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Abstract - This paper investigates the reliability of a 
complex system that consists of three subsystems, A, B, 
and C, linked in series with a power source. Every 
subsystem is made up of three units that follow the (1–
out–of–3: G) policy. For the mathematical model study, 
power failure was taken into account. There are three 
types of failure in the system: minor / major partial 
failure, total failure, and total failure. The failure rates 
are constant, but the repair rates are distributed in two 
ways (general and Gumbel–Hougaard family Copula). 
To study the system, we used the supplementary 
variable technique and the Laplace transform. The 
availability, reliability, MTTF, and profit function are 
all measured as essential reliability measures. A 
reduction approach is used to increase device efficiency 
and availability. To illustrate computed results, tables 
and graphs are used.   
 
Index Terms - k-out-of-in G: system, Reliability, 
Availability, MTTF, Gumbel–Hougaard Copula, Profit 
Function, Supplementary Variable Technique. 
 

1.  Introduction 
 
The performance of reliability measures in terms of 
availability, reliability, mean-time-to-system-failure 
(MTTF), and cost benefits in the operation of repairable 
systems has been investigated. Previously, numerous 
researchers and scientists have done the many studies on 
reliability tests of the complex system. Many efforts have 
been made to improve component reliability in sequence, 
parallel, and k-out-of-n configurations. Reference [14] et al. 
used Copula to investigate the probabilistic evaluation of a 

complex system with two subsystems in sequence, multiple 
types of failure, and two types of repair. The performance 
analysis of a complex repairable system with two 
subsystems in series configuration and an incomplete switch 
was addressed in reference [12] et al.. Reference [13] et al. 
investigated the reliability of a repairable network 
infrastructure connecting three computer laboratories to a 
server in a 2-out-of-3-G configuration. Using a copula 
approach, as [11] et al. investigated stochastic analysis of a 
two-unit complex repairable system with switch and human 
failure. Reference [8] et al. used the Gumbel-Hougaard 
family copula distribution to determine the reliability of a 
complex system with two subsystems linked in a series 
configuration. The Gumbel-Hougaard family copula was 
used in [10] et alstochastic.'s study of a complex system 
under a preemptive resume repair policy. Reference [6] et 
al. addressed the reliability analysis of a complex system 
that consists of two repairable subsystems, A and B, linked 
in sequence, as well as two forms of failure, deliberate and 
critical. The complex method was developed by [7] et al. 
based on information gathered as a result of a marked 
procedure involving two repairmen with different expertise 
and availability. The operational conduct of the 2-out-of-3: 
G device for various situations has been explored in [4] et 
al. with the definition of preventive maintenance. Many 
methods, such as reduction and redundancy, are used to 
improve the performance of a system. The availability / 
reliability of the system can be enhanced using the reduction 
approach by reducing the failure rates of some of its units by 
a factor ρ that is a number between zero and one (i.e. 0 < ρ < 
1). The equivalence of reliability factors for a general series-
parallel system with individual units having exponentially 
distributed lifetimes was discussed in [2]. Reference [1] 
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discussed the reliability equivalence factors of a series-
parallel system when the system units are independent and 
similar and have lifetimes that follow the Weibull 
distribution. The reliability equivalence factor of a parallel 
system with time-varying failure rates was studied by  [3] et 
al. Development of the reliability of a dependent system 
under copula was studied in [9]. The linear-exponential 
distribution function was used by Reference [5] et al. to 
improve device reliability. A new form of model of a 
complex repairable system with three subsystems, 
subsystem A, subsystem B, and subsystem C in series 
configuration, has been studied in this paper, with power 
failure taken into account. The 1-out-of-3; G policy applies 
to all subsystems. In each of the three subsystems, all of the 
units are connected in a parallel configuration. After any 
one unit in one subsystem fails, the device appears to minor 
partial failure / degraded states, whereas all other subsystem 
units remain functional. Similarly, failing two units in any 
subsystem when all other subsystems are functioning 
normally results in major partial failure / degradation. When 
more than three units of any subsystem fail and all other 
subsystems are operational, the system is considered down. 
The power failure is processed as down state. The failure 
rates are constant and believed to follow an exponential 
distribution, but the repair rates follow two different 
distributions: general and Gumbel-Hougaard family copula. 
To obtain the system's availability, reliability, MTTF, and 
profit function, the system is analyzed using the 
supplementary variable technique and the Laplace 
transform. The reduction approach improves the original 
system's availability and reliability. The results are 
presented in tables and graphs. 
 

2. Assumptions 
 
During model analysis the following suggestions were 
supposed: 
• At first, the system is in full working order in state S0, 

with all three subsystems and the power switch 
functioning properly. 

• The system is made up of three subsystems: A, B, and 
C, which are linked in a series. 

• Subsystems A, B and C are running successfully when 
one or more units are in good working order, i.e., 1-out-
of-3: G policy.  

• Subsystems A, B, and C are composed of one main unit 
and two hot standby units that are ready to start after 
each unit in the subsystem fails for a short period of 
time. 

• General repair fixes minor and major partial failures, 
but Gumbel-Hougaard family copula distribution fixes 
the entire failed state. 

• Due to a power switch failure, the system is considered 
to be in a down state, and it is then fixed using copula 
distribution. 

• The system gets repaired instantly; it operates with full 
efficiency and no weakness during repair. 

• The failure rates are constant and follow an exponential 
distribution. 

• The system is as good as new after the repair. 
 

3. Notations 
 

t/ s Time scale / Laplace transform 
variable 

1  / 2  / 3  Failure rates of each unit in subsystem 
A / subsystem B  / subsystem C 

pw  Failure rate of the power switch 

1( )x / 2 ( )y  Repair rate of each unit in subsystem 
A / subsystem B 

3( )z  Repair rate of each unit in subsystem 
C 

( )iP t
 

The probability that the system is in Si 
state at an instant t for i = 0 to 10  

*( )iP s
 

Laplace transform of ( )iP t  

( , )iP x t   Probability that the system in state Si , 
i = 1 to 10; the system is under repair 
and elapsed repair time is x 

K1 / K2 Revenue and service cost per unit 
time, respectively. 

Ep(t) Expected profit during the interval 
[0,t) 

( )S x  

0

( )exp ( )

x

x u du 

 
 
− 
 
 
  

* ( )S s  Laplace transform of ( )S x  

* ( )S s  =

0 0

( )exp( ( ) )

x

x sx u du dx 



− −   

( )
0

1 2

( )

C ( ), ( )

x

u x u x



=
  

Coupled repair rate for complete 
failed state Si to initial state S0, then 
the expression for joint probability 
according to Gumbel-Hougaard 
family of copula is given as: 

1/
0( ) exp[ (log ( )) ]x x x   = +  , 

where 1 ( )u x=  and  2
xu e=  , where 

θ is a parameter 1     .          
 

4. Definition of the State 
 
Table I shows the current state of the system following the 
failure of units in all subsystems, including the transmission 
power switch. The operative states of the system are {S0, S1, 
S2, S4, S5, S7 and S8}, and S8, while the failed states of the 
system are {S3, S6, S9, and S10}. 
 

TABLE 1 
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THE MODEL’S STATE OVERVIEW 
State Description 
S0 The system is perfect, and all units of subsystems A, B, and C 

are in good working order.  
S1 The system has degraded, with a minor partial failure in 

subsystem A due to a failure in the main unit's subsystem A. 
Although the state is undergoing general repairs and the system 
is in service, both subsystems B and C are in good working 
order.  

S2 The system is degraded with major partial failure in subsystem 
A due to the failure of any two units in subsystem A. The 
system is in operating mode and the state is under general 
repair, but both subsystems B and C are in good working order. 

S3 After more than two units in subsystem A failed, the system is 
completely down. Copula distribution is being used to repair the 
system. 

S4 The system is in a degraded state with minor partial failure in 
subsystem B due to the failure of the main unit in subsystem B. 
So the state is in need of general repair and the system is in 
operation, both subsystems A and C are in good working. 

S5 The system is in degraded state with major partial failure in 
subsystem B due to the failure of any two units in subsystem B. 
The state is under general repair, and the system is in operating 
mode, but both subsystem A and subsystem C are in good 
operating state. 

S6 After more than two units in subsystem B malfunction, the 
system is completely broken. The system is being repaired 
using copula distribution. 

S7 Owing to the failure of the main unit in subsystem C, the 
system is in a degraded state with minor partial failure in 
subsystem C. So the state is undergoing general repairs and the 
system is in service, all subsystems A and B are in good 
working order.  

S8 The system is degraded with major partial failure in subsystem 
C due to the failure of any two units in subsystem C. The 
system is in operating mode and the state is under general 
repair, but both subsystems A and B are in good working 
condition. 

S9 The system has completely failed due to the failure of more 
than two units in subsystem C. Copula distribution is being used 
to patch the system. 

S10 The system is in a down state due to a power switch 
malfunction that has made it inoperable. 

 

 
FIGURE 1 

DIAGRAM OF THE MODEL’S STATE CHANGE 
 

5. Mathematical Analysis of the Model 
 

The following set of differential equations is correlated with 
the present mathematical model in relation to the state 
transformation in Figure 1. 

1 2 3 0 1 1

0

3 3 3 ( ) ( ) ( , )pw
d

P t x P x t dx
dt

    


 

+ + + + = 
    

2 4 3 7 0 3

0 0 0

( ) ( , ) ( ) ( , ) ( ) ( , )y P y t dy z P z t dz x P x t dx  

  

+ + +    

0 6 0 9

0 0

 + ( ) ( , ) ( ) ( , )y P y t dy z P z t dz 

 

+ 
                              (1)

 

1 1 12 ( ) ( , ) 0pw x P x t
t x

  
  
+ + + + =   

                          (2) 

1 1 2( ) ( , ) 0pw x P x t
t x

  
  
+ + + + =   

                             (3) 

0 3( ) ( , ) 0x P x t
t x


  
+ + =   

                                              (4) 

2 2 42 ( ) ( , ) 0pw y P y t
t y

  
  

+ + + + = 
  

                         (5) 

2 2 5( ) ( , ) 0pw y P y t
t y

  
  

+ + + + = 
  

                            (6) 
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0 6( ) ( , ) 0y P y t
t y


  

+ + = 
  

                                             (7) 

3 3 72 ( ) ( , ) 0pw z P z t
t z

  
  
+ + + + =   

                           (8) 

3 3 8( ) ( , ) 0pw z P z t
t z

  
  
+ + + + =   

                             (9) 

0 9( ) ( , ) 0z P z t
t z


  
+ + =   

                                            (10) 

0 10( ) ( , ) 0w P w t
t w


  
+ + =   

                                           (11) 

Boundary conditions: 

1 1 0 1 2

0

(0, ) 3 ( ) ( ) ( , )P t P t x P x t dx 



= +                                  (12) 

2 1 1(0, ) 2 ( )P t P t=                                                               (13) 

3 1 2(0, ) ( )P t P t=                                                                 (14) 

4 2 0 2 5

0

(0, ) 3 ( ) ( ) ( , )P t P t y P y t dy 



= +                              (15) 

5 2 4(0, ) 2 ( )P t P t=                                                              (16) 

6 2 5(0, ) ( )P t P t=                                                              (17) 

7 3 0 3 8

0

(0, ) 3 ( ) ( ) ( , )P t P t z P z t dz 



= +                                (18) 

8 3 7(0, ) 2 ( )P t P t=                                                              (19) 

9 3 8(0, ) ( )P t P t=                                                                (20) 

0 1 2 4 5
10

7 8

( ) ( ) ( ) ( ) ( )
(0, )

( ) ( )pw
P t P t P t P t P t

P t
P t P t


+ + + + 

=  
+ + 

         (21) 

Initial condition: 

0(0) 1P = , and other probabilities are zero at t = 0.          (22) 

Using (8-12) and the Laplace transform of (1-7) we get: 

1 2 3 0 1 1

0

3 3 3 (s) ( ) ( ,s)pws P x P x dx    


  + + + + =    

2 4 3 7 0 3

0 0 0

( ) ( , ) ( ) ( , ) ( ) ( , )y P y s dy z P z s dz x P x s dx  

  

  + + +    

0 6 0 9

0 0

+ ( ) ( , ) ( ) ( , )y P y s dy z P z s dz 

 
 +                    (23) 

1 1 12 ( ) ( , ) 0pw
d

s x P x s
dx

    
+ + + + = 

 
                    (24) 

1 1 2( ) ( , ) 0pw
d

s x P x s
dx

    
+ + + + = 

 
                      (25) 

0 3( ) ( , ) 0
d

s x P x s
dx

  
+ + = 

 
                                        (26) 

2 2 42 ( ) ( , ) 0pw
d

s y P y s
dy

    
+ + + + = 

 
                  (27) 

2 2 5( ) ( , ) 0pw
d

s y P y s
dy

    
+ + + + = 

 
                    (28) 

0 6( ) ( , ) 0
d

s y P y s
dy

  
+ + = 

 
                                       (29) 

3 3 72 ( ) ( , ) 0pw
d

s z P z s
dz

    
+ + + + = 

 
                   (30) 

3 3 8( ) ( , ) 0pw
d

s z P z s
dz

    
+ + + + = 

 
                      (31) 

0 9( ) ( , ) 0
d

s z P z s
dz

  
+ + = 

 
                                        (32) 

0 10( ) ( , ) 0
d

s w P w s
dw

  
+ + = 

 
                                   (33) 

Laplace transformation of boundary conditions: 

1 1 0 1 2

0

(0, ) 3 ( ) ( ) ( , )P s P s x P x s dx 


  = +                       (34) 

2 1 1(0, ) 2 ( )P s P s =                                                        (35) 

3 1 2(0, ) ( )P s P s =                                                         (36) 

4 2 0 2 5

0

(0, ) 3 ( ) ( ) ( , )P s P s y P y s dy 


  = +                    (37) 

5 2 4(0, ) 2 ( )P s P s =                                                       (38) 

6 2 5(0, ) ( )P s P s =                                                         (39) 

7 3 0 3 8

0

(0, ) 3 ( ) ( ) ( , )P s P s z P z s dz 


  = +                  (40) 

8 3 7(0, ) 2 ( )P s P s =                                                       (41) 

9 3 8(0, ) ( )P s P s =                                                         (42) 

10 0 1 2 4

5 7 8

(0, ) ( ) ( ) ( ) ( )

               ( ) ( ) ( )

pwP s P s P s P s P s

P s P s P s

    

  

= + + +


+ + +


      (43) 

The probabilities of the system being in an up or down state 
can be calculated as follows: 

* * * * * * * *
0 1 2 4 5 7 8( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )upP s P s P s P s P s P s P s P s= + + + + + +  
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( )

( )

( )

1

2

3

*
1

1
1

*
2

2
2

*
3

3
3

1 ( )1
( ) 1 1 2 ( )

( )

1 ( )
          1 2 ( )

1 ( )
         1 2 ( )

pw
up

pw

pw

pw

pw

pw

S s
P s A s

D s s

S s
B s

s

S s
C s

s







 


 

 


 

 


 


  − + +
  = + +
  + +

 

 − + +
 + +
 + +
 

 − + +
 + +
 + +
 

   

  (44) 

where,  

1
1

1

*
1 *

1 1 1
1

*
1

1

1 ( 2 )
( ) 3 1 2 ( )

2

1 ( 2 )
             

2

pw
pw

pw

pw

pw

S s
A s S s

s

S s

s






 
   

 

 

 

 − + +
 = − + +
 + +
 

 − + +  
 + +  

 

(45)

 

2
2

2

*
2 *

2 2 2
2

*
2

2

1 ( 2 )
( ) 3 1 2 ( )

2

1 ( 2 )
             

2

pw
pw

pw

pw

pw

S s
B s S s

s

S s

s






 
   

 

 

 

 − + +
 = − + +
 + +
 

 − + +  
 + +  

(46)

 

3
3

3

*
3 *

3 3 3
3

*
3

3

1 ( 2 )
( ) 3 1 2 ( )

2

1 ( 2 )
             

2

pw
pw

pw

pw

pw

S s
C s S s

s

S s

s






 
   

 

 

 

 − + +
 = − + +
 + +
 

 − + +  
 + +  

                                    (47)

 

  1 1

1 2 3

* *
1 1 1 1

( ) 3 3 3

    ( 2 ) 3 2 ( ) ( )

pw

pw pw

D s s

S s A s S s 

   

     

= + + + +

− + + + + +

  2 2
* *

2 2 2 2( 2 ) 3 2 ( ) ( )pw pwS s B s S s      − + + + + +
     

  3 3
* *

3 3 3 3( 2 ) 3 2 ( ) ( )pw pwS s C s S s      − + + + + +  

1
0

*
12 *

1
1

1 ( )
2 ( ) ( )

pw

pw

S s
A s S s

s




 


 

 − + +
 −

+ + 
 

 

2
0

*
22 *

2
2

1 ( )
2 ( ) ( )

pw

pw

S s
B s S s

s




 


 

 − + +
 −

+ + 
 

 

3
0

*
32 *

3
3

1 ( )
 2 ( ) ( )

pw

pw

S s
C s S s

s




 


 

 − + +
 −

+ + 
 

 

1
0

2

3

*
1*

1
1

*
2

2
2

*
3

3
3

1 ( )
( ) 1 ( ) 2 ( )

1 ( )
( ) 2 ( )

1 ( )
( ) 2 ( )

pw
pw

pw

pw

pw

pw
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* *( ) 1 ( )down upP s P s= −                                                       (49) 

 
5.1 Availability analysis 
 
Availability is a performance norm for a repairable system 
that is linked to the principles of reliability and 
maintainability. The term "availability" refers to the 
system's ability to operate without fail at any given time. 
Setting, 
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
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+
,  i=1, 2, 3                                               (50) 

Case I:  Using the following values for various parameters 

1 2 30.04, 0.03, 0.02,  = = = 0.022,pw =

1 2 3 1,  = = =
 

1,  1x = = , then putting all values in 

(44). By taking inverse Laplace transformation, we have the 
availability of the origin system as follows: 
 

2.74054 

1.47688 1.33273 

1.2657 0.945719 

0.841054 0.80

( ) 0.991817  0.00812037  

    0.000607903  0.0000194516  

    0.000024043  0.000575935 

    0.0000306053  0.0000207375 

t
up

t t

t t

t

P t e

e e

e e

e e

−

− −

− −

− −

= +

− +

+ +

+ + 9664 

13 0.102 12 0.082 

7 0.062 6 0.062 

12 0.052 13 0.042 

 

    6.87309 10  3.38109 10  

    7.50783 10  1.02214 10  

    5.74992 10  4.86847 10

t

t t

t t

t t

e e

e e

e e

− − − −

− − − −

− − − −

+  − 

+  − 

+  − 

      

(51) 

Case II: Reduction method 
This method is used to increase system availability by 
reducing the failure rates of the system's units by 
multiplying them by a factor    such that 0 1  . 

Considering the values of different parameters 
as 1 20.04, 0.03, = = 3 0.02, = 0.022,pw =

1 2 3 1, 1,  1x   = = = = = , and put 0.2 = , in (44), then 

using the inverse Laplace transformation, we can obtain the 
system's improved availability as follows: 

23



Performance Study of a Complex System… 

 

Copyrights @Muk Publications  Vol. 13 No.2December, 2021 
 International Journal of Computational Intelligence in Control 
 

2.72268 t

1.16158 t 7 1.12872 t

7 1.10347 t 6 0.933669 t

6 0.911807 t 6 0.8

( ) 0.998382 + 0.00161667 e  

     0.0000108351e  2.94609 10 e  

    + 1.37527 10 e + 7.68663 10 e  

    + 2.70067 10 e + 1.6161 10 e

upP t −

− − −

− − − −

− − − −

=

− − 

 

  95147 t

13 0.0204 t 12 0.0164 t

7 0.0124 t 6 0.0124 t

12 0.0104 t 13 0.0084 t

 

    + 4.68802 10 e  1.55349 10 e  

    + 9.77085 10 e  1.06216 10 e  

    + 5.7635 10 e  5.95789 10 e

− − − −

− − − −

− − − −

 − 

 − 

 − 

           (52) 

Now, if we change t = 0 to 10 in (51) and (52) above, we get 
Table 1 and correspondingly Figure 2, which show how 
availability changes over time in two cases. 
 

TABLE 2 
COMPARISON OF THE ORIGINAL AND IMPROVED SYSTEMS' 

AVAILABILITY 

Time 
availability 

Case I  Case II 

0 1 1 

1 0.99246 0.99997 

2 0.991919 0.999911 

3 0.99185 0.999872 

4 0.99183 0.999852 

5 0.99182 0.999843 

6 0.991819 0.999839 

7 0.991817 0.999837 

8 0.991817 0.999837 

9 0.991817 0.999837 

10 0.991817 0.999836 

 

 
FIGURE 2 

COMPARISON OF THE ORIGINAL AND IMPROVED SYSTEMS' 

AVAILABILITY 

Case III: a comparison of the improved system's 
availability for various values of   vs time, where 

0 1   . Take the values of the various parameters as in 

(44), and then apply the inverse Laplace transformation; it 
can be shown that decreasing the value of the factor   

raises the value of the system's availability. 
 

TABLE 3 
CALCULATED AVAILABILITY CORRESPONDING TO TIME WITH 

VARIOUS   VALUES 

Time 
Availability 

0.2 =  0.4 =  0.6 =  0.8 =  

0 1 1 1 1 

1 0.99849 0.996982 0.995475 0.993968 

2 0.99839 0.996781 0.995168 0.993548 

3 0.998383 0.996765 0.995139 0.993502 

4 0.998382 0.996762 0.995133 0.99349 

5 0.998382 0.996762 0.995131 0.993486 

6 0.998382 0.996761 0.99513 0.993484 

7 0.998382 0.996761 0.99513 0.993483 

8 0.998382 0.996761 0.995129 0.993483 

9 0.998382 0.996761 0.995129 0.993482 

10 0.998382 0.996761 0.995129 0.993482 

 
 
 

 
FIGURE 3  

COMPARISON OF THE ENHANCED SYSTEM’S AVAILABILITY 

FOR VARIOUS   VALUES 

 
5.2 Reliability Analysis 
 
The probability that a system will operate satisfactorily for 
the intended period of time under the specified operating 
conditions is referred to as reliability. Take all repair rates to 
zero to achieve system reliability. We use the same cases as 
in the previous section. 
Case I: Using the values of various parameters as 

1 2 30.04, 0.03, 0.02,  = = = 0.022,pw = 1 2 3 1,  = = = . 

1,  1x = = . The reliability of the origin system is obtained 
by plugging all of these values into (44), then applying the 
inverse Laplace transformation: 

0.292 t 0.102 t

0.082 t 0.062 t

0.052 t 0.042 t

( ) 0.0475417 e   0.631579 e  

           0.428571 e  + 0.782609 e  

           + 0.75 e  + 0.48 e

R t − −

− −

− −

= −

−              (53) 

Case II: It is assumed that the failure rates of the system's 
units are reduced using the reduction method by multiplying 
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by a factor   such that 0 1  . Using the values of 

various parameters as 1 2 30.04, 0.03, 0.02,  = = =
 

0.022,pw = 1 2 3 1,  = = = . 1,  1x = = , and take 0.2 = . 

The reliability of the system is obtained by putting all of 
these values into (44), then applying the inverse Laplace 
transformation: 

0.0584 t 0.0204 t

0.0164 t 0.0124 t

0.0104 t 0.0084 t

( ) 0.0475417 e   0.631579 e  

          0.428571 e   + 0.782609 e  

          + 0.75 e  + 0.48 e

R t − −

− −

− −

= −

−           (54) 

Table 4 and corresponding Figure 4 reflect the variance of 
reliability with respect to time for two cases when t = 0 to 
10 in (54). 
 

TABLE 4 
COMPARISON OF THE ORIGINAL SYSTEM’S AND THE 

IMPROVED SYSTEM’S RELIABILITY 

Time 
Reliability R(t) 

Case I Case II 

0 1 1 

1 0.978152 0.995609 

2 0.956324 0.991233 

3 0.934227 0.986867 

4 0.911713 0.982508 

5 0.88873 0.978152 

6 0.86529 0.973796 

7 0.841447 0.969438 

8 0.817278 0.965075 

9 0.792876 0.960704 

10 0.768336 0.956324 

 

 
FIGURE 4 

COMPARISON OF RELIABILITY OF ORIGINAL SYSTEM AND 
IMPROVED SYSTEM 

Case III: Comparison of the improved system's reliability 
for various values of   vs time, where, 0 1  . Using the 

values of various parameters as 1 2 30.04, 0.03, 0.02,  = = =
 

0.022,pw = 1 2 3 1,  = = = . 1,  1x = = . It can be shown 

that lowering the value of factor  raises the value of the 

system's reliability. 

 
TABLE 5  

COMPUTED OF RELIABILITY CORRESPONDING TO TIME WITH 
DIFFERENT VALUES OF   

Time 
Reliability R(t) 

0.2 =  0.4 =  0.6 =  0.8 =  

0 1 1 1 1 

1 
0.995609 0.991233 0.986867 0.982508 

2 
0.991233 0.982508 0.973796 0.965075 

3 
0.986867 0.973796 0.960704 0.947528 

4 
0.982508 0.965075 0.947528 0.92976 

5 
0.978152 0.956324 0.934227 0.911713 

6 
0.973796 0.947528 0.920773 0.893364 

7 
0.969438 0.938676 0.907154 0.874718 

8 
0.965075 0.92976 0.893364 0.855797 

9 
0.960704 0.920773 0.879407 0.836636 

10 
0.956324 0.911713 0.86529 0.817278 

 

 
FIGURE 5 

CALCULATED RELIABILITY RELATING TO TIME WITH VARIOUS 
  VALUES 

 
5.3 Mean time to failure (MTTF) 
 
The mean time to failure (MTTF) is defined as the estimated 
time for a system to be operational. We get the MTTF of the 
system by taking all repairs to zero and the limit as s tends 
to zero in (44) for the exponential distribution: 
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3
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3 1 1
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6 3
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     




     


   

→


= = +

+ + + +

 
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 + + +
 

 
 + −

 + +  

  (55) 

Putting the values of the failure rates 

1 0.04, = 2 30.03, 0.02, = =  and 0.022,pw =  varying 1,  

2 3, , pw    one by one, respectively from 0.01 to 0.1 in 
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(55). Table 6 and Figure 6 display the difference in mean 
time to failure (MTTF) corresponding to failure rates. 

 
TABLE 6  

VARIATION OF MTTF WITH RESPECT TO FAILURE RATES 
Failure 

rate 
MTTF1(λ1) MTTF2(λ2) MTTF3(λ3) MTTF4(λpw) 

0.01 31.7529 29.0716 27.5542 37.432 

0.02 30.7878 28.524 27.2188 28.5345 

0.03 29.0739 27.2188 26.1567 22.9351 

0.04 27.2188 25.7093 24.8664 19.1014 

0.05 25.4364 24.2075 23.5488 16.322 

0.06 23.7955 22.792 22.2843 14.2208 

0.07 22.3097 21.4874 21.1027 12.5806 

0.08 20.9723 20.2966 20.012 11.2672 

0.09 19.7696 19.2133 19.0105 10.1935 

 

 
FIGURE 6 

VARIATION IN MTTF AS A FUNCTION OF FALIURE RATES 
 
5.4 Cost analysis 
 
A cost analysis is an empirical method for assessing a 
proposed action by calculating its net worth. If the service 
facility is always open, the system's expected benefit for the 
interval [0, t) is given by 

1 2

0

( ) ( )
t

p upE t K P t dt K t= −                                     (56) 

The revenue per unit time and service cost per unit time, 
respectively, are K1 and K2. One can get the result as in (57) 
by using the same set of parameters as in (44). As such, 

2.74054 t( ) k  0.00325165  0.00296305 e1

1.47688 t 1.33273 t    + 0.000411614 e  0.0000145953 e

1.2657 t 0.945719 t    0.0000189959 e  0.000608992 e

0.841054 t    0.0000363892 e  0.0000256124

E tp
−= −



− −−

− −− −

−− −



0.809664 t e

12 0.102 t 11 0.082 t)    6.73833 10 e  + 4.12328 10 e

0.062 t 0.062 t    0.0000121094 e + 0.0000164861 e

10 0.052 t 11 0.042 t    1.10575 10  e  + 1.15916 10  e

   + 0.991817 t  k t2

−

− − − −−  

− −−

− − − −−  

−

   (57) 

With K1= 1and K2= 0.1, 0.2, 0.3, 0.4, and 0.5, and t = 0, 1, 
2, 3, 4, 5, 6, 7, 8, 9, 10 units of time, the expected profit can 
be seen in Table 7, which is represented by Figure 7. 
 

TABLE 7  
TIME-DEPENDENT VARIATION IN EXPECTED BENEFIT 

Time 
Expected profit  Ep(t) 

K2=0.1 K2=0.2 K2=0.3 K2=0.4 K2=0.5 

0 0 0 0 0 0 

1 0.894702 0.794702 0.694702 0.594702 0.494702 

2 1.78679 1.58679 1.38697 1.18679 0.986792 

3 2.67867 2.37867 2.07867 1.77867 1.47867 

4 3.57051 3.17051 2.77051 2.37051 1.97051 

5 4.46233 3.96233 3.46233 2.96233 2.46233 

6 5.35415 4.75415 4.15415 3.55415 2.95415 

7 6.24597 5.54597 4.84597 4.14597 3.44597 

8 7.13779 6.33779 5.53779 4.73779 3.93779 

9 8.0296 7.1296 6.2296 5.3296 4.4296 

10 8.92142 7.92142 6.92142 5.92142 4.92142 

 

 
FIGURE7 

EXPECTED PROFIT OVER TIME 
 

6. CONCLUSION 
 

To display, evaluate, and make system reliability metrics for 
various failure and repair rates. The study of availability in 
two separate cases is shown in Table 2 and the 
corresponding Figure 2. When failure rates are fixed at 
different values, we find that the availability of the origin 
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system varies over time in case I. In case II, we use the 
reduction approach to increase the availability of the origin 
system by reducing the failure rates of the system's units by 
a factor   such that, 0 1  . When comparing the 

availability of the original system in case I to the availability 
of the system using the reduction method in case II, it can be 
seen that using the reduction method improves the 
availability of the original system. As a result, we can 
conclude that using the reduction approach is a viable 
alternative. In case III, Table 3 and Figure 3 show a 
comparison of the improved system's availability vs. time 
for various values of  , where 0 1   and failure rates 

are the same. It shows that as the value of the factor   

decreases, the value of the system's availability increases. In 
both cases, it can be shown from Figures 2 and 3 that the 
system's availability decreases as time passes. The system's 
reliability is measured in three separate cases and shown in 
Table 4, Figure 4, Table 5, and Figure 5, much like its 
availability. It is concluded that, when failure rates are set at 
various values, the reliability of the origin system decreases 
with time, as in case I, and that, in case II, we increase the 
reliability of the origin system by using a reduction method 
with a factor  such that 0 1  , to reduce the failure 

rates of the system's units. When the reliability of the 
original system in case I is compared to the reliability of the 
system using the reduction method in case II, it can be 
shown that the original system's reliability is improved 
using the reduction method, as shown in Table 4 and Figure 
4. Finally, case III shows a comparison of the improved 
system's reliability for various values of  vs. time, 

where 0 1  , and failure rates are set at various levels. As 
shown in Table 5 and Figure 5, decreasing the value of the 
factor   increases the value of the system's reliability. 
Figures 2 and 4 show that reliability values are lower than 
availability for the same values of failure rates, indicating 
that repair plays an important role in improving the 
efficiency of repairable systems. Table 6 and Figure 6 show 
that as the value of  λ1, λ2, λ3 and λpw increases, the complex 
system's mean-time-to-failure (MTTF) decreases. In 
addition, we can see that MTTF w.r.t. λ1 > MTTF w.r.t. λ2 > 
MTTF w.r.t. λ3.  After 0.03, the system's MTTF with respect 
to λpw is the lowest failure rate variation value. We can 
deduce from Table 7 and Figure 7 that expected profit 
declines as service cost rises K2 over time. From 0.5 to 0.1, 
the estimated expected profit for K2 is highest at K2 = 0.1 
and lowest at K2 = 0.6. As a result, the profit is higher for 
low service costs than for high service costs. 
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