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Abstract: In this paper, we examine the challenge of designing intelligent agents to enable the sharing of information
between vehicles in mobile ad hoc vehicular networks (VANETs). Our focus is on developing a framework that models
the trustworthiness of the agents of other vehicles, in order to receive the most effective reports. We develop a multi-
faceted trust modeling framework that incorporates role-based trust, experience-based trust and majority-based trust
and that is able to restrict the number of reports that are received. We include an algorithm that proposes how to
integrate these various dimensions of trust, along with experimentation to validate the benefit of our approach,
emphasizing the importance of each of the different facets that are included. In addition, we clarify how our approach
is able to meet various critical challenges for trust modeling in VANETs. The result is an important methodology to
enable vehicle to vehicle communication via intelligent agents.

I. INTRODUCTION

Vehicular ad-hoc networks (VANETs) arise as vehicles
equipped with GPS and Wi-Fi devices find it valuable to
communicate with each other. Artificial intelligence
researchers have begun to explore the benefits of
equipping each vehicle with an intelligent agent that is
able to model the other agents in the environment, for
the purpose of assisting each driver [8]. A central concern
is how best to model the trustworthiness of each agent.
Although various trust and reputation models have been
studied for multiagent system environments, we claim
that there are unique characteristics of VANETs that make
it difficult for existing models to be applied directly. These
characteristics include the need for real-time decision
making, the sparsity of connections between agents, the
importance of time and location in determining the
expertise of an agent and the requirement that trust
modeling be performed in a totally distributed manner.
This leads to the focus of the research presented in this
paper: a novel multi-faceted approach for modeling trust,
for use in VANET environments. We present this model
in detail, demonstrating its value in simulated vehicular
settings and discussing clearly how it addresses the
particular characteristics for trust modeling that are

required. The result is an important first step towards the
delivery of effective intelligent vehicular communication,
one that is sensitive to the trustworthiness of the vehicular
agents.

II. EXPANDED TRUST MANAGEMENT

In this section, we first present the design of our expanded
trust model. We then provide a detailed description and
formalization of the model’s computation steps.

(A) Design of Our Model

In order to capture the complexity that arises between
interacting agents in VANET, there is a need to have
several different trust metrics with various key
characteristics. We also propose that in order to derive a
rather complete and comprehensive view of trust for
agents in VANET environments, we will need to integrate
security solutions (at the system level) for trust
management, i.e. secure storage of role identities for role-
based trust in our proposal.

Figure 1 illustrates the design of our expanded trust
model. The core of the model is grouped by the rounded
rectangle in the middle. This core consists of two parts.
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One part maintains trustworthiness of agents in order for
trusted agents (advisors) to be chosen to ask for their
feedback. More specifically, in this part, the
trustworthiness of agents is modeled based on role-based
trust and experience-based trust, which are both combined
into the priority-based model that can be used to choose
proper advisors.

Our role-based trust exploits certain predefined roles
that are enabled through the identification of agents
(vehicles). Agents can put more trust in certain agents as
compared to others, i.e. agents identified as law enforcing
authorities or owned by government [14]. Our
experience-based trust represents a component of trust
that is based on direct interactions. It is in the same spirit
of incorporating evidence from direct interactions into
trust calculation through Interaction Trust as proposed
by [19] or the Individual Dimension of trust in the model
proposed by [16]. Formalization of these two trust metrics
will be presented in Section II-B.

The other part of the core is a majority-opinion
approach to aggregate feedback from selected advisors.
Detailed procedures for these processes will be further
discussed in Section II-B. More importantly, our
management of trust has several key properties
represented by rectangles around the core in the figure.
It aims to be decentralized, location/time specific, event/
task specific, able to cope with the data sparsity problem,
cumulative in order to be scalable, sensitive to privacy
concerns, and able to support system-level security. These
properties will be extensively discussed in Section VI
after the model is clearly described.

The outcome of our trust management is aggregated
feedback for a certain request/event and an associated

confidence value. The aggregated feedback is eventually
affected more heavily by highly trusted advisors. The
confidence would depend on the reliability of estimated
experience-based trust of each other agent and the
maximum acceptable error rate for the aggregated
feedback. In general, a higher value of confidence, i.e. a
value closer to 1, would result from considering
more evidence or metrics having high reliability, for
a fixed error rate. We can view confidence as a
parameter that adds another dimensionality to the output
of the model allowing the agents to have a richer notion
of trust and finally decide how to react on the reported
event.

(B) Computation Procedure

An agent in a VANET environment may receive reports
from other agents about an event, i.e. traffic or collision
ahead of the agent. Once it receives a report, it may need
to verify (double check) if the information given by the
sender is reliable by asking other trusted agents. The agent
will need to aggregate senders’ reports. Values calculated
in this manner can then be used by the agent to decide
whether to believe a particular report and take
corresponding actions. For this purpose, each agent in
our system keeps track of a list of other agents. This agent
updates all report senders’ trustworthiness after the truth
of their reported events is revealed. The above two
processes of aggregating reports and updating trust will
take into account the context in general, the agent’s notion
of which other agents it is interacting with, the notion of
which group the other agents belong to or the roles
assigned to the other agents, the time of reported event
together with the time of message arrival, the relative
locations of the other agents, and the actual contents of
the message to evaluate task/event specific trust etc. Next,
we provide detailed description and formalization of each
step in our computation procedure.

(1) Computation Steps: Four elements are
incorporated into our overall trust model as its core,
shown in Figure 1: (1) Experience-based trust; (2) Role-
based trust; (3) Majority opinion (or social network of
trust); (4) Priority-based trust. Our computation
procedure consists of four steps.

Step 1: Depending on the task at hand, set a value n
= number of agents whose advice will be considered. This
incorporates task-based trust. For example, if the agent
needs a very quick reply, it may limit n = 2 or 3; if the
agent is planning ahead and has time to process responses,
n could potentially be larger.

Step 2: Using n, construct an ordered list of
agents to ask. The list will be partitioned into groups as
follows:

Figure 1: Expanded Trust Management
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where jk = n.1 This priority list is ordered from higher
roles to lower roles, i.e. G

1
 is the highest role. Within

each group of agents of similar roles, the group is ordered
from higher (experience-based) trust ratings to lower
ratings. Hence, role-based trust and experience-based
trust are combined into this priority-based approach.
These two trust metrics will be further discussed later in
this section.

Step 3: When an agent requires advice, the procedure
is to ask n agents the question, receive the responses and
then perform some majority-based trust measurement.

Step 3B: The processing of the responses is as
follows: if there is a majority consensus on the response,
up to some tolerance that is set by the asker (e.g. I want
at most 30% of the responders to disagree), then this
response is taken as the advice and is followed. We will
formalize this majority-based trust later in this section.

Step 3C: Once this advice is followed, the agent
evaluates whether this advice was reliable and if so,
personal experience trust values of those agents are
increased; if not, personal experience trust values of those
agents are decreased. Detailed formalization of this
process will also be given below in this section.

Step 3D: If a majority consensus cannot be reached,
then requiring majority consensus for advice is
abandoned. Instead, the agent relies on role-based trust
and experience-based trust (e.g., taking the advice from
the agent with highest role and highest experience trust
value).

Step 4:  To eventually admit new agents into
consideration, when advice is sought, the agent will ask
a certain number of agents beyond agent in the list. The
responses here will not count towards the final decision,
but will be scrutinized to update experience-based trust
values and some of these agents may make it into the top
n list, in this way.

(2) Role-based Trust: Our role-based trust exploits
certain predefined roles assigned to all agents in the
system. The underlying assumption here is that the agents
identified by authorities are more closely monitored and
are expected to behave in a certain way. We can also
conceptualize roles as an expected behavior of a certain
group or class of agents where all the agents belonging
to a group would behave similarly. We propose a role-
based approach because the expected number of possible

roles and the rules to assign these rules would be very
few in the domain of VANETs and thus can be manually
managed and/or updated by a trusted authority (for
example, the vehicle licensing authorities upon the
registration of a vehicle). Note that the concept of
seniority (expertise in a certain context/task, for instance)
could be incorporated into role-based trust.

To demonstrate our role-based approach, let’s
consider a simple system that recognizes the following
four different roles listed in decreasing order2, i.e. from
the highest role to the lowest one: (1) authority, (2) expert,
(3) seniority, and (4) ordinary. Each role level may also
be associated with a role-based trust value where higher
level roles have larger values. The rules for assigning
and authenticating these roles can be structured as
follows:

(1) Agents representing authorities such as traffic
patrols, law enforcement, state or municipal
police etc. assume the authority role.

(2) Agents specialized in road condition related
issues such as media (TV, radio or newspaper)
traffic reporters, government licensed and
certified instructors of driving schools etc.
receive the expert role.

(3) Agents familiar with the traffic or road
conditions of the area in consideration, e.g. local
people who commute to work on certain roads
or highways or have many years of driving
experience with a good driving record (e.g. taxi
drivers), are given the seniority role.

(4) All other agents are considered having the
ordinary role.

All agents should possess certificates issued by a
trusted certificate authority for authentication purpose.
Note that we need a way for an agent to tell if another
agent is indeed having the role that it is claiming to have.
One possible solution to this problem is to make use of
public-key certificates in an asymmetric cryptosystem as
follows: Each agent should have a public key certificate,
which can simply be a document containing the agent’s
name, its role and its public key. That document is signed
by a trusted certificate authority (with the certificate
authority’s private key) to become the agent’s public key.
Everyone can verify the authority’s signature by using
the authority’s public key. When agent A sends a message
to agent B, A must sign the message with its private key.
B then can verify (using A’s public key) that the message
was truly sent by A.

(3) Experience-based Trust: We track experience-
based trust for agents in the system, which is updated
over time, depending on the agent’s satisfaction with the



6 International Journal of Computational Intelligence Theory and Practice

advice given, when asked. Our experience-based trust is
cumulative in the sense that it updates agents’ trust
recursively. Thus, only the most recent trust values and
the number of interactions between agents are needed to
be stored, to make the system scalable. We here formalize
the computation of this trust.

If we define the range of all personal experience trust
values to be the interval (–1, 1), where 1 represents
absolute trust and -1 represents absolute distrust, then
we can use the following scheme to update an agent’s
personal experience trust value, as suggested by [21].

Let T
A
(B) � (–1, 1) be the trust value indicating the

extent to which agent A trusts (or distrusts) agent B
according to A’s personal experience in interacting with
B. After A follows a piece of advice from B, if the advice
is evaluated as reliable, then the trust value T

A
(B) is

increased by

(1 ) 0

(1 ) 0

� � � ��
� � � � � ��

T T if T
T

T T if T (1)

where 0 < � < 1 is a positive increment factor. Note that
we substitute T

A
(B) by T to simplify the notations.

Otherwise, if B’s advice is evaluated as unreliable,
then T

A
(B) is decreased by

(1 ) 0

(1 ) 0

� � � ��
� � � � � ��

T T if T
T

T T if T (2)

where –1 < � < 0 is a negative decrement factor.

The absolute values of � and � are dependent on
several factors because of the dynamics of the
environment, such as the data sparsity situation and the
event/task specific property. For example, when
interaction data is sparse, these values should be set to
be larger, giving more weights to the available data. For
life-critical events (i.e. collision avoidance), |�| and |�|
should be larger, in order to increase or decrease trust
values of reporting agents more rapidly. Also note that
we may set |�| < |�| by |�| = �|�| and ��< 1 to implement
the common assumption that trust should be difficult to
build up, but easy to tear down.

We also incorporate a forgetting factor �(0 < � <1)
in Equations 1 and 2, allowing A to assign less weight to
older interactions with B. This is to cope with the possible
changes of B’s behavior over time. If we define t as the
time difference between the current interaction and the
previous one3, the equations then become

(1 ) 0

(1 ) 0�

�� � � � � ��� �
� � � � � ���

t

t

T if T
T

T if T
(3)

(1 ) 0

(1 ) 0�

�� � � � � ��� �
� � � � � ���

t

t

T if T
T

T if T
(4)

The trust values A has of B will increase/decrease
more slowly than those in Equations 1 and 2 because
older interactions between them are discounted and have
less impact on the current trust values.

(4) Majority Opinion and Confidence: Suppose agent
A in VANET receives a set of m reports � = {R

1
, R

2
, ...,

R
m
} from a set of n other agents � = {B

1
, B

2
, ..., B

m
}

regarding an event. Agent A will consider more heavily
the reports sent by agents that have higher level roles
and larger experience-based trust values. When
performing majority-based process, we also take into
account the location closeness between the reporting
agent and the reported event, and the closeness between
the time when the event has taken place and that of
receiving the report. We define �

t
 (time closeness), �

l

(location closeness), T
e
 (experience-based trust) and T

r

(role-based trust). Note that all these parameters belong
to the interval (0, 1) except that T

e
 needs to be scaled to

fit within this interval.

For each agent B
i
 (1 � i � n) belonging to �(R

j
) � �

that reports the same report R
j
 � � (1 � j � m), we

aggregate the effect of its report according to the above
factors. The aggregated effect E(R

j
) from reports sent by

agents in �(R
j
) (can be formulated as follows:

( )

( ) ( )
( )

( ) ( )�
� � �i j

e i r i
j B R

t j l i

T B T B
E R

C R C B (5)

Note that location closeness �
l
(B

i
) depends only on

the location of agent B
i
 while time closeness �

t
(R

j
)

depends on the time of receiving the report R
j
.

For the effect of all reports, the majority opinion is
then

( ) arg max ( )�� �jj R jM R E R (6)

A majority consensus can be reached if

( )
1

( )
�

� � �
� �j

j

jR

M R

E R (7)

where �� �(0, 1) is set by agent A to represent the
maximum error rate that A can accept.

If the majority consensus is reached, the majority
opinion is associated with a confidence measure. This
measure takes into account the number of interactions
taken for modeling experience-based trust values of
reporting agents and the maximum accepted error rate �.
We define N(R

j
) as the average of the number of
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interactions used to estimate experience-based trust
values of the agents sending the majority report R

j
. Based

on the Chernoff Bound theorem [11], the confidence of
the majority opinion can be calculated as follows:

22 ( )( ) 1 2 � �� � � jN R

jR e (8)

III. EXAMPLES

In this section, we demonstrate several example scenarios
to go through the important calculations in Section II-B.
In these scenarios, some agents are deceptive and provide
unreliable advice to other agents. We also adjust different
parameters to show how they affect the results of our
calculations.

(A) Experience-based Trust and Forgetting Factor

To illustrate how experience-based trust values are
updated according to Equations 1 and 2, let us consider
a simple scenario where an agent A

0
 asks, among other

agents, 3 agents namely A
1
, A

2
, and A

3
, about whether

the traffic is clear on a route. Suppose agents A
1
 and A

2

say that the route is clear while agent A
3
 says it is not.

The agent asking for information (A
0
), based on the advice

collectively received from the asked agents, decides to
travel the route and discovers that the route is indeed
clear (as said by agents A

1
 and A

2
). Agent A

0
 now wants

to update its trust values for agents A
1
, A

2
, and A

3
. Suppose

that agent A
0
’s previous trust values (T�) for these 3 agents

are 0.4, –0.1, and 0.1, respectively. Table I below
summarizes the information.

Table I
An Example of Experience-based Trust Updating without

using Forgetting Factor

Agents T� Reliability T

A
1

0.4 Yes 0.58

A
2

-0.1 Yes 0.17

A
3

0.1 No -0.35

The last column of Table I shows the current
(updated) trust values (T) that agent A

0
 has for agents A

1
,

A
2
, and A

3
. In this example, agent A

0
 sets the increment

factor � to 0.3 and the decrement factor � to –0.5. The
current trust values are calculated using Equations 1 and
2 as follows:

0 1( ) 0.4 0.3 (1 0.4) 0.58� � � � �AT A

0 2( ) 0.1 0.3 (1 0.1) 0.17� � � � � �AT A

0 3( ) 0.1 0.5 (1 0.1) 0.35� � � � � � �AT A

As we can see, the trust values for agents A
1
 and A

2

are increased, but that of agent A
3
 is decreased. As a result,

agents A
1
 and A

2
 can be moved up in the ordered list of

agents maintained by agent A
0
 (as described in Step 2 of

Section II-B) and have a higher chance to be consulted
by agent A

0
 in the future; on the other hand, agent A

3
 will

be moved down in the list and have a lower chance to be
consulted by A

0
, or even will not be consulted at all

depending on how A
0 

sets the value n (as described in
Step 1 of Section II-B).

To demonstrate the use of the forgetting factor � in
Equations 3 and 4 when updating experience-based trust,
consider an example where an agent A

0
 has currently

interacted once with each of 8 other agents {A
1
, A

2
, ...,

A
B
}. It asks for advice from these agents about whether

the traffic is clear ahead. Some of the agents provide
reliable advice, while others provide unreliable ones.
While agent A

0
 has interacted with these agents

previously, the time difference between the previous
interaction and the current interaction varies for some of
these agents. We summarize in Table II the information
about agent A

0
 ’s (experience-based) trust T’ in the other

agents after the previous interaction, the time from the
previous interaction, and whether each agent’s current
advice is reliable.

From Table II, we can see that agent A
0
 previously

had a positive trust value 0.5 for agents A
1
, A

2
, A

3
, and A

4,

but a negative trust value -0.5 for agents A
5
, A

6
, A

7
, and A

8
.

The time difference between the previous interaction and
the current interaction is the same (0.1) for A

1
, A

3
, A

5
, and

A
7,
, but is greater (0.5) for agents A

2
, A

4
, A

6
, and A

8
,. The

advice from agents A
1
, A

2
, A

5
, and A

6
, are reliable, but those

from agents A
3
, A

4
, A

7
, and A

8
, are not. We show how agent

A
0
’s current trust T for each of the other agents is updated.

Take the update of the trustworthiness of agents A
1

and A
2
 as a demonstration. Note that in this example � is

set to 0.2, � is set to -0.5, and the forgetting factor � is
set to 0.6. The current trust values agent A

0
 has for agents

A
1
 and A

2
, namely 

0 1( )AT A and 
0 2( )AT A , can be calculated

according to Equation 3 as follows:

0

0.1
1( ) 0.6 (1 0.2) 0.5 0.2 0.25� � � � � �AT A

0

0.5
2( ) 0.6 (1 0.2) 0.5 0.2 0.51� � � � � �AT A

We can see that A
1
 has a higher trust value than A

2
.

This is because the time difference between A
1
’s previous

advice and the current advice is less than that of A
2
. A

1
’s

previous trust value has not been forgotten very much,
but A

2
’s has been forgotten a lot. The same trend can be

seen from Table II for each other pair of agents (i.e. A
3

and A
4
, A

5
 and A

6
, and A

7
 and A

8
).4
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Consider another example where agent A
0
 sets the

forgetting factor � to 0.9. Let agents A
9
 and A

10
 be the

same as agents A
1
 and A

2
, respectively. For example,

similar to A
1
, agent A

9
’s advice to A

0
 is also reliable, agent

A
0
’s experience-based trust T’ in A

9
 after the previous

interaction is 0.5, and the time from the previous
interaction between A

9
 and A

0
 is 0.1. The current trust

values and can be updated according to Equation 3 as
follows:

0

0.1
9( ) 0.9 (1 0.2) 0.5 0.2 0.60� � � � � �AT A

0

0.5
10( ) 0.9 (1 0.2) 0.5 0.2 0.58� � � � � �AT A

By comparing 
0 9( )AT A and 

0 10( )AT A with
0 1( )AT A  and

0 2( )AT A , we can see that the trust values that agent A
0

has for agents A
9
 and A

10
 have been forgotten less than

those for agents A
1
 and A

2
 because the forgetting factor �

is set to be larger for A
9
 and A

10
.

(B) Calculation of Majority Opinion

We also demonstrate an example of calculating majority
opinion trust and determining whether a majority
consensus can be reached, according to Equations 5, 6,
and 7. In this example, an agent A receives two different
reports about

Table II
An Example of Experience-based Trust Updating using

Forgetting Factor

Agents T� Time Difference Reliability T

A
1

0.5 0.1 Yes  0.58

A
2

0.5 0.5 Yes  0.51

A
3

0.5 0.1 No  0.21

A
4

0.5 0.5 No  0.08

A
5

-0.5 0.1 Yes -0.43

A
6

-0.5 0.5 Yes -0.57

A
7

-0.5 0.1 No -0.74

A
8

-0.5 0.5 No -0.82

Table III
An Example of Experience-based Trust Updating using

Forgetting Factor

Agents Report Time Location Total Effect

A
1
,A

2
,A

3
Clear 0.1 0.1 75

A
4
,A

5
,A

6
Not Clear 0.5 0.5 3

whether the traffic ahead is clear, from 6 other agents
{A

1
, A

2
,..., A

6
}. Agents A

1
, A

2
, and A

3
 say in their reports

R that the traffic is clear, but the other agents say
otherwise in their reports R’. We assume that these 6
agents have the same experience-based trust and role-
based trust, which are 0.5 respectively. Table III
summarizes the information about the agents’ time
closeness and location closeness. Agents A

1
, A

2
 and A

3

have time closeness and location closeness values of 0.1,
while agents A

4
, A

5
 and A

6
 have values of 0.5. This implies

that agents A
1
, A

2
 and A

3
 are closer to the location of the

event, and the time for agent A to receive their reports is
sooner.

The aggregated effect from reports R sent by agents
A

1
, A

2
 and A

3
 can then be calculated based on Equation

5, as follows:

1,2,3

( ) ( ) 0.5 0.5
( ) 3 75

( ) ( ) 0.1 0.1�

�
� � � �

��
i

e i r i

A A t i l i

T A T A
E R

C A C A

The aggregated effect from reports R’ sent by agents
A

4
, A

5
 and A

6
 can also be calculated as follows:

4,5,6

( ) ( ) 0.5 0.5
( ) 3 3

( ) ( ) 0.5 0.5�

�
� � � ��

��
i

e i r i

A A t i l i

T A T A
E R

C A C A

The majority opinion is then the report R with the
aggregated effect of 75. In this example, agent A sets the
maximum error � to 0.15. We can see that majority
consensus can be reached:

( ) 75
0.96 1 1 0.1 0.9

( ) ( ) 75 3
� � � � � � � �

� ��
E R

E R E R

Therefore, agent A will trust report R, which says
that the traffic on the route is clear.

Now, we assume that agents A
4
, A

5
 and A

6
 have both

time closeness and location closeness values of 0.2. The
aggregated effect from reports R’ sent by agents A

4
, A

5

and A
6
 is now:

Figure 2: Simulating VANET using SWANS Simulator with STRAW
Mobility Model
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4,5,6

( ) ( ) 0.5 0.5
( ) 3 18.75

( ) ( ) 0.2 0.2
i

e i r i

A A t i l i

T A T A
E R

C A C A�

�
� � � ��

��

The majority opinion is still report R, but with � set
to 0.1 majority consensus cannot be reached in this case6:

( ) 75
0.8 1 1 0.1 0.9

( ) ( ) 75 18.75

E R

E R E R
� � � � � � � �
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IV. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation
of our trust model in detail. Note that in this paper we
only experiment with the role-based and experienced-
based dimensions of our trust model while leaving a more
comprehensive experimental evaluation for future work.
Due to prohibitive costs, it is neither easy nor feasible to
conduct VANET experiments in a real world setting;
therefore, we rely on simulations to evaluate our work.

(A) VANET Simulator

Out of the few possible choices of simulators available
for our use [5], [13], we choose SWANS (Scalable
Wireless Ad-hoc Network Simulator). SWANS is a
wireless ad-hoc network simulator that is based on Java
in Simulation Time (JIST) platform proposed at the
Cornell University [6]. SWANS is entirely implemented
in Java, hence portable, and can potentially handle
simulations involving thousands of nodes while using
incredibly small amount of memory and processing
power. In fact, for simulations with a large number of
nodes, it has been shown to outperform the more popular
simulator i.e., the Network Simulator (ns-2) [13].
However, performance is not the only reason why we
choose SWANS. ns-2 is tailored for research on

performance aspects of different protocols such as TCP
and multicast protocols but we are interested in the
applications running on top of the wireless network rather
than the underlying protocols. SWANS offers easier
extensibility and more control over the application layer
and hence is better suited for VANET simulations.

(B) Mobility Model

In order to run VANET simulations on a general purpose
ad-hoc wireless simulator such as SWANS, we need to
integrate a street mobility model with the simulator.
Nodes in a general purpose network simulation are not
bounded by rules. A street mobility model makes the
simulated nodes follow rules such as speed limits, traffic
signals, and stop signs, allowing for more realistic
VANET simulations. Movement of nodes is also
restricted to follow streets (or roads) as opposed to fairly
free movement in a general simulation model. For our
evaluation, we use the STRAW (STreet RAndom
Waypoint) mobility model [2] integrated with SWANS.
STRAW allows to simulate real world traffic by using
real maps with vehicular nodes that follow traffic rules.
Figure 2 shows a snapshot of one of our simulation runs.
The map shown here is a small portion of a real world
map of north Boston, Massachusetts, USA. Each node
(car) in the simulation is represented as a small colored
rectangle and is assigned a node id between 0 to N, where
N is the total number of nodes in the simulation. Note
how the STRAW mobility model simulates a real world
setting by always confining the nodes to move along
roads, still further restricting their movement according
to current traffic conditions e.g., congestion.

(C) Experimental Settings

For all our experiments we use a single PC based desktop
machine with 2x AMD Athlon 64 X2 Dual Core
Processor 1.0Ghz, 2GB RAM, running Ubuntu Linux
9.04. We fix the total number of nodes to 100 and run
each simulation for a total duration of 900 seconds of
simulation framework time. These settings are sufficient
for the experiments that we present in this paper. To test
the scalability of our model, a large scale study with
simulations containing 10 to 100 times more nodes would
be valuable. We leave this for our future work.

(D) Performance Metric

We measure the performance of our proposed trust model
by observing to what extent it can cope with deceptive
information sent by malicious agents. Malicious agents
in the network may send untruthful traffic information,
to mislead other agents and cause traffic congestion.
According to [2], we can measure congestion based on

Figure 3: Average Speed of All Cars When There are Different
Percentages of Liars
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the average speed of vehicles. Lower average speed
implies more traffic congestion. The performance of our
model can then be measured as the increase in average
speed of all agents by incorporating our model under the
environment where malicious agents exist.

(E) Effect of Malicious Agents on Traffic Congestion

The goal of our first experiment is to quantify the effect
that malicious nodes can have on the average speed of
vehicles. We choose a lying strategy for the malicious
nodes where they always lie about congestion on a
particular road segment i.e., report congestion when there
is no congestion and vice versa. We first run a simulation
where we have no liars in the system and measure the
overall average speed. We then perform five more
simulation runs, with 20, 40, 60, 80, and 100% malicious
nodes in the environment, measuring the change in
average speed of vehicles in the network in each case.
The results are presented in Figure 3. With no liars in the

system, the overall average speed of vehicles is about
6.5 meters/second; this is our baseline. With 20%
malicious nodes, the average speed drops to about 5.6
meters/second which is about 13.8% slower as compared
to the baseline. We see a similar trend moving forward
with 40, 60, and 80% malicious nodes. As expected, we
observe the slowest average speed of about 2.5 meters/
second with 100% malicious nodes in the system. This
is a slowdown of about 61.5% from the baseline. This
experiment proves that malicious nodes can cause
congestion in vehicular networks, thus motivating the use
of a trust model like the one we propose in this work to
counter their effects.

Figure 5: Average Speed of All Cars When There are Five Authorities

Figure 4: Average Speed of All Cars When There are Different
Numbers of Authorities

Figure 6: Average Speed of All Cars With Experience-based Trust

Figure 7: Average Speed of All Cars With Role-based and
Experience-based Trust

(F) Reducing Traffic Congestion with Role-based
Trust

In order to test the effectiveness of role-based trust we
conduct an experiment where we introduce some agents
in the environment with the role of authorities such as
traffic patrols, as mentioned in Section II-B2. In our
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simulation, authorities are assumed to be always
trustworthy i.e., we set the value of T

r
 to 1 for authorities.

In this experiment, we fix the number of malicious agents
to be 40% and then vary the number of agents with the
role of authority between 0 and 40. The results are
presented in Figure 4. With no authorities in the system,
and 40% liars, the average speed of vehicles is about 3.8
meters/second. After introducing 5 authorities, the
average speed increases to 5.4 meters/second, a speedup
of about 42%. Further increasing the number of
authorities to 10 results in an average overall speed of
about 6.3 meters/second, which is already very close to
the baseline average speed of 6.5 meters/second from
Figure 3 for the case where there are no liars in the system.
From Figure 4, we can see that the average speed reaches
a maximum with about 20 authorities. This shows that
our role-based trust successfully counters the affect of
malicious agents, thus reducing traffic congestion.

Next we conduct another experiment where we fix
the number of authorities to five while varying the number
of malicious agents from 0 to 80%. We present the results
in Figure 5 This graph shows that, even with a small
number of agents with a role of authority in the system,
we can still effectively cope with an increasing percentage
of malicious nodes.

(G) Reducing Traffic Congestion with Experience-
based Trust

In the third experiment, we employ only the experience-
based dimension of trust. Again, we vary the percentage
of liars from 0 to 80% and measure the overall average
speed of vehicles. As we can see from Figure 6 using
experience-based trust results in an increase in the average
speed of vehicles. This trend is consistent for all
percentages of liars in the system which shows that
experience-based trust is able to cope with the lying
behavior of malicious agents. Even though experience-
based trust results in a reduction of traffic congestion, gains
are not very significant. As stated earlier, we run each
simulation for a duration of 900 seconds of simulation
framework time. However, during this early period agents
are still lacking experience for experienced-based trust to
work more effectively. With long running simulations we
should see more gains from experience-based trust.

(H) Combining Role- and Experience-based Trust

From Figure 5 and 6, we can see that even though
experience-based trust results in an increase in the
average speed of vehicles in the network with the
presence of malicious agents, role-based trust does this
job more effectively. In this experiment, we combine both
dimensions together and measure the average speed.

These results are presented in Figure 7 As we can see, by
combining these two dimensions we can achieve an
average speed which is higher than when using any one
of these two dimensions individually. This shows that a
trust model for agents in VANETs can greatly benefit by
combining several dimensions of trust as proposed in this
work.

V. COMPARISON TO RELATED WORK

In this section, we discuss related work on trust models
in multiagent systems. Three main categories of trust
models have been proposed in multiagent systems by
researchers in artificial intelligence, including learning
and evolutionary trust models, reputation (social) models,
and socio-cognitive models of trust. These models derive
for an agent some beliefs about the honesty or
reciprocative nature of its interaction partners. Some key
issues of these models are highlighted to emphasize the
challenges in developing an effective trust model in
VANET environments, some of which motivate our
proposal of a multi-faceted trust modeling framework.

(A) Learning and Evolutionary Trust Models

In learning and evolutionary trust models such as those
presented in [3], [11], [17], [21], [12], [9], trust between
agents emerges as a result of evolution of strategies over
multiple direct interactions. In other words, an agent will
learn to trust (or distrust) another agent based on its past
interactions with this agent. If the past interactions with
a particular agent have been particularly rewarding, the
agent would then learn to associate a higher trust value
resulting in a higher chance of future interactions with
this agent. On the other hand, if a certain agent is known
to defect over the past interactions, the other agent will
choose not to deal with it in future thus representing a
lower (learned) value of trust.

In these learning and evolutionary models, having
multiple direct interactions among agents is the key to
establishing trust and in learning to evolve strategies over
time. However, in highly dynamic and open multi-agent
systems such as VANETs, it is not logical to expect that
this assumption will hold. Therefore, the trust models
whose success depends on a certain minimum number
of direct interactions between the agents, fail when
directly applied to the domain of VANETs. In our multi-
faceted framework, we incorporate the evidence from
direct interactions, whenever available. In the trust
calculation, the weight for available data can be raised
to cope with the data sparsity problem, while it may have
a lower default value. We also have role-based trust to
distinguish trustworthy agents from untrustworthy ones
to some extent.
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Many of the learning and evolutionary models of trust
also assume complete information about other agents and
the system (e.g., strategies, payoff matrix etc.) in order
to make their trust learning algorithms work. This
assumption might hold in certain restrained scenarios
(such as controlled simulations) but is not true in VANETs
where agents are inherently limited in their capacity to
gather information about other agents or the environment.
Though this issue arises in any multi-agent environment
where there is some degree of uncertainty about other
agents and the environment, we believe that it is of far
more concern in the domain of trust for VANETs and we
also attribute it to the rapidly changing dynamics of the
agents/environment in the context of VANETs.

(B) Reputation (Social) Models

Reputation models allow an agent to evaluate its trust in
another agent by asking other agents for their opinions,
to get a more reliable evaluation of the trust when direct
interactions are not sufficient. Various reputation models
presented in literature [15], [27], [18], [16], [23], [22],
[25], [26], [24], [10], [20], provide different mechanisms
to gather and aggregate opinions from other agents to
calculate the trust value. Most of the reputation models
assume that agents are related to each other either by the
way they are connected or through various roles they play
in the network giving rise to what we call a social
network. Through these social relationships some agents
can act as witnesses of transactions and can share this
information with other agents in the form of a
performance metric (e.g. good or bad) which ultimately
gives rise to the concept of reputation.

Many of the above models assume a static
environment (i.e., the number of agents present remains
more or less constant) or allow limited dynamism if at
all [18], [16], [23], [22], [25], [26], [24]. Certain models
[15], [20], [10], [27] have been proposed to deal with
this issue to some extent. For example, the Beta
Reputation System (BRS) of [7] and the personalized
approach of [27] introduce the concept of time window
and a forgetting factor to deal with the possible changes
of sellers’ behavior. Older opinions provided by other
agents about one agent will be discounted more and are
assigned with less weight when modeling the
trustworthiness of that agent. Opinions about the more
recent behavior of the agent will be put more weight.

Teacy et al. [20] propose the TRAVOS model, which
is a trust and reputation model for agent-based virtual
organizations. This approach is based on the beta
probability density function. It considers reputation
advice from other agents by estimating the accuracy of
the current reputation advice provided by them. This way

of estimation also takes into account the possible changes
of the other agents’ behavior in providing reputation
advice. More specifically, the TRAVOS model divides
the interval of [0, 1] into a number of equal bins. It then
finds out all the previous advice provided by the advisor
that is similar to the advice being currently given by the
other agent. The two pieces of advice are similar if they
are within the same bin. The accuracy of the current
advice will be the expected value of the beta probability
density function representing the amount of the successful
and unsuccessful interactions between the buyer and the
seller when the buyer follows the previous advice.

The Bayesian Network based model of Regan et al.
[15] considers a particular scenario where buying agents
trying to choose selling agents based on the opinions of
other buying agents (advisors) that have had past
interactions with the selling agents. They propose that
the evaluation function used by the advisors in reporting
the ratings of the sellers can be learned over time by the
buying agent and then can be used to produce a
personalized re-interpretation of the ratings reducing the
effects of a buyer’s subjectivity and deception and the
change in buyer and seller behavior. More concretely,
they model the properties of sellers and evaluation of
advisors as random variable enabling the buyer to learn
a probabilistic model that can help to (implicitly) discount
the effect of unreliable seller evaluations. Their model
achieves higher accuracy compared to the models of BRS
and TRAVOS.

However, we believe that these models still fall short
in their applicability to VANETs essentially because of
the rate at which agents are moving around (an average
of 100km/h) and joining or leaving the network is
unparalleled to any other setting. Furthermore, none of
these models have been explicitly introduced to the
VANET setting. We propose that any good trust model
for VANETs should introduce certain dynamic trust
metrics in order to capture the changes in the
environment, allowing an agent to control trust evaluation
depending on the situation at hand [4], [14].

(C) Socio-cognitive Models of Trust

The approaches to trust that have been presented in the
previous two subsections mainly calculate trust based on
the outcomes of interactions between the agents. These
approaches deal with mechanisms for quantitatively
evaluating trust given an agent’s direct interaction with
another agent or the aggregated opinion of other agents.
In contrast to this quantitative evaluation of trust, socio-
cognitive models of trust argue that there are certain
subjective perceptions that might be important in
providing a comprehensive view of trust in another agent.
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For example in judging the capabilities of an opposing
agent to do what it says it will one could consider the
agent’s (a) Competence - the belief that an agent is
capable of carrying out a task; (b) Willingness - the belief
that an agent has decided or intends to do what it has
proposed to do; (c) Persistence - the belief that an agent
is stable enough about its intensions. 4) Motivation - the
belief that an agent has some motives to do what it says
it will.

It should be clear that all the above beliefs are
subjective in their nature and when properly weighted
and combined with the quantitative metrics of trust, can
greatly help to flexibly derive a much more
comprehensive view of trust that neither of them may
not be able to achieve individually. Castelfranchi and
Falcone [1] initiate this line of research.

Socio-cognitive models of trust, because of the
inherent subjectivity of the high level perceptions that
they consider, are more challenging to implement as
compared with other trust models. Therefore, it is not
clear how these models could be applied to establish trust
in different emerging applications. Although these models
might not be employed independently, still they can
provide a comprehensive view of trust when combined
with other quantitative models of trust. In other words,
one might imagine continuing to expand the multi-faceted
model of trust that we have currently proposed to also
include other dimensions that reflect the inherent
satisfaction in the reports that are being received by other
agents and to consider to a greater extent subjective
differences between the different agents in the
environment, regarding their tolerance of inaccurate
reports.

(D) Summary of Related Work

We have discussed the challenges in employing existing
models of trust and reputation for the application of
managing trust in vehicular ad-hoc networks. In the
following section, we step back to reflect on our particular
design for trust modeling in VANETs. As we outline in
greater detail the value of certain elements of our
particular trust model, we introduce further brief
comparisons with existing models of trust and reputation.

VI. DISCUSSION

We consider the following properties to be important to
introduce into any framework for modeling
trustworthiness in the environment of vehicular ad-hoc
mobile networks: decentralization; coping with scarcity
of information; ensuring that trust is task, location and
time specific; and scalability.

To explain, in VANET environments, there is a need
for prompt evaluation of the trustworthiness of
information, in real-time. As such, the processing must
be decentralized, performed by each vehicular agent, in
order to quickly determine the paths to recommend for
the driver.

It should be clear that with a massive number of cars
roaming in a dynamically changing environment,
opportunities to interact with the same agent may be quite
rare. As several trust and reputation modeling methods
rely on learning over time how to trust a source, through
increased experience with that same agent [21], a distinct
approach is necessary for this VANET environment. The
large number of vehicles within the network also suggests
that any trust modeling method must be scalable.

Finally, it will turn out to be the case that the
reliability of the information provided by a source will
be quite dependent on the location of the source and the
time of request, relative to the expected time of travel.
Cars within the immediate vicinity should have more
trustworthy information and when a report is needed for
the immediate future, agents within vehicles that are able
to respond at once will hold more value. Traditionally,
trust and reputation models build up their evaluation of
an agent, over time and some do discount advice that has
been provided in the past [7], but making the
determination of trustworthiness both event and time
dependent is not a usual feature of the modeling.

Our particular approach serves to accommodate these
desirable properties for trust modeling in this
environment. We first note that decentralization is
addressed by the nature of our model (i.e., agents are
distributed in the network).

Scarcity is addressed by first of all introducing role-
based trust as a central element, allowing an agent to
gauge the trustworthiness of a source with which it has
had little or no experience, simply making use of the role
of the agent and its expected trustworthiness. Another
element in our solution is the action of testing the
trustworthiness of certain agents whose advice will not
be relied on immediately, in order to build up knowledge
of these agents, if encountered in the future. A third
technique that is introduced is raising the weight of data
that might have a lower default value, to term the data
more valuable. Note that when direct interaction has taken
place, our model does accommodate making use of this
information and learning about how to trust these sources,
for the future.

Being event/task and location/time specific is
addressed in our model by dynamically adjusting the
factors � and � in our experience-based trust and by
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introducing the time closeness and location closeness
parameters (�

t
 and �

l
) in the majority-based trust; that is,

messages from agents closer to the event location or time
are given higher weights. In addition, we assign a decay
factor to messages, in order to discount older information.
Finally, we map specific roles to sets of events, which
can potentially be implemented easily in our role-based
framework.

To consider the challenge of scalability, we first of
all allow the user to limit the number of agents being
consulted, by setting the parameter n. In addition, within
experience-based trust we update agents’ trustworthiness
by accumulatively aggregating agents’ past interactions
in a recursive manner. Further, only the most recent trust
ratings are stored, to make the process manageable.

We also advocate being sensitive to privacy concerns
and propose making use of a public key infrastructure
(PKI) to allow agents to authenticate one another.

Our research also contrasts with other artificial
intelligence efforts for vehicular ad-hoc networks. For
example [8] mostly serves to reinforce the need for trust
modeling. In this work, simulations determine that self-
interested agents who either want to simply maximize
their own utility or seek to behave maliciously, can
achieve road congestion.

A number of researchers have proposed trust and
reputation models with role-based approach and the
notion of confidence [14], [20], [11]. In particular, [19]
introduced FIRE, a framework that integrates direct trust
and role-based trust, in which the direct trust model of
[16] is proposed as the method for capturing this element
of the overall calculation, with some adjustment to
consider more carefully the decay of trust values over
time. In contrast, our model incorporates role-based trust
and experience-based trust, which are combined using a
priority-based approach, together with majority-based
trust to aggregately evaluate the trustworthiness of agents
while taking into consideration the important properties
specific to VANET environments.

In this paper, we have proposed an expanded trust
model for agents in VANET. Initial experimental results
indicate that our approach works effectively for the
domain of VANET. As part of the future work we plan to
expand our experimental evaluation to include more
complex scenarios where we test the effectiveness of
other components including event/task and location/time
specific components. Furthermore, it is very important
to measure scalability of our trust model with increasing
number of agents in the system. This is an ongoing work
that presents another step towards a robust trust model
for agents in intelligent vehicular systems.

NOTES

1. There is no need for each group to have the same number
of elements. We provide here only a simplified example.

2. Our experience-based trust may be helpful for role
categorization. When agents have sufficient experience-
based trust information about each other, they may report
this information to a trusted authority (i.e. the
transportation department of government). A mapping
between agents’ real-world profiles and their
trustworthiness can then be derived for helping categorize
their roles.

3. The value of t may be scaled within the range of [0, 1].
This can be achieved by setting a threshold t

max
 of the

maximum time for an agent to totally forget the experience
happened at the time that is t

max
 prior to the current time.

4. Note that in Table II, agent A
6
’s trust has been decreased

from -0.5 to -0.57 even though its advice is reliable. This
is because the amount of A

6
’s trust being forgotten

exceeds the increased amount of trust for providing the
reliable advice. A

6
’s trust would get improved if the time

difference were smaller, say 0.1 as agent A
5
, or if a larger

value for the forgetting factor were chosen, say 0.9.

5. By setting � to 0.1, agent A wants at least 90% of the
reports to agree with each other.

6. Note that if agent A allowed � to be more tolerant, say �
� 0.2, then majority consensus would also be achieved
in this case.
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