𝜎𝑥

 (43) 
Where 𝜓, 𝜃 and 𝜙 are respectively the simple rotations 
around the 𝑥, 𝑦 and 𝑧 3D base frame axes, also called the 
yaw, pitch, and roll angles [17], 𝑞𝑅𝑥, 𝑞𝑅𝑦 and 𝑞𝑅𝑧 are the 
rotation quaternions, and 𝑞𝑇𝑥, 𝑞𝑇𝑦 and 𝑞𝑇𝑧 are the 
translation quaternions along these axes. The quantum 
model of a robotic arm can be determined using this Pauli-
gate-based expression of quaternions. By virtue of relations 
(35), (36) and (37), the simple rotation and translation 
quaternions derive quantum computing equivalents from 
quantum spins as follows: 

{
  
 

  
 
𝑞𝑅𝑥 ≡ 𝑅𝑧(𝜓)

𝑞𝑅𝑦 ≡ 𝑅𝑦(𝜃)

𝑞𝑅𝑧 ≡ 𝑅𝑥(𝜙)

𝑞𝑇𝑥 ≡ 𝑥𝑇𝑅𝑧(𝜋)

𝑞𝑇𝑦 ≡ 𝑦𝑇𝑅𝑦(𝜋)

𝑞𝑇𝑧 ≡ 𝑧𝑇𝑅𝑥(𝜋)

 (44) 

From (43) and (44), it can be inferred that Pauli’s and the 
quaternion’s representations have only the y axis in 
common as there is a linear relationship between the unit 
vectors 𝐼𝑦  and 𝜎𝑦 (𝐼𝑦 = −𝑖𝜎𝑦. One could expect this 
equivalence since in the quantum mechanics, a quantum 
representation of a function remains unaltered when 
multiplied by a constant [29]. On the other hand, the 
rotation around the axes x or z in Pauli algebra seems to 
correspond to a rotation around the other axis in the 
quaternion’s 2D representation. 
The above set of equations (44) is fundamental in the 
robotics field and important for quantum modelling of 
industrial robotic arms since it models orientation directly 
while also defining position in the last three lines. To 
complete the position model, a unit version must be 
considered, since in quantum computing, a qubit must be 
normalized during processing. 

ILLUSTRATION, VALIDATION, AND DISCUSSION 

The results obtained with the robotic arm position and 
orientation model are presented below. The concepts are 
validated using a rigid SCARA robotic arm. Frames 𝐿𝑘, 𝑘 =
0,1,2,3 were established using Denavit-Hartenberg 
formalism as illustrated below. 
 

 
 

FIGURE 3 
SCARA ROBOTIC ARM MOVEMENT RANGE REPRESENTED IN 

DENAVIT-HARTENBERG FORMALISM [32, 33, 34]. 
 
It can be inferred from Figure 3 that expressing the end 
effector position relative to the base frame requires the 
following basic transformations: 
i) From 𝐿0to 𝐿1, which can be performed as follows: 
- Translation 𝑑1 along 𝑧0 (using the transformation 
−𝑖 𝑑1𝜎𝑥), then 
- Rotation 𝜃1 around 𝑧0 (using the transformation 

𝐶 (
𝜃1

2
) 𝜎0 − 𝑖 𝑆 (

𝜃1

2
) 𝜎𝑥), then 

- Translation 𝑎1 along 𝑥0 (using the transformation 
−𝑖 𝑎1𝜎𝑧). 
ii) From 𝐿1to 𝐿2, which can be performed as follows: 
- Rotation 𝜋 around 𝑥1 (using the transformation − 𝑖 𝜎𝑧), 
then 
- Rotation 𝜃2 around 𝑧1 (using the transformation 

𝐶 (
𝜃2

2
) 𝜎0 − 𝑖 𝑆 (

𝜃2

2
) 𝜎𝑥), then 

- Translation 𝑎2 along 𝑥1 (using the transformation 
− 𝑖 𝑎2𝜎𝑧). 
iii) From 𝐿2to 𝐿3, which can be performed as follows: 
- Translation 𝑑3 along 𝑧2 (using the transformation 
− 𝑖 𝑑3𝜎𝑥). 
These successive elementary transformations (rotations and 
translations) are all performed using additions for 
translations and sandwich products for rotations. The final 
transformation that expresses the end effector position 
relative to base frame 𝐿0is obtained by applying the above 
simple transformations in the reverse direction, meaning 
that we start with the end effector point and work back 
towards the base frame. 
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For example, starting from 𝑖 𝑑3𝜎𝑥 of the end effector 
position, translation 𝑎2𝑖𝜎𝑧 is then used to obtain 𝑖 𝑎2𝜎𝑧 +

𝑖 𝑑3𝜎𝑥 to which rotation −𝜃2 is applied (𝐶 (
𝜃2

2
) +

𝑖 𝑆 (
𝜃2

2
) 𝜎𝑥) ( 𝑖 𝑎2𝜎𝑧 + 𝑖 𝑑3𝜎𝑥) (𝐶 (

𝜃2

2
) − 𝑖 𝑆 (

𝜃2

2
) 𝜎𝑥) then 

rotation  𝑖 𝜎𝑧 to this result, followed by translation  𝑖 𝑎1𝜎𝑥 

then rotation 𝐶 (
𝜃1

2
) + 𝑖 𝑆 (

𝜃1

2
) 𝜎𝑥 and ending with 

translation 𝑖 𝑑1𝜎𝑥. The computation of these successive 
transformations results in quaternion 𝑞03 or its equivalent 
Pauli matrix form shown below: 

𝑞03 = [𝑎1𝑐𝑜𝑠(𝜃1) + 𝑎2𝑐𝑜𝑠(𝜃1 − 𝜃2)]𝑖 +
[𝑎1𝑠𝑖𝑛(𝜃1) + 𝑎2𝑠𝑖𝑛(𝜃1 − 𝜃2)]𝑗 + (𝑑1 − 𝑑3)𝑘
 (45) 
𝑄03 = −𝑖[𝑎1𝑐𝑜𝑠(𝜃1) + 𝑎2𝑐𝑜𝑠(𝜃1 − 𝜃2)]𝜎𝑧 −
𝑖[𝑎1𝑠𝑖𝑛(𝜃1) + 𝑎2𝑠𝑖𝑛(𝜃1 − 𝜃2)]𝜎𝑦 − 𝑖(𝑑1 −

𝑑3)𝜎𝑥 = −𝑖 𝑃𝑥𝜎𝑧 − 𝑖 𝑃𝑦𝜎𝑦 − 𝑖 𝑃𝑧𝜎𝑥 =

(
𝑃𝑥𝑖 −𝑃𝑦 − 𝑃𝑧𝑖

𝑃𝑦 − 𝑃𝑧𝑖 𝑃𝑥𝑖
) (46) 

Where 𝑃 = (𝑃𝑥, 𝑃𝑦 , 𝑃𝑧)
𝑇
is the end-effector position vector. 

Positional information is extracted from the 2x2 matrix (46) 
as shown below: 

{
 
 

 
 𝑃𝑥 = −

𝑖

2
(𝑄03(1,1) − 𝑄03(2,2))

𝑃𝑦 = −
1

2
(𝑄03(1,2) − 𝑄03(2,1))

𝑃𝑧 =
𝑖

2
(𝑄03(1,2) + 𝑄03(2,1))

 (47) 

This result can be compared with that obtained from the 3x3 
matrix using the Denavit-Hartenberg formulation for 
SCARA robotic arm example [17], the position vector being 
the last column of the matrix shown below, which also 
contains the orientation 3x3 matrix embedded in the upper 
left portion. 

𝑇0
3 = (

𝐶1−2 𝑆1−2 0 𝑎1𝐶1 + 𝑎2𝐶1−2
𝑆1−2 −𝐶1−2 0 𝑎1𝑆1 + 𝑎2𝑆1−2
0
0

0
0

−1     𝑑1 − 𝑑3
1

) (48) 

𝐶1, 𝑆1, 𝐶1−2 and 𝑆1−2 refer respectively to 𝑐𝑜𝑠(𝜃1), 𝑠𝑖𝑛(𝜃1), 
𝑐𝑜𝑠(𝜃1 − 𝜃2) and 𝑠𝑖𝑛(𝜃1 − 𝜃2). 
For the simulation, a Matlab program was developed. Table 
I provides geometrical information defining the simulated 
robot. 

 
TABLE I 

SCARA ROBOT ARM PARAMETERS ACCORDING TO THE D-H FORMULATION 
Link 𝑎𝑘(𝑚) 𝛼𝑘(𝑟𝑎𝑑) 𝑑𝑘(𝑚) 𝜃𝑘(𝑟𝑎𝑑) 
1 
2 
3 

0.3 
0.2 
0.0 

𝜋 
0 
0 

0.5 
0.0 
𝑑3 

𝜃1 
𝜃2 

-- 

Another program was implemented in Denavit-Hartenberg 
formalism to compute the forward kinematic model for 
comparison purposes. 
For the simulation, a trajectory generated using the fifth-
order polynomial was used [18], considering the initial 
values 𝜃1𝑖𝑛𝑖𝑡 =

𝜋

4
 𝑟𝑎𝑑, 𝜃2𝑖𝑛𝑖𝑡 =

𝜋

6
 𝑟𝑎𝑑 and 𝑑3𝑖𝑛𝑖𝑡 = 0.2 𝑚 

and the final values 𝜃1𝑓𝑖𝑛𝑎𝑙 =
𝜋

3
 𝑟𝑎𝑑, 𝜃2𝑓𝑖𝑛𝑎𝑙 =

𝜋

2
 𝑟𝑎𝑑 and 

𝑑3𝑓𝑖𝑛𝑎𝑙 = 0.3 𝑚. The simulation results are shown in Figure 
4. The results from the Denavit-Hartenberg formalism are 
presented in blue whereas the quantum algorithm’s results 

are in red. 
 

 
 

FIGURE 4 
SIMULATION RESULTS FOR ROBOT ARM POSITION (FORWARD 

KINEMATICS) USING THE QUANTUM MODEL WITH DENAVIT-HARTENBERG 

FORMALISM 
 
These graphs validate the quaternion-based quantum model 
developed in this study using several series of contiguous 
values for translation and rotation. The model is equivalent 
to the Denavit-Hartenberg formulation in terms of 
behaviour, its main advantage being that it is adapted not 
only to classical processors but also to quantum computers. 

CONCLUSION 

We describe, implement and validate a novel model of 
robotic arm position based on the emerging concept of 
quantum computing. Equivalence between quaternions and 
quantum Pauli gates has been established, allowing the 
transformation between two representations, and leading to 
a new quantum model for robotic arm position. A program 
was implemented to compare the new model to classical 
modelling approaches in simulations. The classical model’s 
results and the quantum model results were comparable and 
illustrative of robotic arm movement. This study shows that 
mechatronics systems modelling and powerful software 
simulations using quantum computers may be expected to 
become routine in the future. 
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