
ISSN: 0974-8571  Vol. 13 No. 2 December, 2021   
 

International Journal of Computational Intelligence in Control 
 

Copyrights @Muk Publications  Vol. 13 No.2December, 2021 
 International Journal of Computational Intelligence in Control 
 

Natural Query Based Retrieval of Executable 
Testcases To Understand Currency in Live Software 

Environments 
S Reine De Reanzi, P Ranjith Jeba Thangiah 

reanzi@gmail.com, prjt@live.com 
 

Date of Submission: 13thMarch 2021   Revised: 6thApril 2021   Accepted: 13thApril 2021 
 
 

How to Cite: Reanzi, S. and Thangiah, P., 2021. Natural Query Based Retrieval of Executable Testcases To 
Understand Currency in Live Software Environments. International Journal of Computational Intelligence in 

Control, 13(2).
 
Abstract-Existing software products undergo 
transformations to adopt the latest technologies in order 
to remain relevant. It is challenging to keep track of the 
currency feature behaviors of such an application under 
transformation (AUT) and ensure it does not impact the 
existing customer behaviour. In this paper, we report a 
method implemented as a proof-of-concept prototype 
called testFabric, an approach for posing a natural 
language query to retrieve a test that can be executed on 
AUT, to find out currency feature behavior. The 
approach explains codeless automation of tests which is 
used to retrieve (i) an appropriate fully executable test (ii) 
test libraries to be selected, then sequenced into a fully 
executable test. With the use of wit.ai (ML platform by 
Facebook), it is found that the results are promising, 
where a natural language query can retrieve an 
executable test. 
Keywords : test retrieval, test selection, test sequence, 
microservices, SaaS, query, codeless automation, ML 

INTRODUCTION 

The need fora on-demand, reliable customer onboarding and 
retention drives software companies to adopt newer 
architecture by adopting technologies like microservices to 
enable shorter time to market at scale. Microservice is 
designed in a manner consistent with the single responsibility 
principle [3].  
For a microservice API, the signature [18] is published up 
front. So, during technology transformation,  it must be 
ensured that the impact on existing scenarios is close to zero, 
especially when the application under transformation (AUT) 
is delivered via the cloud. This paper discusses an approach 
called testFabric that addresses this problem. 

OBJECTIVE 

 To retrieve and Execute a Test in Response to a Given Query 
Using an ML Platform. The purpose of this study is to build a 
testFabric prototype and the structure of study is as follows. 
(i) Build a tool for creating robust, reusable test libraries that 
can be used in a plug-and-play manner. Develop codeless 
engineering to assemble selected test libraries into a test. (ii) 
Use the application-based domain-modeling approach [1] to 
create feature keywords and tags to map functional behaviors 
and their variants to tests and libraries. (iii) Enumerate the 
possible ways a user can query for a scenario and build a 
training and validation dataset. (iv) Use classification 
algorithms to create a test suite of classified data models. (v) 
Prototype testFabric with plug and play machine learning 
platform to predict correct tests and test libraries to resolve 
user queries that are written in natural language. Retrieve the 
resulting tests for execution against the AUT for a given user 
query. (vi) Perform primary and secondary evaluation and 
assessment of results with respect to quantitative and 
qualitative parameters. (vii) Discuss future work. 

BACKGROUND 

An existing monolithic software-as-a-service (SaaS) product 
[10] that adopts a microservice architecture is considered in 
this study. Here, the functional behaviors of the workflows are 
already known. With live customers on production, the 
product mix, volume, pattern, usage, typical issues, 
expectations, infrastructure, capacity, throughput, etc., are 
known and baselined.  
The tests are modularized in a way that enables continuous 
integration, verification, deployment and delivery 
(CI/CV/CD) [16], with the required coverage [14], using 
combinatorial test design [15]. Once services have been 
deployed, a set of functional tests are required to verify the 
behavior of a given function.  
The existence of numerous services makes it challenging to 
determine the intended behavior of a given system [2]. Is the 
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behavior the same after the new changes?The testing and 
investigation effort necessary for a feature to cover all of its 
dependencies is exponential [4]. This is where ML can be 
leveraged. 

REVIEW OF LITERATURE 

Microservices is the present-day approach for application 
architecture,where the application is developed as 
components, where each component is a full, but a midget 
application that is focused on realizing a single business task. 
The task is implemented end to end, application programming 
interface, the database and may include user interface as well. 
The services can mostly run independently, likewise 
development can happen independently. On the similar lines, 
the test automation can happen independently. One of the best 
practices of developing a microservice API is to publish its 
signature [18] first, for the intended business task. Refer 
Single responsibility principle [3]. This helps the development 
teams, both producing and consuming, to work independently. 
This enables the automated tests to be developed in parallel as 
the signature is usually agreed upfront between the 
development teams. There are several frameworks like pact1, 
which are used for writing contract tests [8], where the tests 
are written for validating the meta data of the service. They are 
primarily written by the consumer teams as white box tests 
and are sometimes shipped with the code. 
Once services are deployed, we need a set of functional tests to 
verify the behaviour of the given function at hand. There are 
various tools like rest-assured2 etc., to write automated tests 
for the services. There will be numerous services for a 
product/platform. Hence it becomes very difficult to quantify 
coverage, identify the missing coverage, assess if a test is 
present for a given functionality or to just run a test to find out 
if the intended behaviour of the functionality on the given 
system. 
A great deal of work is also being carried out on the testing of 
microservices using AI. Work has been done on AI-based 
XPath identification [11], screen matching [4], UI element 
matching [4], UI label pattern matching [5], domain modeling 
[9], change-based automatic test generation [13], spidering AI 
for test generation and anomaly detection [7], AI-based code 
synthesis and test generation [20], coverage-oriented AI-based 
suites [17], etc. There are also some AI-based test generation 
tools that can generate test methods based on given code. 
However, to the authors’ knowledge, there has been no 

previous research on the use of AI to retrieve and execute tests 
in response to user queries expressed in natural language. In 
this study, such an approach has been tested and validated on a 
SaaS product [10]. 

CODELESS TEST FOR A MICROSERVICE ARCHITECTURE 

Using Customized Uniform Resource Locators (CURLs) as 
the Uniform Resource Identifiers (URIs) of the necessary 
services, along with the required parameters and tokens, a test 

 
1 https://docs.pact.io 
2 http://rest-assured.io 

to be run on an application can be formulated to run with 
corresponding test data.  
A basic UI was built to create a visual mechanism to facilitate 
codeless automation and execution.The UI presents three 
options for creating a library: setup, action or validation. 
Based on the results obtained with validation libraries, a test is 
marked as either pass or fail.  
Each library is named in accordance with predefined standards 
to enable the identification of the intention of the library 
(Fig.1).Hence, reusable codeless tests and test libraries are 
achieved. These are now ready to be used by an ML system. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure. 1 Creation of a codeless test library 

 
The following (Fig.2) is the architecture of the framework. 

 
Figure. 2 Architecture of the framework 
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COMPARISONS OF THE SOLUTION  

The tests were rewritten to optimize the test coverage using 
combinatorial test design [15]. This resulted in less tests but 
more coverage. This activity was done before curl 
framework. Hence the GUI based automation was done for 
optimized suite as well. The following charts (Fig.4) 
represent the comparison of the results. There is a huge 
savings on time and considerably less failures (Fig.3).  

 
Figure. 3 Reduction in execution time 

 

 
Figure. 4 Reduction in failures & false positives 
 

Since it was designed to run on any environment and can be 
triggered at will, by anyone, the SaaS – ops team was given a 
switch to trigger after the infra-patching activity of 
production is completed. This eliminated the need for testers 
to be around. Clearly, this framework turned out to be winner 
with reusable codeless tests and test libraries. These are now 
ready to be used by ML system. 

NEED FOR AI BASED TEST QUERYING & EXECUTION 

Along with the humongous refactoring activity, the new 
product feature development and enhancements delivered 
along with it to meet customer and market expectations made 
it complex. So when the underlying strucure is being changed 
it is challenging to ensure the existing behaviour for the 
customers is unchanged. 
One of the issues that we face time and again is that, there 
were redundant queries that came up from different 
stakeholders apart from engineering; like sales, support and 
product managers were around, how does it work now?, With 
the new changes is this behaviour same now?, is this scenario 
addressed, this was a bespoke one for the customer, is it 
retained and does it work the same way?, how many 
customers are impacted? etc. Each time there is a query, the 
tester digs the required test from the suite and executes them 
on the current code to find out the result. If a test is not 
available, the setup and the tests are created then executed. 

The testing effort of a feature with all its dependencies 
covered is exponential [4]. And finding a sliver out of it, 
tosimultaneously query its behaviour with execution is 
complex and also time, effort and resource consuming. Hence 
the need for AI 

MATHEMATICAL REPRESENTATION OF TEST LIBRARIES 

AND TEST CASES 

The set of test libraries is denoted by TL and consists of 
elements from TLs, TLa, and TLv, where ‘s’ denotes setup 
libraries, ‘a’ denotes action libraries and ‘v’ denotes 
validation libraries. 
 
TL = {{TLsi}, {TLaj}, {TLvk}} for all i, j, k (1) 

 
Therefore, test TC for a scenario is represented as an 

ordered sequence. 
 

 TC = ({TLsi}, {TLaj}, {TLvk})    for any i, j, k               (2) 

CONSTRUCTION OF THE AI-BASED TESTFABRIC 

To address the issues mentioned in Section III, the idea is to 
take a natural language query as an input from a user and find 
(i) a whole executable test (structured) or, (ii) if a whole test is 
not available, the necessary test libraries (unstructured) to be 
assembled into an executable test to determine the real-time 
behavior of the application of interest. This enables the 
retrieval of context-based tests [6] in response to a given 
query. 

I. Data Model For Processing Query 

The next step of creating the testFabric is to devise a data 
model to represent natural language queries, feature 
keywords, tags, tests and libraries. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 5 Query-Feature-Keyword-Tag-Test mapping 
(snippet from the training set) 

The queries and the feature keywords and tags are first 
formulated based on domain expertise for all workflows and 
scenarios. As a result, a comprehensive domain dataset is 
obtained. The structured tests are appropriately tagged with 
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the relevant keywords, and fine-grained test-keyword-tag 
mappings are constructed. The dataset is then split inthe ratio 
80:20 for training and validation purposes. (Fig 5) is 
presented to better illustrate the data model. 

II. ML Training: Mapping Tests and Test Libraries 

Two-fold training is performed, as specified below: 
(i) ML Training: Tests, Libraries, and Queries 
ML Training Input Set: query; ML Training Expected 
Output: test, test library 
(ii) Tagging for Context (test-keyword-tag mapping) 
ML Training Input Set: query, keyword-tag mapping, test; 
ML Training Expected Output: test, test library 
The following (Fig. 6) demonstrates the training scenario 

 
Figure. 6 Example of a scenario being trained 

 
(Fig.7) is the real-time training step on wit.ai, notice how the 
entities are prompted after a few records of training, which 
have the correct context.  

 
Figure. 7 Training for mapping of Query, feature, keyword, 

library, test, tag 
The complete training data can be constructed as a json file 
and imported to train the ML system. The snapshot of the 
training data is presented in (Fig.9). 

III. Proof of Concept Using wit.ai (an ML plug and play 
Platform from Facebook) [19] 

The wit.ai platform, uses ML-driven feeding of data, for the 
system to learn on its own. The training set from (Fig 5) is 
used to train, and the intent is only to imbue the model with an 
intelligence quotient [12]. 

The following (Fig. 8) portrays on how the wit.ai platform 
uses the query, intent, trait, key words etc. to train the model. 
The training data is used to train the platform. 

 
Figure. 8wit.ai’s messaging platform 

 
. 

 
Figure. 9 Training dataset in json format 

 
After training, use the validation data to extract a whole 
executable test or a set of test libraries, along with a 
confidence level. If the confidence level is satisfactory, the 
test retrieved can be used for execution. This form of 
supervised learning assists in fine-tuning the accuracy of the 
results. It also contributes to increased coverage.  
The complete training data can be constructed as a JSON file 
and imported to train the ML system. The search strategies 
that are employed in wit.ai are trait, keyword and free-text 
strategies. The desired intent is learnt by the algorithms. 
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IV. Initial Qualitative Evaluation – Training Dataset 

After a few records have been used for training, it is observed 
that related keywords, features and tag values depend on the 
context. (Fig. 10) shows a view of real-time retrieval of test 
queried using curl command on wit.ai and the output with 
confidence value. Note that the suggested/predicted 
keywords and test from already-trained values are highlighted 
in green. The context is validated to be correct. This proves 
that ML-based test retrieval is possible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure. 10 Training for the mapping of query, context & 
CURL output 

 
After the training is completed, it is tested with a validation 
dataset. The test is retrieved with confidence level mostly 
above .80, where the correctness of context is verified to be 
true. The ML platform retrieves the data in the form of json 
depicted in code snippet below. 
 
{"_text": "my customer expire if I don’t renew subscription 

until 30 days", 
  "entities": { 
    "Keyword": [ 
      { 
        "confidence": 0.9919678572793, 
        "value": "customer expire", 
        "type": "value" 
      } 
    ], 
    "Feature": [ 
      { 
        "entities": { 
          "Keyword": [ 
            { 
              "confidence": 1, 
              "value": "renew a subscription", 
              "type": "value" 
            } 
          ], 
          "duration": [ 

            { 
              "confidence": 1, 
              "value": 30, 
              "day": 30, 
              "type": "value", 
              "unit": "day", 
              "normalized": { 
                "value": 2592000, 
                "unit": "second" 
              } 
            } 
          ] 
        }, 
        "confidence": 0.98668558735246, 
        "value": "don’t renew my subscription until 30 days", 
        "type": "value" 
      } 
    ], 
    "test": [ 
      { 
        "confidence": 0.99825574225576, 
        "value": "1. Create a customer 2. Mark it as expired 
beyond 30 days 3. Renew account 4. return No" 
      } 
    ], 
    "wit_tag": [ 
      { 
        "confidence": 0.99895124479424, 
        "value": "negative test" 
      } 
    ], 
    "sentiment": [ 
      { 
        "confidence": 0.7144933981909, 
        "value": "neutral" 
      } 
    ] 
  }, 
  "msg_id": "1GhkuOHsCXh2g2KpZ" 
} 
Hence the tests and test libraries can be retrieved via API or 
Curl, to be executed on the test environment 
 

V. Qualitative Evaluation – Validation Dataset for Tests and 
Libraries 

The ML training process is repeated until the best mapping is 
obtained. Once training is complete, the results are tested on a 
validation dataset. The tests and libraries are retrieved with 
confidence levels above .80. 

QUANTITATIVE & QUALITATIVE ASSESSMENT OF TEST 

AND TEST LIBRARY SELECTION 

The quality of the mapping can be viewed using a confidence 
chart for precision and recall [19]. The results are given below 
after training for 100 records of data. The results also show 
that the more records we use to train, the confidence levels are 
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closer to accurate. In (Fig.11) & (Fig.12), notice the test is at 
.75 confidence level  
 

 
Figure. 11 Training for a usecase query 

 
 

 
Figure. 12 Precision & recall chart for the trained entities 

 
After more training, we could see that it is possible 

to get an increased confidence level, in this case the same 
query has resulted in confidence level .98 (Fig.13). Notice 
that it has started prompting test library as well at a 
confidence level of .98 (Fig.14).  

The domain correctness from the results show that it 
is possible to train the usecases to retrieve the required tests or 
test libraries to be executed against the application under test.  

Notice that the (Fig.12) snapshot is taken at 1:51pm 
on 8thSep2019 and after more records of training again, a 
snapshot (Fig.14) is taken at 7:33pm on 8thSep2019.  

It is clear that with more context to the machine 
learning system, the confidence level of retrieval of the test is 
close to accurate at .98. 

 

 
Figure. 13 Improvement in Confidence level after more 

records of training data 
 

 
Figure. 14 Improvement in confidence levels of precision 

and recall 
 

The comparison of (Fig.12), (Fig.14) shows that it is possible 
to train the AI system to select tests, test libraries that are 
already automated and can be executed on application under 
tests, to get real-time status of the behaviour for the use-cases. 

CONCLUSION AND FUTURE WORK 

The results clearly show that an AI-based testFabric is 
possible. To make the testFabric more effective, the same 
approach can be extended to contract tests [8], which are used 
for the verification of API signature metadata [8]. 
Furthermore, the testFabric can be enhanced by providing the 
context of a persona. This can help the testFabric retrieve tests 
for a specific persona (support, customer, product manager, 
etc.). 
The testFabric can also be enhanced to display appropriate 
messages when no answers are found and to prompt users to 
provide suggestions or feedback to fine-tune the suite.There 
can be many benefits of the proposed testFabric - (i) 
Reduction in time spent on investigation to understand the 
existing behaviour. (ii) Reduction in time to detection of 
failure. (iv) Increased coverage in first attempt. (iii) Execution 
of corner cases at a lower cost with fewer false positives. (vi) 
Optimal quality assurance head count with minimal tacit 
knowledge dependency, real-time documentation, etc. 
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