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Abstract –  One of the ideal tasks of road traffic 

monitoring is the vehicle classification system. It is an 

integral part of the Intelligent Transportation System 

(ITS) for the effective transportation planning, control, 

and for the development of driverless or autonomous 

vehicles. Very recently Convolution Neural Networks 

(CNN) and Deep Learnings have been widely used in 

vehicle classification systems. Although several CNN 

models exist, they are specialized to work well with 

delineated road environments. It remains a challenging 

research problem to classify the vehicles pertaining to 

unstructured environments. To address this problem, we 

propose a fine-tuned ResNet50 convolutional neural 

network based vehicle classification model. Initially, the 

ResNet50 is fine-tuned on NITCAD object dataset which 

comprises vehicle data collected from Indian roads. The 

proposed model is trained to run on a subset of the 

dataset to evaluate its performance in terms of accuracy, 

precision, recall and f1-score. To increase the diversity 

of the dataset, we applied data augmentation techniques 

and exemplified data augmentation improves the 

performance of the model. Finally, a comparison study 

has been carried out between the proposed and state of 

the art CNN models to evaluate the effectiveness of the 

proposed vehicle classification model. 

Keywords: Convolutional Neural Network, Vehicle 

classification, Data augmentation, ResNet50, NITCAD 

 

 

1. Introduction 

With the rapid growth in the number of vehicles in 

developing countries, the road traffic violation is increasing 
day by day. This leads to frequent traffic congestion, traffic 

accidents and potential risk for the safety of commuters, 

pedestrians and for the vehicles also. An effective traffic 

monitoring system will be a solution to overcome these 

issues. One of the ideal functionality of road traffic 

monitoring is vehicle classification. It is an integral part of 

the Intelligent Transportation System (ITS) for the effective 

transportation planning, control, and for the development of 

driverless or autonomous vehicles. Especially, in an 

unstructured road environment where the traffic rules are 

lightly followed, vehicle classification is an essential task to 
track traffic flow control, signal jumping and over speed. It 

also helps to identify and plan for new road pavements 

depending on the quantity of types of vehicles passing, 

predict future transportation needs and improve road safety. 

Numerous vehicle classification methods have been 

proposed in the literature. The older type of vehicle 

classification is an in-roadway-based system which uses 

sensors such as loop induction sensors [1], vibration sensors 
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[2], magnetic sensors and piezoelectric sensors [3]. These 

sensors have been deployed on the road pavements to 

collect information about the vehicles such as length of the 

vehicle and axle count to determine the type of vehicle. This 

methodology can accurately classify the vehicles because 
the sensors installed can have close contact with the moving 

vehicle. However, this methodology is rarely used 

nowadays due to undesired weather conditions which affects 

the sensors and also due to its high cost maintenance of 

breakages in the road pavement. With advancement in 

image processing and computer vision, many machine 

learning based vehicle classification systems have been 

proposed [4-6] in the literature. In traditional machine 

learning methodology, handcrafted feature extraction 

methods are used to extract important features to train the 

machine learning classifier to perform object level 

classification. This methodology works well in a controlled 
environment. However, with limited hand crafted features, 

this methodology is not suitable for generalization where 

prior knowledge is essential. 

In recent years, Convolutional Neural Network (CNN), a 

class of deep learning is very popular for vehicle 

classification systems. we propose a vehicle classification 

model based on convolutional neural network and fine 

tuning of ResNet50. Following are the major contributions 

out of this research work. 

(i) We proposed a fine-tuned ResNet50 

convolutional neural network model to 
improve the robustness of vehicle 

classification in an unstructured environment. 

(ii) We applied data augmentation and image 

transformation techniques to increase the 

diversity of the dataset. NITCAD dataset is 

used for training the proposed fine-tuned 

ResNet50 model. 

(iii) A comparison of the proposed model with the 

state of the art CNN models like VGG16, 

DenseNet and InceptionV3 is performed and 

the results exemplify that our proposed fine-

tuned ResNet50 CNN can classify vehicles in 
a more effective and efficient way. 

The rest of the paper is organized as follows. In Section II, 

the existing vehicle classification models based on CNN are 

described. In Section III, the proposed methodology and 

fine tuned Resnet50 architecture is explained in brief. In 

Section IV, the dataset description and the performance 

metric for evaluation is explained. In Section V, the 

experimental result, discussion and comparison is explained. 

Section VI concludes the proposed work.  

2. Literature study 

The vehicle classification is an important task in traffic 
monitoring for the Intelligent Transportation System. Many 

different methodologies have been proposed in the literature 

for vehicle classification. The prominent one being 

convolutional neural networks which demonstrated better 

accuracy for vision based image classification tasks [7]. In 

this section we will review the state of the art models and 

architectures proposed for vehicle classification using CNN. 

Dong et al. [8] have proposed a vehicle classification 

system. The presented model has been a semi – supervised 

model consisting of fully connected layer and softmax layer 
to classify real time vehicle data. The model has been tested 

on BIT-vehicle dataset on two different modes: the day and 

night with an accuracy of 96.01% and 89.6%. Maria et al. 

[9] have proposed a vehicle classification system using 

faster R-CNN and obtained an accuracy of 93% on their 

self-constructed dataset. In another work, Wang et al. [10] 

have proposed faster R-CNN based vehicle classification for 

real-time traffic monitoring systems. Their image dataset 

consists of more than 60, 000 images. Their model obtained 

an accuracy of 80.65%. 

 

 

 

3. The Proposed Methodology and architecture 

The CNNs adopts a supervised learning strategy with a feed 

forward network for large scale object classification. CNNs 

are proven to considerably increase the performance of the 

classifier when applied to real world applications. 

Traditional methods for image classification include ML 

classifiers[20-33] where the feature extractions are 

handcrafted. Compared to traditional ML classifiers, CNNs 

can automatically extract the learnable parameters from the 

input data to perform classification [11]. The architecture of 
CNN comprises three hierarchical layers, (i) Convolution 

layers, (ii) Pooling, and (iii) Fully connected layers. 

Data augmentation is a technique to alleviate overfitting 

from networks by artificially increasing the dataset through 

label-preserving transformation methods. To increase the 

diversity of our dataset, we applied image transformation 

techniques during the training process. We employ 

techniques such as (i) Gaussian blur with a 5x5 filter that 

removes the high frequency noisy pixels while preserving 

the low frequency pixels. (ii) Rotation – we applied a ten 

degree rotation on the original dataset images to populate a 

varied view (iii) Horizontal flip – we employed a horizontal 
flip with a probability of 10% to increase the diversity of the 

images in the dataset for training the proposed CNN. (iv) 

Gaussian noise – we employed gaussian noise to make the 

training process more robust and to minimize the error. 

In this work, a fine-tuned ResNet50 CNN for vehicle 

classification in an unstructured road scene is proposed. The 

layers of the ResNet50 are frozen as they learn more about 

simple features like edges and lines and these are common 

in all the objects. To perform transfer learning, the last fully 

connected layer, average pool, 1000-d fc, softmax is 

removed from the network, which was pre-trained to 
perform the classification of 1000 natural categories of 

ImageNet data.  This layer is replaced with a classification 

block with three more layers: A fully connected layer with 

weight factor ‘’ as twenty and bias ‘β’ factor as twenty, the 

second layer is softmax layer and third layer is the 

classification layer that classifies six different vehicles in an 
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unstructured Indian road scene. Fig. 1 depicts the proposed 

architecture of the fine-tuned CNN model. The input to the 

network layer is 224 X 224 pixels RGB images. The model 

uses 64 convolution kernels of 7 X 7 size with the stride of 

2 in the first layer and followed by 3 X 3 max pooling with 
the stride of 2. 

 In ResNet50 architecture, from layer two to layer five, there 

are a block of identical layers having several kernels to 128, 

256, 1024 and 2048, followed by a fully connected layer. 

The second convolution layer conv2_x has 64 kernels of 1 

X 1 filter size followed by 3 X 3, 64 kernels and at as 1 X 1, 

256 kernels. These layers are repeated a total of three, 

having 9 layers in the second convolution. Similarly, 

convolution layer conv3_x is repeated four times having 12 

layers, conv4_x is repeated six times having a total of 18 

layers and conv5_x is repeated 3 times having 9 layers. The 

total number of layers in ResNet is thus 50 layers. The 
ResNet model enables gradients to flow using skip 

connections. It uses shortcuts namely identity shortcut and 

projection shortcut.  

The learning rate parameter or step size is a configurable 

hyper parameter which defines the number of weights 

updated at each epoch. We use a piecewise schedule to 

modify and reduce the step size with respect to the training 

progress [12]. The model uses an initial learning rate as 

0.001. With the increase in epochs, the learning rate 

decreases using a piecewise schedule. It is defined as [13], 

𝜂n+1 =
𝜂n

1 + 𝑑n
 

(

1

) 

Where n is the epoch, 𝜂n denotes the learning rate of the 

previous epoch, d is the decay rate. To calculate the learning 

rate of current epoch 𝜂n+1, the piecewise scheduler updates 

the step size by reducing the denominator.  

The training of CNN is based on optimizing the weights and 

coefficients and to minimize the loss. To optimize the 

weight, we use SGD with momentum as an optimizer. It is 

an optimizer method which helps accelerate gradient vectors 

in the right directions. This helps the model to converge 

fast. Applying SGD with momentum for training the model 

can average over the gradients. It is mathematically defined 

as [14], 

𝑚t = 𝛽𝑚t-1 + (1 − 𝛽)∇w𝐿(𝑊, 𝑋, 𝑦) 

𝑊 = 𝑊 −  𝛼𝑚t 
(

2

) 

Where, 𝑚t is the momentum gained at the tth recurrence, L 

is the learning rate,  is the gradient with respect to weight 

w and learning rate𝛼, the beta 𝛽 is a hyper parameter that 

controls the momentum.   

A loss function measures the performance of a CNN model 

based on calculating the difference between the target 

label(s) and prediction label(s). We use cross-entropy as loss 

function in our CNN model [15]. It takes the form, 

𝑙 =  ∑

𝑀

𝑐=1

∑ 𝑦c, n log (𝑝c, n)

𝑁

𝑖=1

 

(
3

) 

𝑙 is loss, 𝑀 is the number of classes, 𝑁 is the number of 

images, 𝑦c, nis the binary indicator which is 1 if the image n 

belongs to the actual class c. log (𝑝c, n) is the predicted 

probability image n is of class c. 

 

 
Fig. 1: Proposed Convolutional Neural Network Model for 

Vehicle Classification 

4. Dataset Description 

We use NITCAD dataset [16] to train the proposed CNN 

model to classify different vehicles in an unstructured road 
scene on an Indian road. The NITCAD dataset was 

developed by students of the National Institute of 

Technology, as an outcome of their major project. NITCAD 

object dataset comprises a total of 11000 images collected 

under different traffic conditions in and around Kottayam 

district, Kerala. Out of the total images, 4800 images are 

labelled and it has seven classes in the dataset namely auto-

rickshaw, bus, car, pedestrians, truck, two-wheelers and van.  

It is observed from the original dataset that the number of 

cars, auto-rickshaws and two-wheelers are more than the 

number of vans, buses and trucks. It is also observed that 
the cars, auto-rickshaw and two-wheelers are present in 

almost all the frames.  

For the implementation of our proposed model on NITCAD, 

the pedestrian class from the original dataset is not 

considered. The model is trained to classify the other six 

classes namely auto-rickshaw, bus, car, truck, two-wheelers 

and van. The images are cropped to extract individual 

classes and we use a subset of the labelled images from the 

dataset which consists of information about the location of 

various objects present in the corresponding frame. The 

images with the same content are avoided to reduce 

redundancy in the dataset. After this process, the subset of 
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the dataset considered for implementation comprises 750 

images with each class consisting of 125. 

A limited dataset to train a deep learning model ends up in 

high risk of overfitting. So, we applied data augmentation 

such as gaussian blur, flipping, rotation, and gaussian noise 
to elaborate the data to fit in the dataset. Applying data 

augmentation introduced new images into our dataset by 

increasing the size of the dataset by a factor of four.  In each 

iteration of the training process, we fetched a batch of 

images and for each image, we randomly applied data 

augmentation.    

4.1 Evaluation Metrics 

This section provides details of the evaluation metrics used 

to calculate the performance of the classification model. We 

use classification accuracy, precision, recall and f1-score to 

evaluate the performance of the classifier. Classification 

Accuracy (A) is defined as the total number of images 
correctly classified, divided by total number of images 

within the dataset. It is mathematically defined as, 

𝐴 =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 

(4) 

Where 𝑡𝑝 denotes true positives, 𝑡𝑛 denotes true negatives, 

𝑓𝑝 denotes false positives, and 𝑓𝑛 denotes false negatives. 

Precision𝑃 is the likeness of the percentage of correctly 

classified images to the total number of classified images. It 

is mathematically expressed as, 

𝑃 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

(5) 

𝑡𝑝 denotes the correctly classified image and 𝑓𝑝 denotes the 

misclassified images. 

The recall 𝑅is defined as the fraction of correctly classified 

images to the total number images. It is mathematically 

expresses as, 

𝑅 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

(6) 

F1-score is defined as the harmonic mean of precision and 
recall. It is mathematically expressed as, 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑃 × 𝑅)

(𝑃 +  𝑅)
 

(7) 

5. Experiments and Results 

To evaluate how well the proposed model performs, a 

subset of the labelled data from NITCAD is considered for 

training, validation and testing. The model is built upon 

tensorflow framework and the experiments are performed 

on Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz, and 32 

GB RAM, Windows 10 pro operating system. The training 

of the proposed vehicle classification model is categorized 

into data preprocessing, training and evaluation. In the data 

pre – processing the images are cropped to extract all 

individual classes and subset of labelled data are considered 
and distributed into training, validation and testing sets.  

The images are normalized to a size of 224 x 224 input size. 

A random split with 80:20 ratio is applied to generate the 

training, test set and the validation set is generated by a 

random selection of 20% images from the training set. The 

experiments on the dataset have been done in three aspects. 

They are (i) evaluation of the proposed fine-tuned resNet50 

CNN model on NITCAD dataset without data 
augmentation, (ii) evaluation of the proposed fine-tuned 

resNet50 CNN model on NITCAD with data augmentation, 

(iii) comparison of the proposed CNN with state of the art 

CNNs with data augmentation. 

Discussion 

The proposed classification model has been compared with 

the existing models to validate the efficacy of the proposed 

network. The precision and recall of all six classes obtained 

by the models are shown in Table 3.   It is observed that the 

proposed model performs well with an overall accuracy of 

96.83 when compared to InceptionV3 [17] with 95.01%, 

DenseNet [18] with 93.83% and VGG16 [19] with 92.5%. 
The reason being the increase in the accuracy of the 

proposed model is that it has more depth layers than the 

other existing models compared. Though these existing 

models performed well on their dataset, the number of 

classes they considered for classification were minimal and 

cannot be used with real time vehicle classification. 

   

 
Fig. 2: Confusion matrix of the classification results - without data 

augmentation 
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Fig. 3: Confusion matrix of the classification results - with data 

augmentation 

 
 

 

 

 

 

Table. 1: Performance evaluation of fine-tuned ResNet50 

CNN model on NITCAD without data augmentation 

 
Table. 2: Performance evaluation of fine-tuned ResNet50 

CNN model on NITCAD with data augmentation 

 
Table. 3: Comparison of fine-tuned ResNet50 

CNN model with other CNN architectures 
 

 
Fig. 4: Comparison of Recall Metric of all CNN models 

 

 

 
Fig. 5: Comparison of Precision Metric of all CNN models 
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Fig. 6: Box plot of recall Metric of all CNN models 

 
 

Fig. 7: Box plot of precision Metric of all CNN models 

 

6. Conclusion 

In this paper, a fine-tuned ResNet50 CNN is proposed to 

improve the effectiveness of vehicle classification in 

unstructured environments for intelligent transportation 

systems. A new classification block is added to the 

ResNet50 through transfer learning to ensure generalization. 

The proposed model is trained on a subset of NITCAD 

object dataset with six categories of vehicle classes that are 

pertinent to unstructured environments. To alleviate 
overfitting and to increase the diversity of our dataset, we 

applied data augmentation techniques and observed it 

improved the accuracy of the model. The proposed model is 

compared with InceptionV3, DenseNet and VGG16. Results 

exemplified that the proposed vehicle classification model 

achieved an accuracy of 96.83% compared to other models. 
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