
International Journal of Computational Intelligence Theory and Practice, Vol. 4, No. 1, June 2009 © Serials Publications

Energy Outsourcing for Mobile Devices in Pervasive Spaces

Ahmed Abukmail
School of Computing, University of Southern Mississippi

E-mail: ahmed.abukmail@usm.edu

Abdelsalam (Sumi) Helal
Computer and Information Science and Engineering Dept., University of Florida

E-mail: helal@cise.ufl.edu

Abstract: We explore the opportunity Pervasive Spaces provide as supplemental energy sources surrounding visiting mobile
devices. We utilize the nature of pervasive smart spaces to outsource computation that would normally be performed on a
mobile device to a surrogate server within the smart space. The decision to outsource a computation depends on whether its
energy cost on the device is larger than the cost of communicating its data to the surrogate and receiving the results back. We
propose an approach by which the outsourcing decision is made at runtime, while the intelligence that makes that decision is
inserted at compile-time as logic that modifies the application code. The merit of our approach is that it is application-independent
and requires minimal programmer energy awareness. We utilized a methodology from real-time systems to aid us in constructing
the decision-making logic. Additionally, we implemented a runtime support on top of Linux to facilitate for testing and
experimenting with the client/server outsourcing approach. Our experimental validation and benchmarks shows significant
energy saving on the mobile device, which validates our approach as a viable and novel approach to power saving and
management for mobile devices. Our experimental validation also shows that the capabilities of mobile devices can be enhanced
to accommodate more computationally intensive applications to further realize the concept of a computation service provider
(CSP).

Keywords: Computation Outsourcing, Pervasive Computing, Power-aware Computing, Mobile Computing, Smart Spaces

1. INTRODUCTION

The emergence of mobile and pervasive computing
introduced several new challenges and research
opportunities, one of which is energy management. These
challenges arose from the mobility of the used hardware
[31]. Such hardware includes devices such as cellular
phones, PDA’s, laptop computers, and MP3 players. The
mobility of these devices implies that they have a mobile
power source represented by the battery which is a limited
resource. As these devices continue to gain popularity, the
need to manage their energy becomes even more vital. The
more these devices have to be charged the more they are
rendered immobile, hence reducing their pervasiveness.

The problem of energy management has gained and
continues to gain attention in mobile and pervasive
computing due to the increased reliance on mobile
devices as a result of their increased capabilities. This
argument was supported by Helal [19] by giving a closer
look at the market of Java-enabled phones and PDAs from
a commercial standpoint. Moreover, Starner [33] gave a
discussion on how battery technology has not kept up
with Moore’s Law. The energy problem is an ongoing
problem and must be addressed on the long run as usage

of mobile devices is increasing among the young as well
as the elderly and spans a wide range of backgrounds.
One of the most used feature of mobile devices is their
multimedia capabilities which are extremely energy (as
well as computational power) intensive applications. Not
only is this a concern with respect to entertainment, but
it also is a concern in the medical as well as the dental
professions as doctors now rely heavily on their mobile
devices for various uses. Other applications that would
benefit from energy saving are those that relate to graphics
design, and voice recognition applications.

Solutions to the energy problem have been studied
significantly. Solutions were presented at the various
layers of a computer system. Often, these solutions have
involved a certain tradeoff. At the high level, a good case
was made for this solution by proposing power-based
APIs [9]. Compiler based solutions, as an attractive
solution, have also been proposed as they alleviate the
need for programmer’s energy awareness [21, 37].

In this work we devised a solution composed of two
parts: a compile-time optimization of the high-level code,
and a runtime support for the resulting optimized
software. The result of the first phase is a client/server

International Journal of Computational Intelligence Theory and Practice, Vol. 1 No. 1 (January-June, 2015)

International Journal of Computational Intelligence in Control
Vol. 13 no. 3 (December, 2021)

Received: 03rd April 2021 Revised: 26th June 2021 Accepted: 24th July 2021

18 International Journal of Computational Intelligence Theory and Practice

version of the software where the client runs on the
mobile device and the server runs on a surrogate machine.
We utilized work from real time system research to help
facilitate the compiler optimization phase. Our results
showed significant savings in energy consumed by our
benchmark applications.

2. COMPUTATION OUTSOURCING

We present a novel utilization of computation outsourcing
in this work. We utilize pervasive smart spaces as well
as the wireless network surrounding a mobile device to
save energy. We initially would have compiled our code
using our new compile-time energy optimization process,
and generated a client and a server version of the software.
We would have installed the server on a surrogate
machine within the pervasive space, and the client would
have been installed on the mobile device entering the
pervasive space. Moreover, the mobile device has battery
and network monitors running in the background to
facilitate the client/server execution environment.

The mobile device would make the decision once
entering the pervasive space whether to go into energy
saving mode or normal mode. This policy can either be
left to the mobile device to intelligently make the decision
by pre-configuring the battery monitor, or it can be left
up to the user to decide.

Once the device is placed in energy saving
mode, the battery monitor would dictate to the network
monitor to look for wireless networks within range,
and if found it will go into energy saving mode, otherwise
it will remain in normal mode and no outsourcing
will take place. Once in energy saving mode, the
applications compiled using our energy optimization
process (pre-processor), would send requests and
receive service from the surrogate server in the case
that it is more energy-beneficial to do so, otherwise
local application execution will take place. Figure 1
depicts the communication process that takes place
between the client and the server. This work was
introduced in [2].

Figure 1: Client/Server Communication

Energy Outsourcing for Mobile Devices in Pervasive Spaces 19

Using our model, we envision the development of
an entity describe as a computation service provider
(CSP). Different mobile device users can subscribe to
this service to facilitate energy savings on their mobile
device. We also envision securing this service via setting
subscription policies.

2.1 Formal Model for Computation Outsourcing

We present a formal model for computation outsourcing
based on the research done by Nemeth and Sunderam
[27] who presented a formal approach for defining the
functionality of grid systems. We adopted their definition
and simplified it for our purposes as grid and distributed
computing [13, 24] can benefit a great deal from our
research. The model they presented is based on an abstract
state machine (ASM). However, the resources in our case
consist of WiFi and surrogate servers.

In looking at their model, we realized that their model
encompasses a general description of grid and distributed
systems. Our model is a simplified representation of
theirs. In our model, we define the process universe as
PROCESS = {client, server}, the resource universe as
RESOURCE = {wireless_net, surrogate}, and the
location universe as LOCATION = {within-range, out-
of-range}. We use the same functions used in the grid
and distributed computing domain, and add two of our
own functions which are: execCost: TASK � VALUE,
and comCost: TASK � VALUE, where execCost is a
function that produces the value of the energy consumed
by a specific task of a process. Similarly, the comCost
produces the value of the energy consumed by
communicating the data for a specific task of a process.

As far as the functions that we use from grid and
distributed computing are concerned, we use the same
exact definition presented by Nemeth and Sunderam [27].
The following functions are defined:

• user: PROCESS � USER

• request: PROCESS × RESOURCE � {true,
false}

• uses: PROCESS × RESOURCE � {true, false}

• loc: RESOURCE � LOCATION

• CanUse :USER × RESOURCE � {true, false}

• state: PROCESS � {running-normal, running-
energy-saving, receive-waiting}, we modified
this function to fit our execution framework.

• from: MESSAGE � PROCESS

• to: MESSAGE � PROCESS

• event: TASK � {req-res, send, receive,
terminate}

Upon defining the above functions, and universe sets,
the rules for defining our system as a simplified grid
computing system can clearly be defined. We present
definitions of the rules system in figure 2.

3. COMPILE-TIME SOLUTION

Our compile-time approach presented in [2] is quite
novel. We started the energy optimization process under
the assumption that the program has been tested and
verified in its original sequential form. The following
steps are followed for our compile-time optimization:

(1) Verify the syntax of the code (gcc compiler)

(2) Produce the assembly code for the source
program in mnemonic form.

(3) Use both the original program as well as the
assembly code as input to the energy
optimization process.

(4) The result will be two versions of the code
(client, and server)

(5) Compile each version using its respective
compiler on the target machine.

In steps 1, and 2 we used pre-existing compilers and
assemblers to generate the required input to the later steps.
We also used pre-existing compilers for step 5 of the
process. Our major contribution in the optimization
process was in step 3 which resulted in the generation of
the two versions of the program mentioned in step 4.

Step 3 is divided into multiple subtasks, the first of
which is to recognize basic program blocks (at this point
we handle for loops). While recognizing the high-level
program blocks, we will be able to collect the data about
each loop. We also utilize a technique developed by Healy
et al. [18] that produces the maximum number of loop
iterations. In their work they analyze the register transfer
list (RTL) representation of the code [7]. Using the
assembly code generated in step 2, we will be able to
know what assembly instructions are used in the
execution of each loop. This required us to also discover
loops in the assembly code and find their delimiters.

By calculating the number of loop iterations, finding
out the size of loop data, determining which instructions
were used in each loop, we would have the necessary
metrics to determine if it is more beneficial to execute
locally or remotely. The only remaining information that
would be needed is the cost of communicating a single
byte of data across the network, and the cost of executing
each assembly instruction. We found this information
experimentally for the cost of communication, and we
utilized a similar approach to Tiwari’s [36] to calculate
the energy cost of each assembly instruction. This was

20 International Journal of Computational Intelligence Theory and Practice

Figure 2: Rule Definitions for the Formal Model. (A) The Resource Selection. (B) The Send Rules. (C) The Receive Rule. (D) The State
Transition Rule

 The resource selction rule :
state(client) := running -normal
state(server) := receive -waiting
if loc(wireless _net) = within -range &
 request (client , wireless _net) = true) &
 CanUse(user(client), wireless _net) then
 request (client , wireless _net) := false
 uses (client , wireless _net) := true
 if request (client , surrogate) &
 CanUse(client , surrogate) then
 request (client , surrogate) := false
 uses (client , surrogate) := true
 else
 uses (client , surrogate) := false
 request (client , surrogate) := true
 endif
else
 uses (client , wireless _net) := false
 uses (client , surrogate) := false
endif

The state transition rule :
if uses (client , surrogate) &
 uses (client , wireless _net) then
 state(client) := running -energy -saving
else
 state(client) := running -normal

Client send :
 if state(client) = running-energy -saving &
 commCost(task(client)) <
 execCost (task(client)) then
 if event (task(client)) = send (server) then
 extend MESSAGE by msg with
 to(msg) := server
 from(msg) := client
 end extend
 state(client) := receive -waiting

Server send :
 if event (task(server)) = send (client) then

 extend MESSAGE by msg with
 to(msg) := client
 from(msg) := server
 end extend
 state(server) := receive -waiting

Client receive :
 if state (client) = receive -waiting &
 event (task(client) = receive (server) then
 if to (msg) = client & from (msg) = server
 then
 MESSAGE(msg) := false
 state (client) := running -energy -saving

Server receive :
 if state (server) = receive -waiting &
 event (task(server) = receive (client) then
 if to (msg) = server & from (msg) = client
 then
 MESSAGE(msg) := false
 state(server) := running

A B

C D

done by placing code that corresponds to each assembly
instructions (single or multiple) in an empty ‘for’ loop
and experimentally measure the energy cost differential
of each instruction. We used the same method to
instrument library function calls such as those in the math
library.

3.1 Calculating the Number of Loop Iterations

Healy et al. [18] developed a highly useful methodology
to predict the worst-case execution time of a program.

They implemented this work to be able to statically
analyze real-time systems. Their implementation
analyzes the RTL representation of a program. They
integrated their work in the vpcc compiler [7]. The input
to their compiler is a C program, and one of the outputs
(the one of interest to us) is a file with “.inf” extension.
This file contains various types of information one of
which is the maximum number of each loop’s iteration.
Figure 3 shows a C program, and figure 4 shows its
“.inf” file.

Energy Outsourcing for Mobile Devices in Pervasive Spaces 21

3.2 Loop Data and Iteration Acquisition

In this phase of the compilation process, we recognize
the maximal CPU blocks (loops) as they are the
opportunities for outsourcing. Recognizing the loops at
the high-level constitute collecting the data associated
with them and size of this data. Additionally, we have
designated L-valued data and R-valued data as R-valued
data is that data that would be sent to the server and need
not be received as it didn’t change. This is an optimization
within our compiler optimization. We also determined
that some loops can not be outsourced because they
contain IO operations. This implementation was handled
via our parser-like module, we called it the pseudo-parser
presented in figure 5.

Once the loop data has been collected, and the loops
are identified, the next stage would be to run the code
implemented in [18] to calculate the number of loop
iterations. Once this code produces the aforementioned
“.inf” file, we then parse this file to extract the exact

expression to make it adhere to C syntax. For instance
the emphasized expression in figure 4 has extra characters
associate with it such as the ‘.’, and the ‘_’. In our code
we strip these extra characters out to produce (100 - j -
2) / 3.

3.3 Calculating Size of Loop Data

Once the data of each loop has been collected, we
examine each variable involved in the calculation of each
loop to see if it is L-valued or R-valued to minimize
communication cost. In this part of the code we also
recognize if the data involved is an array or not. For
arrays, we just multiply the size of the data type by the
size of the array.

3.4 Identifying Loop Instructions and Total Loop
Execution Cost

In this phase we parse the assembly code associated with
the C program. We detect the code that delimits each loop
by finding loop entry and exit points. Our target
architecture was Intel’s Xscale’s. A loop can be identified
by 3 consecutive instructions, “cmp” followed by one
of the branch operations “ble, blt, bge, bgt, bne, and
beq”, followed by an unconditional branch “b”. Using
the unconditional branch, we were able to find the end
of the loop which consists of another unconditional
branch to take you back to the beginning of the loop.

At this point we were able to scan the assembly code
to find the instructions in each loop and add their total
cost to estimate the execution cost of a single iteration of
the loop. Inter-instruction costs as well as the cost of
pipeline stalls was estimated and added to the total cost
to better estimate the energy cost of the entire loop
executing once. We were able to handle multiple loops
as well as nested loops.

Given the number of iterations of each loop, as well
as the cost of a single execution of each loop, in addition
to the nesting structure, we were able to generate the
formulas that represent the total cost of each loop with
respect to its level of nesting.

3.5 Inserting the Outsourcing Code

When reaching this step, we would have generated the
formulas the correspond to the cost of each loop as well
as the formulas corresponding to the cost of
communicating the loop’s data. At this point, we insert
the necessary socket connection related to the server in
the file that is to be installed on the surrogate server, and
we insert the corresponding code in the client that is going
to run on the mobile device. This created a socket based
client/server program.

Figure 3: A C Program Compiled with vpcc

main()
{
 int i, j;

 for(i = 0; i < 100 - j ; i = i + 3) {;}

}

Figure 4: The “.inf” File Corresponding to the C Program in Figure
3.

 -3
main
! loop 0 0 1 1 -1 -1 1 2 3 4 -1 4 -1
! loop 1 1 -4 r[10] 0 r[9] 3 s -2 (100-.1_j-2)/3 (100-.1_j-2)/3 -1 -1 3 -1 3 -1
! block 1 lines 5-5 preds -1 succs 2 4 -1
makes_unknown 3 -1
doms 1 -1
1 82 4 0 8 7 () 1024 7 (100) 8 4 (%o1)
1 90 4 0 8 4 (%o1) 8 4 (%o3) 8 4 (%o1)
1 90 7 1 1024 7 () 8 4 (%o1) 8 7 ()
1 62 4 2 2048 4 () 0 0 () 0 0 ()
1 82 4 0 8 7 () 1024 7 () 8 4 (%o2)
! block 2 lines 5-5 preds 1 -1 succs 3 -1
makes_unknown 3 -1
doms 1 2 -1
2 32 4 0 8 4 (%o2) 1024 7 (3) 8 4 (%o2)
! block 3 lines 5-5 preds 3 2 -1 succs 4 3 -1
doms 1 2 3 -1
3 90 4 1 8 4 (%o2) 8 4 (%o1) 8 7 ()
3 74 4 2 2048 4 () 0 0 () 0 0 ()
3 32 4 0 8 4 (%o2) 1024 7 (3) 8 4 (%o2)
! block 4 lines 5-5 preds 1 3 -1 succs -1
doms 1 4 -1
4 80 4 0 128 4 () 8 7 () 0 0 ()
4 15 4 0 0 0 () 0 0 () 0 0 ()

22 International Journal of Computational Intelligence Theory and Practice

Once the socket coded is inserted, we insert an “if”
statement surrounding each one of the loops that checks
if the cost for communication is smaller than the cost of
computation for each loop by comparing the two formulas
generated before. The statement basically adds the logic
that “at runtime” decides if outsourcing is to take place
or not.

4. RUN-TIME SUPPORT

To support the ability to outsource code, the application
must be able to run in one of two modes: normal mode,
or energy-saving mode. So, when an application starts, it
will have to get some information based on the resources
that are available. If the battery is susceptible to be drained
quickly, then the application needs to run in energy-saving
mode, the user also has control over this. However, if
the user decides to run in normal mode, then the
application will not outsource computation.

We created two monitors that support computation
outsourcing [3]: a battery monitor and a network monitor.
The battery monitor examines the file /proc/apm to
determine the amount of battery charge left. This gives it
an informed decision on when to go or suggest to go into
energy saving mode. The network monitor does surrogate

server discovery by sending out a broadcast and receive
confirmation from a server under which it is registered
to outsource. Once the handshake is established between
the client and the server, energy saving mode is
established and code may be outsourced.

In order for the application to be able to make the
right decision, it has to contact the battery monitor at
startup. The battery monitor would have already
determined if energy saving is available via outsourcing
(this decisions is based on user preference also).
Additionally, the battery monitor will contact the network
monitor to check if the devices is actually connected to a
network and that network contains surrogate servers. If
so, then it will run in energy-saving mode listing the
appropriate surrogate available for the application to
utilize. This monitor is also similar to, but much simpler
than, those discussed by Flinn and Satyanarayanan [10]
and by Gu et al. [16].

The work done by Flinn et al. [10] suggests that the
cost of these monitors is “non-negligible”. This is true in
their case, as a lot of the intelligence to execute code
remotely is done at runtime as opposed to compile-time,
and that is why their approach is a coarse-grained
approach to energy management. However in our
approach, while may have the same idea presented by
Flinn and Satyanarayanan [10] and by Gu et al. [16], the
solution is much simpler and that is because the battery
monitor is a straightforward inquiry to operating system’s
advanced power management (APM). As far as the
network monitor is concerned, it will only be invoked if
an energy-saving mode of operation is decided (mainly
as an outcome of the battery monitor). Therefore, the cost
is negligible for these two monitors. Implementation of
the battery monitor was as easy as looking at a single file
containing information about the battery at certain
increments of time. As for the network monitor, several
approaches can be investigated, the simplest of which
was proposed by Gu et al. [16] and it is based on wireless
broadcast for discovering surrogates.

5. EXPERIMENTAL RESULTS

We performed our measurements and experiments in two
stages, the first of which was to determine the cost for
each assembly instruction. The second was to measure
the energy cost of our benchmarks.

Our target architecture was an Intel Xscale (PXA-
250) processor installed in a Sharp Zaurus (SL-5600)
which is running Linux. We used a low-power wireless
LAN card (Socket’s low-power wireless LAN) card. The
surrogate server was a Linux machine running RedHat
7.2. We developed the applications using Metrowerks
Codewarrior for the Zaurus. Measurement was done via

Figure 5: The Algorithm Implementing the Pseudo-parser

Energy Outsourcing for Mobile Devices in Pervasive Spaces 23

an Agilent Technologies 34401A multi-meter and its
supporting software. We measured the current drawn by
the device while maintaining a constant voltage (5 volts).
Therefore, our measurements compares mainly time and
current in amps.

In order to do the measurements, we measure the
current drawn by the Zaurus in the idle state. Once we
run the program we calculate the difference between the
current drawn in the idle state and that drawn by running
our benchmark. Then multiply by 5 volts, and by the total
time it took to run the program to get the total energy
consumed E = VIT, where E is the energy consumed, V
is the voltage, I is the current, and T is the elapsed time.

To measure each instruction’s cost, we first measured
the cost of running an empty ‘for’ loop, then via the
declaration of register variables which the C language
allows for ‘register int x;’ we were able to isolate the
load and the store operations by inserting C code
corresponding to them in the loop and measure the
difference in energy consumed. If a variable is declared
as a register, then assigning another variable to it means
that we’re only doing a load, and if we assign it to another
variable then we’re doing a store. Once we were able to
measure the cost of the load ‘ldr’, and the store ‘str’
operations, then we started adding different operations
to the loop and measured their energy cost similarly. This
is similar to the work done in [36].

Measuring the communication cost per byte, we
wrote a small UNIX socket program that established
communication between the client and the server to
confirm the statistics provided about the network card.
The card data sheet mentioned that the card is active 90%
of the time and transmitting at 265 mA and receiving at
179 mA.

To test the effect of our approach on energy, we
implemented three different simple benchmarks that span
three different formations of data and execution
complexity. The first of which was the Fibonacci loop,
which contains constant data, but it executes in O(n) time.
In other words, the size of the data remains constant,
while the execution changes with n, where n is the number
to which we are trying to calculate the Fibonacci number.
Due to the sampling limitation of our multi-meter, we
had to test this 3 times using 3 large numbers to get more
accurate results of our measurements. We performed the
testing using the numbers, 100000, 200000, and 300000.
Another benchmark that we used was a rectangular
version of the bubble-sort loop which executes in O(n2)
and the data size is linear. So, as the data size grows so
will the computation complexity. We sorted 10000,
20000, and 30000 integers. The last benchmark that we

used was a square matrix multiplication loop, which runs
in O(n3) where n is the number or rows and the number
of columns of each matrix. For matrix multiplication we
used a 200×200, a 300×300, and 400×400 matrices.

Each one of the benchmarks was executed on the
Zaurus before our optimization and after our optimization.
We estimated the energy saving for the Fibonacci
calculation and the matrix multiplication to be between
60% and 88% respectively. However, one interesting
observation in our testing was the bubble-sort loop. The
smallest energy saving was 98% for sorting 10,000
integers. This result is well expected due to the fact that
compared to the amount of computation involved in
bubble-sort, the size of the data is very negligible. Figure
6 shows the comparison between local and remote matrix
multiplication execution on a 400×400 matrix.

Figure 6: Local vs. Remote Execution for Matrix Multiplication of
a 400x400 Matrix

In [3], we presented a benchmark that shows the
benefits of our approach. A more realistic benchmark had
to be developed to show that this approach has more
meaningful and potentially industry-utilizable benefits.
Some of the most computationally intensive computations
are those involved in generating an image representing a
3-D graphics scene. To generate a 3-D graphics scene,
the input and output of the program are extremely non-
expensive processes, as even more complex scenes can
be described with a virtually small amount of data. Also,

24 International Journal of Computational Intelligence Theory and Practice

the output is always a 2-D Image. But to get from a 3-D
description of the scene to a 2-D Image depicting the
scene, a huge amount of calculation has to be done. In
this benchmark, the size of the data is O(n2) and the order
of the computation is also O(n2). However, the amount
of constant calculation within each iteration, is extremely
large when compared to the amount of communicating
each unit of data involved in the computation. Our
experimental results show a significant amount of energy
saving for generating a scene by ray-tracing 3 spheres of
different sizes and colors in space to generate 3 different
images of 50x50, 100x100, and 200x200. Figure 7, shows
the input data passed to the ray-tracing process and figure
8 shows the image produced.

The input to the ray tracing application is quite a
simple input composed of a few floating point numbers.
These numbers represent the description of the world
composed of: the observer, the light source, and the
parameters describing three spheres in space.

We did our experiments on various sizes of data and
we generated a 50x50 image, a 100×100 image, and a
200×200 image for the same scene. The amount of
computation was so large that in all three cases, the
computation was outsourced. Figure 9 shows the results
of comparing local execution vs. remote execution for
the 100×100 image.

6. RELATED WORK

Prolonging battery life (often called energy management)
has long been the focus of research. This problem has
many facets, which can be faced by addressing the various
components of a mobile computer system. In [1] we
authored a book chapter on power-management
techniques. These techniques include reducing energy at
the system-architecture level, by targeting (reducing)
various components of the power equation (P = CV2f),
where P is power, C is capacitance load, V is supply
voltage, and f is switching frequency. Other techniques
targeted the operating system by saving energy involved
in communication, by caching, by process scheduling,
and by having an energy manager. Additionally, we
presented software techniques grouped into two

Figure 7: Input File for the Ray Tracing Application

Figure 8: The 2-D Image Representing the 3-D Scene Generated by
Ray Tracing

Figure 9: Local (A) vs. Remote (B) Execution for the Ray Tracing
Application of a 100×100 Image

Energy Outsourcing for Mobile Devices in Pervasive Spaces 25

categories: specific application techniques, and compiler-
based techniques. These software techniques (like those
targeting the operating system) are considered higher-
level power-management techniques. Solutions that target
energy management usually involve a tradeoff.

As far as energy management at the hardware and
architecture levels is concerned a few developments have
been introduced. Smart battery systems were introduced
to perform intelligent power drainage (http://
www.sbsforum.org/specs/ index.html). In addition to
batteries, energy-aware processors were also introduced.
Various companies introduced their solutions in the form
of energy-aware processors. Intel introduced the Xscale
processor (http://www.intel.com/design/intelxscale), and
earlier they shipped their Pentium III with the SpeedStep
technology (http://www. intel.com/support/processors/
mobile/pentiumiii/ss.htm). Transmeta Corporation has the
Crusoe family of processors (http://www.transmeta.com/
crusoe/ index.html). Additionally, the ARM family of
processors is widely popular, and is geared toward
reducing power consumption while maintaining a high
level of performance (http://www.arm.com).

Reducing any of the variables involved in the power
equation will reduce the energy and power consumed.
Capacitance load, frequency, and voltage can be managed
at the hardware and architectural level. Voltage and
frequency scaling have been targeted in [20]. However
Smit and Havinga [32] argued that reducing voltage
indicates reducing performance, therefore additional
hardware is needed to balance it out. Capacitance load
reduction was also targeted in [15], and [34]. Hardware
solutions augmented by compiler support were also done
in [5], and [38] by adding additional caches.

As for operating system solutions, advanced power
management (APM), and more recently advanced
configuration and power interface (ACPI) have been quite
useful in energy management. Additionally, secondary
storage (disk) access is very expensive. Therefore, the
lower the frequency of disk access is the better it is for
energy. Therefore, making fewer incorrect file predictions
is a good methodology to save energy [39]. Also, energy
saving communication techniques are getting increasingly
important. Managing communication devise was done
in [22]. In [25] a solution was provided for application-
level energy management that can be easily utilized also
at the operating system level. Energy-aware scheduling
via monitors was also introduced in [6].

Research and experiments have shown that, with the
exception of loop unrolling, and function inlining,
compiling for performance does not imply compiling for
energy [37]. In [35] a few techniques for energy

management were introduced. These techniques were
proposed to target reduction in frequency of logical state
transitions, reordering instructions by utilizing a power
metric as opposed to the performance metric suggested
in [4], and in [14]. Other compiler-based techniques were
introduced in [26], and [30]. Also the work done in [28]
migrates the compilation process to a server to save
energy. In [23], the work that is closely related to our
work was presented, where they perform remote task
execution based on the cost of communicating the data.
However the work targets specific tasks based on
checkpoints that delimit the tasks.

Flinn and Satyanarayanan [11], demonstrated a
collaborative relationship between operating systems and
applications to meet user-specified goals for battery life.
They used PowerScope [12] to validate the measurements
of energy consumption for accurate estimation.

As far as the applications are concerned, Haid et al.
[17] developed an excellent application with energy
awareness in mind. This work presents designing an
energy-aware MP3 player. Additionally, Yuan et al. [40]
investigated another multimedia application with respect
to power-awareness. They present a middleware
framework for coordinating the adaptation of multimedia
application to the hardware resources.

In addition to previously mentioned Powerscope
[12], other research has been done to estimate energy for
certain applications, systems, and devices. Cignetti et al.
[8] described an energy model for the Palm.

7. CONCLUSION AND FUTURE WORK

Our experimental results showed that pervasive smart
spaces can provide opportunities to outsource
computation. By exporting CPU processing over the
network, the mobile device delivers expected
functionality while consuming less energy and lasting for
a longer period of time.

We found that our research benefited and will
continue to benefit from research done in the area of real-
time systems as it aims at knowing as much about an
application before running it. Moreover, we believe that
we can also benefit from the area of automated
verification for loop invariant generation such as the work
done in [29].

In the future we will continue to enhance the
implementation of our client/server solution. However,
we will augment the work by adding support for dynamic
memory allocation, and subroutine outsourcing. To
handle multiple platforms, targeting languages such as
Java and C++ will be necessary. This will require porting
a compiler to handle both languages while augmenting

26 International Journal of Computational Intelligence Theory and Practice

with the code that we obtained to calculate the number
of loop iterations. Moreover, as we will support additional
types of basic program blocks we will build the compiler
support that will handle estimating total execution cost
of these basic program blocks such as additional types
of loops than those supported so far, recursive functions
(inherently these are loops), library linked functions
whose energy consumption is predefined, and functions
defined within the code. Additionally, we will investigate
in the case of non-Java languages, the possibility to be
able to cross-compile them for the most popular mobile
devices.

In this research, we assumed that if a basic program
block (loop) contained an I/O operation, it is determined
as non-outsource-able. However, in our future work we
will be looking at opportunities where I/O operations may
be performed elsewhere. For input operations that involve
files, if the file exists elsewhere, then it could be energy-
beneficial to read the file on a remote machine, and utilize
its contents remotely. Similarly, if producing the output
elsewhere and basically all we are interested in is a display
of this output which maybe cheaper than displaying the
output locally, then that is another opportunity that needs
to be investigated.

Identification of the applications, which contain the
computationally expensive basic program blocks, is an
essential part of this research. We will investigate and
research the different types of basic program blocks that
fall into this category and test them and provide them as
benchmarks for our research. In addition, we will build
the support for other useful applications that will benefit
from our approach.

Java remote method invocation (RMI), and remote
procedure call (RPC) based systems will also be
applicable in our research where we will let the system
make the necessary data communication according to its
policies which will benefit our approach especially at the
level of outsourcing specific functions, and subroutines.
These two systems are utilized in grid computing
environments.

We will weigh the benefits of every outsourcing
mechanism with each type of basic program block we
investigate, and investigate which mechanism allows us
to save more energy with a basic program block. This
will lead to a hybrid approach where a single application
may contain one, two, or three outsourcing mechanisms.

Also, as far as service discovery is concerned, we
will investigate a lighter version of some of the well-know
service discovery systems like UPnP (http://
www.upnp.org), and Jini (http://www.sun.com/software/
jini). We believe that these systems can be utilized without

spending a large amount of energy as the inclusion of the
intelligence in the modified program.

REFERENCES

[1] A. Abukmail, A. Helal, Power Awareness and
Management Techniques, in: M. Ilyas, I. Mahgoub (Eds.),
Mobile Computing Handbook, CRC Press, Boca Raton,
FL, 2004.

[2] A. Abukmail, A. Helal, A Pervasive Internet Approach
to Fine-Grain Power-Aware Computing, in: IEEE/IPSJ
International Symposium on Applications and the
Internet, Phoenix, Arizona, January 2006.

[3] A. Abukmail, A. Helal, A near-Zero Run-time Energy
Overhead within a Computation Outsourcing Framework
for Energy Management in Mobile Devices, in: 5th

International Conference on Information Technology:
New Generations (ITNG), Las Vegas, Nevada, April
2008.

[4] A. Aho, M. Ganapathi, S. Tjiang, Code Generation Using
Tree Matching and Dynamic Programming, ACM
Transactions on Programming Languages and Systems
11 (4) (1989) 491-516.

[5] N. Bellas, I. Hajj, C. Polychronopoulos, G. Stamoulis,
Architectural and Compiler Support for Energy
Reduction in the Memory Hierarchy of High performance
Microprocessors, in: International Symposium on Low
Power Electronics and Design, Monterey, CA,
February1998.

[6] F. Bellosa, The Benefits of Event-Driven Energy
Accounting in Power-Sensitive Systems, in: 9th ACM
SIGOPS European Workshop, Kolding, Denmark,
September 2000.

[7] M. Benitez, J. Davidson, A Portable Global Optimizer and
Linker, in: ACM Conference on Programming Language
Design and Implementation, Atlanta, Georgia, July 1988.

[8] T. Cignetti, K. Komarov, C. Schlatter Ellis, Energy
estimation tools for the Palm, in: 3rd ACM International
Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, Boston, MA, August 2000.

[9] C. Ellis, The Case for Higher Level Power Management,
in: 7th Workshop on Hot Topics in Operating Systems,
Rio Rico, AZ, March 1999.

[10] J. Flinn, S. Park, M. Satyanarayannan, Balancing
Performance, Energy, and Quality in Pervasive
Computing, in: 22nd International Conference on
Distributed Computing Systems, Vienna, Austria, July
2002.

[11] J. Flinn, M. Satyanarayanan, Energy-aware adaptation
for mobile applications, in: 17th ACM Symposium on
Operating System Principles, Kiawah Island, SC,
December 1999.

Energy Outsourcing for Mobile Devices in Pervasive Spaces 27

[12] J. Flinn, M. Satyanarayanan, PowerScope:
A Tool for Profiling the Energy Usage of Mobile
Applications, in: 2nd IEEE Workshop on Mobile
Computing Systems and Applications, New Orleans, LA,
February 1999.

[13] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the
Grid, in: T. Berma, G. Fox, A. Hey (Eds), Grid
Computing: Making the Global Infrastructure a Reality,
Wiley Series in Communication Networking and
Distributed Systems, John Wiley and Sons Ltd, West
Sussex, England, 2003.

[14] C. Fraser, D. Hanson, T. Proebsting, Engineering
Efficient Code Generators using Tree Matching and
Dynamic Programming, Technical Report No. CS-TR-
386-92, Princeton University, August 1992.

[15] C. Gebotys, Low Energy Memory and Register
Allocation Using Network Flow, in: 34th Conference on
Design Automation, Anaheim, California, June 1997.

[16] X. Gu, A. Messer, I. Greenberg, D. Milojicic, K.
Nahrstedt, Adaptive Offloading for Pervasive
Computing, IEEE Pervasive Computing 3 (3), (2004),
66-73.

[17] J. Haid, W. Schogler, M. Manninger, Design of an
Energy-Aware MP3-Player for Wearable Computing, in:
Telecommunication and Mobile Computing Conference,
Graz, Austria, March 2003.

[18] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, Bounding
Loop Iterations for Timing Analysis, in: IEEE Real-Time
Technology and Applications Symposium, Denver, CO,
June 1998.

[19] A. Helal, Pervasive Java Part II, IEEE Pervasive
Computing, 1 (2), (2002), 85-89.

[20] C. H. Hsu, U. Kremer, M. Hsiao, Compiler-Directed
Dynamic Frequency and Voltage Scheduling, in: 1st
International Workshop on Power-Aware Computer
Systems, Cambridge, MA, November 2000.

[21] M. Kandemir, N. Vijaykrishnan, M. Irwin, W. Ye,
Influence of Compiler Optimizations on System Power,
in: 37th Conference on Design Automation, Los Angeles,
CA, June 2000.

[22] R. Kravets, P. Krishnan. Power Management Techniques
for Mobile Communication, in: 4th ACM/IEEE
International Conference on Mobile Computing and
Networking, Dallas, Texas, October 1998.

[23] U. Kremer, J. Hicks, J. Rehg, Compiler-Directed Remote
Task Execution for Power Management, in: Workshop
on Compilers and Operating Systems for Low Power,
Philadelphia, PA, October 2000.

[24] C. Lee, D. Talia, Grid Programming Models: Current
Tools, Issues and Directions, in: T. Berma, G. Fox, A.
Hey (Eds), Grid Computing: Making the Global

Infrastructure a Reality, Wiley Series in Communication
Networking and Distributed Systems, John Wiley and
Sons Ltd, West Sussex, England, 2003.

[25] R. Loy, A. Helal, Active Mode Power Management in
Mobile Devices, in: 5th World Multi-Conference on
Systematics, Cybernetics, and Informatics, Orlando, FL,
July 2001.

[26] D. Marculescu, Profile-Driven Code Execution for Low
Power Dissipation, in: International Symposium on
Low Power Electronics and Design, Rapallo, Italy, July
2000.

[27] Z. Nemeth, V. Sunderam, A Formal Framework for
Defining Grid Systems, in: 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, Berlin,
Germany, May 2002.

[28] J. Palm, J. Eliot, B. Moss, When to use a compilation
service?, in: ACM Joint Conference on Language
Compilers and Tools for Embedded Systems and
Software and Compilers for Embedded Systems, Berlin,
Germany, June 2002.

[29] C. Pasareanu, W. Visser, Verification of Java Programs
Using Symbolic Execution and Invariant Generation, in:
11th International SPIN Workshop on Model Checking
of Software, Barcelona, Spain, April 2004.

[30] A. Rudenko, P. Reiher, G. Popek, G. Kuenning, The
Remote Processing Framework for Portable Computer
Power Saving, in: ACM Symposium on Applied
Computing, San Antonio, TX, February 1999.

[31] M. Satyanarayanan, Pervasive Computing: Vision and
Challenges, IEEE Personal Communication, 8 (4),
(2001) 10-17.

[32] G. Smit, P. Havinga, A Survey of Energy Saving
Techniques for Mobile Computers, Internal Technical
Report, University of Twente, Enschede, Netherlands,
1997.

[33] T. Starner, Powerful Change Part 1: Batteries and
Possible Alternatives for the Mobile Market, IEEE
Pervasive Computing 2 (4), (2003), 86-88.

[34] C. L. Su, C. Y. Tsui, A. Despain, Low Power Architecture
Design and Compilation Techniques for High-
Performance Processors, Technical Report No. ACAL-
TR-94-01, University of Southern California. February
1994.

[35] V. Tiwari, S. Malik, A. Wolfe, Compilation Techniques
for Low Energy: An Overview, in: International
Symposium on Low Power Electronics and Design, San
Diego, CA, October 1994.

[36] V. Tiwari, S. Malik, A. Wolfe, T. Lee, Instruction Level
Power Analysis and Optimization of Software, VLSI
Signal Processing Systems 13 (2), (1996), 1-18.

28 International Journal of Computational Intelligence Theory and Practice

[37] M. Velluri, L. John, Is Compiling for Performance ==
Compiling for Power?, in: 5th Annual Workshop on
Interaction between Compilers and Computer
Architecture, Monterrey, Mexico, January 2001.

[38] E. Witchel, S. Larsen, C. Ananian, K. Asanovic, Direct
Addressed Caches for Reduced Power Consumption, in:
34th Annual International Symposium on
Microarchitecture, Austin, Texas, December 2001.

[39] T. Yeh, D. Long, S. Brandt. Conserving Battery Energy
through Making Fewer Incorrect File Predictions, in:
IEEE Workshop on Power Management for Real-Time
and Embedded Systems, Taipei, Taiwan, May 2001.

[40] W. Yuan, K. Nahrstedt, X. Gu, Coordinating Energy-
Aware Adaptation of Multimedia Applications and
Hardware Resources, in: 9th ACM Multimedia
Middleware Workshop, Ottawa, Canada, October 2003.

