
International Journal of Computational Intelligence Theory and Practice, Vol. 5, No. 1, June 2010 © Serials Publications

Neighbor Node Determination Algorithm for Efficient
Human Tracking

H. Kakiuchi1, T. Kawamura2, T. Sasama2 and K. Sugahara2 and L. Wilkerson3

1Melco Power Systems Co., Ltd., 1-1-2 Wadasaki-cho, Hyogo-ku, Kobe 652-8555 Japan
E-mail: Kakiuchi.Hiroto@zs.MitsubishiElectric.co.jp

2Tottori University, 4-101, Minami, Koyama-cho, Tottori-shi, Tottori 680-8552 Japan
E-mail: kawamura, sasama, sugahara@ike.tottori-u.ac.jp

3Lonnie Wilkerson, Southern Illinois University, Carbondale, IL. 62901, E-mail: kitnyx@gmail.com

Abstract: Much recent research is concerned with overcoming limitations of existing video surveillance systems,
particularly for use in automatic human tracking systems. This paper presents an algorithm which determines the
position of neighbors in a system of video cameras. By utilizing this deployed position and the view distance of video
cameras, this algorithm also determines the interrelationship cameras in such a network must have in an automatic
human tracking system. The system is enhanced by a video monitoring system utilizing mobile agent technologies.
Mobile agents are suitable for distributed processing and parallel processing, since they can monitor their own behavior
and run on distributed computers. Multiple mobile agents in the system can track numerous people using information
gathered from several neighboring video cameras at the same time. Modifications to installed cameras usually
complicate processing due to changes in the deployed position and view distance; additionally, complications can
arise when the deployed position and/or the view distance of video cameras vary due to other circumstances. Therefore,
a robust computation not influenced by these circumstances is needed, and this algorithm was developed to solve
these concerns.

Keywords: adjacency matrix, human tracking, mobile agent, neighbor node.

1. INTRODUCTION

Video surveillance systems are seeing widespread use in
the remote monitoring of people. Principally, the video
surveillance system is used as a security system because
of its ability to track a particular person. If the function
of the video surveillance system is extended to track
numerous people, the demands of the system are extended
in various ways. Two common examples of such uses
are to search for lost children and to gather/analyze
consumers’ route pattern for marketing research of a retail
establishment. Such video surveillance systems are
referred to as “automatic human tracking systems” in this
paper. Our aim is to show how automatic human tracking
systems can be improved by resolving some of the
problems of conventional video surveillance system.

Currently existing video surveillance systems have
many limitations to their capabilities. In one case, systems
have difficulty isolating a number of people located at
different position at the same time and track those people
automatically. In another, the number of possible targeted
people is limited by the extent of users’ involvement in
manually switching the view from one video camera to

another. Although approaches do exist to increase the
efficiency of identifying and tracking particular people
in a system comprised of numerous surveillance positions,
these approaches demand an increase in the workload of
the user since it demands users to identify the target.

Some researchers have suggested solutions to the
above problems. The first approach was to use an active
camera (Terashita, Ukita, & Kidode, 2009; Kawaguchi,
Shimada, Arita, & Taniguchi, 2008) to track a person
automatically, thus the camera moves in a synchronized
motion along with the projected movement of the targeted
person. Since a method for correcting blurring image (Yin
& Hussain, 2008) is proposed, the active camera is
available. This approach is capable of locating and
tracking small number of people, but improvements must
be made to facilitate the locating and tracking of larger
numbers of people. Another common approach was to
position the camera efficiently at strategic surveillance
locations (Erdem & Sclaroff, 2006). This is not possible
in some situations due to the number of cameras that
would be necessary for full coverage, and in such cases
this approach is not feasible due to limited resources. A

International Journal of Computational Intelligence Theory and Practice, Vol. 2 No. 1 (January-June, 2016)

International Journal of Computational Intelligence in Control
Vol. 13 no. 3 (December, 2021)

Received: 25th May 2021 Revised: 20th July 2021 Accepted: 15th August 2021

18 International Journal of Computational Intelligence Theory and Practice

third approach involved the implementation of sensors
to efficiently track a target with multiple cameras (Yao
et al., 2008a; Yao et al., 2008b). This solution also meets
with resource and local restrictions such as installation
barriers and the amount of area to be monitored.

A better approach to identify and track numerous
targeted people at the same time involves image
processing and installation of video cameras at any
designated location. However, the concern then becomes
the appropriateness of using a single server when locating
numerous people, since the image processing increases
server load. As such, a new type of system that is capable
of more efficiently identifying and locating people must
be developed. In this proposed system utilizing mobile
agent technologies, the ratio of mobile agents and tracked
targets is directly proportional (Lange & Oshima, 1999;
Gray, Cybenko, Kotz, Peterson, & Rus, 2002; Motomura,
Kawamura, & Sugahara, 2005; Kawamura, Motomura,
& Sugahara, 2005). According to many studies, an agent-
based approach is appropriate for distributed systems and
parallel processing (Cabri, Leonardi, & Zambonelli,
2000; Valetto, Kaiseri, & Gaurav, 2001; Jennings, 2001),
since mobile agents can transfer copies of themselves to
other servers in the system. By working cooperatively,
such a multi-agent system would be effective
(Monticolov, Hilaire, Gomes, & Koukam, 2008). With
distributed processing, mobile agent technologies are
more effective and efficient than conventional video
surveillance systems, assuming that a large number of
servers with video camera are installed. If one mobile
agent can track one person, then multiple mobile agents
can track numerous people at the same time, and the
server balances the load process of the operating mobile
agent on each server with a camera. A video surveillance
system enhanced with mobile agent technologies is called
“Automatic Human Tracking System” (Kakiuchi,
Hamada, Kawamura, Shimizu & Sugahara, 2008;
Hamada, Iwasaki, Kakiuchi, Kawamura, & Sugahara,
2008). In such a system, a mobile agent tracks a person
captured by a video camera and a server process the data.
The video camera and the server are treated as a single
entity since the video camera and the server are deployed
at the surveillance position. Upon initialization of a
person as a target to track, a mobile agent is generated
for that particular person. After verifying the features of
the person (Ishida et al., 2008), the mobile agent tracks
the movement of the person by utilizing the neighbor
camera/server location information.

Without knowing a neighbor camera/server location,
the mobile agent is not able to track the person, and there
will be a need to deploy new duplicate mobile agents on
the servers, which is not efficient. Though it is difficult

to determine the neighbor server in IP network, it is
possible to search the neighbor server by defining the
relationship between IP address and physical position of
the video camera in the system configuration file.
Neighbor camera/servers are called “neighbor camera
node/nodes” in this paper. The neighbor camera node
location information is determined by the location and
view distance of the video camera. The neighbor camera
nodes differ by the difference in view distance and view
overlap even if video camera’s locations are the same.
Therefore, it is necessary to update information about
camera locations whenever the number of installed
cameras is modified or the view distance of camera is
changed. The neighbor camera location information is
determined utilizing the “neighbor node determination
algorithm” in this paper. This algorithm resolves the
problems introduced above.

2. AUTOMATIC HUMAN TRACKING SYSTEM

2.1. System Features

The features of the system are shown in Fig. 1. A graphical
user interface was developed in order to improve
maintainability of the system configuration. The functions
of the GUI are to create/edit graphical representation of
a building layout, to deploy video cameras on the
graphical layout, to monitor mobile agents, and to create
data for simulation. The GUI utilizes the algorithm to
determine neighbor nodes to compute the adjacency of
video cameras, thus information is displayed graphically
and the maintainability is improved. The algorithm is
utilized not only to calculate the neighboring video
cameras, but also to determine the mobile agent’s next
destination accurately. The algorithm is the subject of
this paper; it contributes to the reliability of the system
by using minimal computing resources. Bypass methods,
which can improve the robustness of the automatic human
tracking system, are currently being researched utilizing
the algorithm. Since the mobile agents utilize these
methods, continuous tracking of the target people can be
ensured; thus, the reliability and persistency of the system
is improved. Lost target re-detection and acquisition
methods are currently being researched utilizing the
algorithm, the results of which will improve the
robustness of systems as well as further increase reliability
and persistency. The goal of these re-detection methods
will be to ensure continuous tracking of target people by
re-detecting if the mobile agents lose track of the people.
OSGi (OSGi Alliance, 2008) and mobile agent
technologies are adopted to improve the system
scalability. OSGi is a framework developed using the Java
Language and server software including web server
functions. In the OSGi server, the OSGi framework

Neighbor Node Determination Algorithm for Efficient Human Tracking 19

manages/controls software which is treated as a single
component called a “bundle”. A mobile agent server is
such a bundle on the OSGi server. In the simulator, an
image processor runs on the OSGi server utilizing mock
information of a target person. The simulator is tested to
improve the reliability and the scalability.

provides the images to the agent monitoring terminal via
request. The feature extraction server along with the video
camera analyzes the entity image and extracts the feature
information from the image.

A mobile agent tracks a target entity using the feature
information and the neighbor nodes information. The
number of mobile agents is in direct proportion to the
number of the target entities. A mobile agent is initialized
at the agent monitoring terminal and launched into the
feature extraction server. The mobile agent extracts the
features of a captured entity and compares it with the
features already stored by the agent. If the features are
equivalent, the entity is located by the mobile agent.

The system architecture is shown in Fig. 3. The GUI
is operated only on the agent monitoring terminal. The
GUI is able to register images of the entities and monitor
the status of all the mobile agents. The mobile agent
server is executed on the feature extraction server and
allows the mobile agents to execute. The Feature
extraction function is able to extract features of the
captured entities, which is then utilized in the tracking
of those entities as mobile agents. OSGi S/W acts as a
mediator for the different software, allowing the
components to utilize each other. The Agent information
manager manages all mobile agent information and
provides the information to the agent monitoring terminal.
The Video recording S/W records all video, and provides
the video movie to agent monitoring terminal. Each PC
is equipped with an Intel Pentium IV 2.0 GHz processor
and 1 GB memory. The system has an imposed condition
requirement that maximum execution time of feature
judgment is 1 second and maximum execution time of
mobile agent transfer is 200 milliseconds.

The processing flow of the proposed system is shown
in Fig. 4. First, a system user selects an entity on the screen
of the agent monitoring terminal, and extracts the feature
information of the entity to be tracked. Next, the feature
information is used to generate a mobile agent per target
which is registered into the agent management server.

Figure 1: System Features

2.2. System Architecture and Process Flow

The system configuration of the automatic human
tracking system is shown in Fig. 2. It is assumed that the
system is installed in a given building. Before a person
is granted access inside the building, the person’s
information is registered in the system. Through a camera
an image of the person’s face and body is captured and
registered into the system. Any person who is not
registered or not recognized by the system is not allowed
to roam inside the building.

Figure 2: System Configuration

This system is composed of an agent monitoring
terminal, agent management server, video recording
server and feature extraction server with video camera.
The agent monitoring terminal is used for registering the
target person’s information, retrieving and displaying the
information of the initiated mobile agents, and displaying
video of the target entity. The agent management server
records mobile agents’ tracking information history, and
provides the information to the agent monitoring terminal.
The video recording server records all video images and Figure 3: System Architecture

Agent Monitoring Terminal Feature Extraction Server

Agent Management Server
Video Recording Server

GUI

Java Virtual Machine

OS(Linux)
OSGi S/W

Java Virtual Machine
OS(Linux)

Agent Information Manager

Java Virtual Machine

OS(Linux)

Video Recording S/W

OS(Windows XP)

Mobile Agent
Server

Feature
Extraction

20 International Journal of Computational Intelligence Theory and Practice

Then the mobile agent is launched from the terminal to
the first feature extraction server. When the mobile agent
catches the target entity on the feature extraction server,
the mobile agent transmits information such as the video
camera number, the discovery time, and the mobile agent
identifier to the agent management server. Finally the
mobile agent deploys a copy of itself to the neighbor
feature extraction servers and waits for the person to
appear. If the mobile agent identifies the person, the
mobile agent notifies the agent management server of
the information, removes the original and other copy
agents, and deploys the copy of itself to the neighbor
feature extraction servers again. Continuous tracking is
realized by repeating the above flow.

2.3. Simulator and Graphical User Interface

A simulator is currently being developed in Java
Language. The simulator consists of 3 functions, an image
processing simulator, an editor for the creation of target

simulation routes and a simulation feature data creator.
The simulator tools are shown in Fig. 5. The genuine
image processing function is also currently being
developed with a feature extraction method based on
SIFT (Lowe, 2004; Cui, Hasler, Thormaehlen, & Seidel,
2009). Since it is difficult to place many cameras, the
image processing simulator is performed on the feature
extraction server instead of a genuine image processing
function. In addition, this simulator changes a target
entity’s feature to a walking target entity by using a
simulation agent. The simulation agent (Pettre, Simeon,
& Laumond, 2002) is also a mobile agent that simulates
the movement of a target entity and changes the target
entity features as shown in Fig. 6. The movement of the
target entity is digitized by the editor of route simulation
and the target entity features are digitized by the
simulation feature data creator. If the system executes
multiple simulation agents, numerous target entities are
able to be simulated.

The graphical user interface is shown in Fig. 7. An
agent’s movement path information is displayed on the
left side area of the GUI. A map of running agents and
each agent’s status are displayed on the center side area.
A user sets the configuration, the IP address of the feature
extraction server, the accuracy level of feature extraction
server, etc on the right side. The GUI can simulate various
layouts of the feature extraction server, set the accuracy
level of the feature extraction server, and confirm the
movement of the agents. Tests of the generator confirmed
accuracy of the system with data from 20 cameras.
Currently the simulator needs more improvement
especially when using more than 20 cameras. This
simulator will be adding other necessary functions. And
the simulator will also be utilized to verify the
performance of the system. As such, the simulator is
utilized in the examination.

Figure 4: Process Flow

Figure 5: Editor of Simulation Route to Follow and Creator of Simulation Feature Data

Neighbor Node Determination Algorithm for Efficient Human Tracking 21

3. NEIGHBOR NODE DETERMINATION
ALGORITHM

3.1. Problem with Determining Neighbor Video
Cameras

If a mobile agent tracks a target entity, the mobile agent
has to know the deployed location of the video cameras
in the system. However the abilities of the neighbor
cameras are also determined by their view distances. A
problem caused by a difference in the view distances
can occur. This problem occurs when there is a
difference in expected overlap of a view or an interrupt
of view.

A scenario in which a neighbor video camera’s
location is influenced by view distance is shown in
Fig. 8. The left side figures of Fig. 8 show 4 diagrams
portraying a floor plan with 4 video cameras each,
considering the view distances of each video camera are
different and assuming that the target entity to be tracked
moves from the location of video camera A to video
camera D. The right side figures of Fig. 8 show neighbors
of each video camera with arrows.

The neighbor of video camera A in object a-1 of Fig.
8 is video camera B but not C and not D as the arrows in
object a-2 show. In object a-1 of Fig. 8, video camera C
and D are also not considered neighbors of video camera
A, because video camera B blocks the view of video
camera C and D. And the target entity can be captured at
an earlier time on video camera B.

Figure 6: Feature Data

Figure 7: Graphical User Interface

But in the case of object b-1 of Fig. 8, the neighbors
of video camera A are video camera B and C but not
camera D as the arrows in object b-2 of Fig. 8 show. In
the case of object c-1 of Fig. 8, the neighbors of video
camera A are all video cameras as the arrows in object c-
2 of Fig. 8 show. Thus neighbor video camera’s location
indicates the difference in view distances of video
cameras. The case of object d-1 in Fig. 8 is more
complicated.

The neighbors of video camera A in object d-1 of
Fig. 8 are video camera B, C, and D as the arrows in
object d-2 of Fig. 8 show. And video camera B is not
considered the neighbor of video camera C. It is because
video camera A exists as a neighbor between video
camera B and C. When it is assumed that a target entity
moves from A to D, the target entity is sure to be captured
by video camera A, B, A, and C in that order.

Figure 8: Example that View Distance Influences

This scenario indicates that the definition of
“neighbor” cannot be determined clearly because the
determination of the neighbor definition is influenced by
the change of view distance and it becomes more
complicated as the number of video cameras increases.

3.2. Overview of the Algorithm

The developed algorithm can easily determine the
neighbor video camera’s location without regard to the
influence of view distances and any modification of the
information of the currently installed cameras. The
modification information is set in the system to compute
neighbor video cameras on the diagram, which is
expressed as a graph. Nodes are used to compute neighbor
video camera’s information in this algorithm. The nodes
are defined as follows:

22 International Journal of Computational Intelligence Theory and Practice

Camera Node: the location of video camera is
labeled as camera node and the nodes are defined as
A = {a

1
, a

2
,…, a

p
}. This node is also a server with video

camera.

Non-camera Node: the nodes are defined as
V = {v

1
, v

2
,…, v

q
}. The conditions of a non-camera node

are stated below:

• Either of crossover, corner, terminal of passage.

• The position where a video camera is installed.

• The end point of the view distance of a video
camera.

Figure 9: Figure that Sets Non-camera Nodes

In addition, the point where the above conditions
are overlapped is treated as one node. When the view
distance of the video camera reaches a non-camera node,
the non-camera node is defined as the neighbor of the
camera node. When two non-camera nodes are next to
each other on a course, those nodes are specified as
neighbors. Fig. 9 shows an example of these definitions
applied and shows the view distances of the video
cameras.

The algorithm accomplishes this using an adjacency
matrix. Two kinds of adjacency matrix are used by the
algorithm. One is an adjacency matrix X made from
camera nodes’ locations as rows and non-camera nodes’
locations as columns. Another one is as adjacency matrix
Y made from non-camera nodes’ location as rows and
columns. The neighbor information for video cameras is
calculated from the connection information of non-

camera nodes by using adjacency matrix X and Y.
However, neighbor information can be miscalculated in
one particular condition. When the non-camera nodes
cross each other and the view distance of two or more
video cameras overlap, it is necessary to break the
connection between those nodes. This is explained by
the definition of adjacency matrix Y.

Below is the algorithm to determine neighbor nodes:

(i) Set camera nodes and non-camera nodes on the
diagram as shown in object (b) of Fig. 9.

(ii) Transform the diagram to a graph as shown in
object (c) of Fig. 9.

(iii) Generate an adjacency matrix X from camera
node locations and non-camera node locations
on the graph, and generate an adjacency matrix
Y from non-camera node locations on the graph.
Adjacency matrix X indicates that rows are
camera nodes and columns are non-camera
nodes. Adjacency matrix Y indicates that rows
and columns are non-camera nodes, which
results in adjacency matrix Y resolving an
overlap problem of view distances between video
cameras.

(iv) Calculate adjacency matrix X’ and Y’ by
excluding unnecessary non-camera nodes from
adjacency matrix X and Y.

(v) Calculate neighbor ’s location matrix by
multiplying adjacency matrix and transposed
matrix X’T. This neighbor’s location matrix is
the neighbour’s node information.

An unnecessary non-camera node is a non-camera
node which has no camera node as a neighbor. Adjacency
matrix X’ and Y’ are computed without unnecessary
nodes, and using the procedure shown later. There are
reasons why it might be better to include the unnecessary
nodes in the diagram from the beginning as we have done.
Since the risk of committing an error will be higher as
the diagram becomes larger, we include the unnecessary
nodes from the beginning and remove them at the end.

3.3. Fundamental of the Algorithm

The object (a) of Fig. 9 is expressed in the object (c) of
Fig. 9 as a graph. In the object (c) of Fig. 9, the adjoining
nodes are connected with a line. Table 1 is the adjacency
matrix X which is a table representation based on the
object (c) of Fig. 9, and Table 2 is the temporary adjacency
matrix Y which is a table representation based on the
object (c) of Fig. 9 before satisfying all conditions. Table
3 is the adjacency matrix Y whose conditions are satisfied
after all.

Neighbor Node Determination Algorithm for Efficient Human Tracking 23

Table 1
Adjacency Matrix X with Camera Nodes and

Non-camera Nodes

Table 1 is the adjacency matrix X which consists of
p rows and q columns, in which |A| = p and |V| = q.
Element x

ij
 is defined as (1) in adjacency matrix X.

1 There is the line which linkscamera node and non camera node .

0 There is no link
i ja v

x
��

� �
�

(1)

neighbor relationship of non-camera nodes, v
7
 and v

8
, can

be separated to resolve the overlapped view problem.
Non-camera nodes, v

7
 and v

8
, can be separated if it is

assumed y
78

 = y
87

 = 0.

If the conditions (3) are satisfied, then element y
ij

and element y
ji
 are replaced as y

ij
= y

ji
 = 0.

1 1

1, 1, 1
m m

ij ji ni nj
n n

y y x x
� �

� � � �� � (3)

Table 2
Adjacency Matrix Y with Two Non-camera Nodes

Table 2 is the adjacency matrix Y which consists of
q rows q columns, in which |V| = q. Element y

ij
 is defined

as (2) in adjacency matrix Y before satisfying all
conditions.

1 There is the line which links two non camera node and

0 There is no link
i j

ij

v v
y

��
� �
�

(2)

Consider the problem of d-1 in Fig. 8 and Fig. 9.
Video cameras a

2
 and a

3
 are in a situation in which they

have the concern with overlapped view in Fig. 9.
Examination shows that the non-camera nodes v

7
 and v

8

are adjacent to more than one camera. The summation of
column v

7
 in X and the summation of column v

8
 in X is

larger than 1, if the adjacency matrix X is used. If the
summation is larger than 1, then the number of cameras
around the non-camera node is more than 1. In addition,
if the adjacency matrix Y is used, y

78
 = y

87
 = 1 also

indicates that v
7
 is a neighbor of v

8
. In this case, the

Table 3
Adjacency Matrix Y with two Non-camera Nodes and

the Condition

Table 3 is the adjacency matrix Y that satisfies the
conditions (3) and resolves the problem of d-1 in Fig. 8.
The summation of column v

7
 and column v

8
 in adjacency

matrix X are larger than 1, therefore y
78

 and y
87

 are
replaced by 0.

Matrix Z is a transposed matrix X. It is possible to
consider that x

ij
 indicates a neighbor condition for camera

node a
i
 to non-camera node v

j
, and z

ji
 indicates a neighbor

condition for non-camera node v
j
 to camera node a

i
.

Next, considering the case as shown in Fig. 10, the
camera node a

i
 is a neighbor to camera node a

j
 via non-

camera node v
n
. The relationship between camera node

a
i
 and non-camera node v

n
 is treated as x

in
= 1 and the

relationship between non-camera node v
n
 and camera

node a
i
 is treated as z

nj
 = 1. In addition, considering camera

node a
i
 can reach camera node a

j
 via non-camera node

v
n
, then x

in
× z

nj
 = 1 can be derived. Therefore, the

arithmetic expression indicates the relationship between
camera a

i
 and camera a

j
, and it is possible to state that

camera node a
i
 is a neighbor to camera node a

j
. If it is

assumed that the element b
ij
 of adjacency matrix B

indicates the relationship between camera node a
i
 and

camera node a
j
, then the arithmetic expression via non-

camera node v
n
 (n = 1…m) is possible to be expressed as

the expression (4). However, if i = j, it makes b
ij

= 0,

24 International Journal of Computational Intelligence Theory and Practice

because neighbor relationships as i = j indicate a camera
as neighbor to itself.

1

1 isadjacent to .

0 is not adjacent to .

m
i j

ij in nj
i jn

a a
d c z

a a�

��
� ���
� (6)

From the above results, when adjacency matrix E is
calculated via n or more nodes, it can use the expression
(7).

1
1 .

()
0 .

i jn T

i j

a is adjacent to a
E X Y X

a is not adjacent toa
�

��
� ���

 (7)

When the value of n on the expression (7) is
considered, it is difficult to decide whether or not the
non-camera nodes are n, especially when they are in a
loop, as shown in Fig. 13. If a loop of non-camera nodes
does not exist, the problem will not occur. In this case,
adjacency matrixes X’ and Y’ are computed so that a
diagram may be constituted from camera nodes and non-
camera nodes without unnecessary non-camera nodes.
Fig. 14 illustrates the graph re-calculated from Fig. 9.

Figure 10:Two Camera Nodes via one Non-camera Node

1

.

.

m
i j

ij in nj
i jn

a is adjacent to a
b x z

a is not adjacent toa�

� � (4)

Considering the case in Fig. 11, camera node a
i
 is a

neighbor to non-camera node v
j
 via non-camera node v

n
.

The relationship between camera node a
i
 and non-camera

node v
n
 is treated as x

in
= 1, and the relationship between

non-camera node v
n
 and non-camera node v

j
 is treated as

y
jn

= 1. y
jn
, as an element of transposed matrix Y can be

represented as ynj = yjn = 1. Additionally, considering
camera node a

i
 can reach non-camera node v

j
 via non-

camera node v
n
, x

in
× y

nj
 = x

in
× y

jn
 = 1 can be derived.

Therefore, the arithmetic expression specifies the
relationship between camera node a

i
 and non-camera

node v
j
, and it is possible to define camera node a

i
 as a

neighbor to non-camera node v
j
. If it is assumed that

adjacency matrix element c
ij
 indicates a relationship

between camera node a
i
 and non-camera node v

j
, then

the arithmetic expression via non-camera node v
n
 (n =

1,…,m) can be expressed as the expression (5).

Figure 11: Camera Node and Non-camera Node via One Non-camera
Node

1

1 isadjacent to .

0 is not adjacent to .

m
i j

ij in nj
i jn

a v
c x y

a v�

��
� ���
� (5)

Considering the case on Fig. 12, the camera node a
i

is a neighbor to camera node a
j
 via two non-camera nodes,

v
n
 and v

m
. If it is assumed that the element of adjacency

matrix D is d
ij
, it is possible to derive the expression (6)

applying the result of Fig. 11.

Figure 12:Two Camera Nodes via two Non-camera Nodes

Figure 13:Graph that Non-camera Nodes are Looped

Figure 14:Graph without Unnecessary Non-camera Nodes

3.4. Elimination of Unnecessary Non-Camera Node

By considering the adjacency matrix X’, Y’ computed
without unnecessary non-camera nodes, unnecessary non-
camera nodes can be seen to be nodes that are not
connected to any camera nodes. The matrix is calculated
by the following procedure.

In the case of the adjacency matrix X, the procedure
is stated below:

(i) Search for unnecessary non-camera node v
n
 in

which camera node is not a neighbor.

(ii) Remove the column of the node v
n
.

The adjacency matrix X’ is computed by the
adjacency matrix X without the unnecessary nodes.

When the data on Table 1 is considered as an
example, the unnecessary non-camera nodes can be
identified as highlighted in Table 4. The columns v

12
 and

Neighbor Node Determination Algorithm for Efficient Human Tracking 25

v
13

 represent the unnecessary non-camera nodes, and
adjacency matrix X’ become as Table 5.

3.5. Expressions for Neighbor Nodes

It is possible to derive neighbor node matrix E using
expression (8) from the results of the preceding
paragraphs. However, if i = j then the value of e

ij
 in matrix

E is replaced with 0 because neighbor relation i = j
indicates it is a neighbor itself. The matrix E represents
information on the neighbor nodes.

Table 5
Adjacency Matrix X’

Table 4
Unnecessary Nodes in Adjacency Matrix X

In the case of adjacency matrix Y, non-camera node
v

n
 is extracted to compute adjacency matrix X’. The

procedure is stated below:

(i) Determine the column of unnecessary non-
camera node v

n
 from the adjacency matrix X.

(ii) Perform an OR operation on the column of
unnecessary non-camera node v

n
 and the

columns of all the neighbor nodes of v
n
 on

adjacency matrix Y.

(iii) Perform an OR operation on the row of
unnecessary non-camera node v

n
 and the rows

of all the neighbor nodes of v
n
 on adjacency

matrix Y.

(iv) Remove the row and column of the unnecessary
non-camera node v

n
 from the adjacency matrix

Y.

The adjacency matrix Y’ is computed from the
adjacency matrix Y without the unnecessary non-camera
nodes. When Table 3 is considered as an example, the
unnecessary non-camera nodes can be identified as
highlighted in Table 6. The inherited result is shown on
Table 7. The rows and columns of v

13
 and v

14
 represent

the unnecessary non-camera nodes, and the adjacency
matrix Y’ becomes Table 8. It makes y’

ij
 (i = j) to 0,

because neighbor relation as i = j indicates neighbor to
itself.

Table 6
Unnecessary Nodes in Adjacency Matrix Y

Table 7
Merged Result from Table 6

Table 8
Adjacency Matrix Y’

26 International Journal of Computational Intelligence Theory and Practice

1 .

0 .
i j

i j

a is adjacent to a
E X Y X

a is not adjacent to a

��
� � � � ���

(8)

4. EXAMINATION

The above algorithm was tested on the diagram as shown
on Fig. 15. Three kinds of view patterns were applied to
Fig. 15 in this test. Their patterns represent information
on which view is crossed, which view is crossed and
blocked, and finally which view is blocked.

unnecessary nodes. Arrows of Fig. 18 show adjacency
of video cameras from the result.

Figure 15:Base Diagram for Examination

4.1. Pattern with which View is Crossed

Fig. 16 represents a pattern in which the views for camera
nodes, a

4
and a

5
, are crossed at non-camera node v

8
. Fig.

17 is a graph of Fig. 16 which is based on the algorithm.

Table 9 is the calculation results for the pattern of
Fig. 16 by the algorithm. Each element shows a number
of route pattern which a mobile agent can reach from a
certain camera to neighbor cameras after eliminating

Figure 16:Pattern with which View is Crossed

Figure 17:Graph of Fig. 16

Table 9
Calculated Adjacency Matrix E for Fig. 16

Figure 18:Adjacency of Fig. 16

4.2. Pattern with which View is Crossed and Blocked

Fig. 19 shows a pattern in which views for camera nodes,
a

4
and a

5
, are crossed at non-camera node v

8
 and the view

for camera node a
3
 is blocked by the view for camera

node a
5
 at non-camera node v

9
. Fig. 20 is a graph of Fig.

19 which is based on the algorithm.

Table 10 is the calculation results for the pattern of
Fig. 19 by the algorithm. Each element shows a number

Neighbor Node Determination Algorithm for Efficient Human Tracking 27

of a route pattern which a mobile agent can reach from a
certain camera to neighbor cameras after eliminating
unnecessary nodes. Arrows of Fig. 21 show adjacency
of video cameras from the result.

Figure 20:Graph of Fig. 19

Figure 19:Pattern with which View is Crossed and Blocked

Table 10
Calculated Adjacency Matrix E for Fig. 19

4.3. Pattern with which View is Blocked

Fig. 22 shows a pattern in which the view for camera
node a

3
 is blocked by the view for camera node a

5
 at

non-camera node v
9
. Fig. 23 is a graph of Fig. 22 which

is based on the algorithm.

Figure 21:Adjacency of Fig. 19

Figure 22:Pattern with which View is Blocked

Table 11 is the calculation results for the pattern of
Fig. 22 by the algorithm. Each element shows a number
of route patterns which a mobile agent can reach from a
certain camera to neighbor cameras after eliminating
unnecessary nodes. Arrows of Fig. 24 show adjacency
of video cameras from the result.

Figure 23:Graph of Fig. 22

28 International Journal of Computational Intelligence Theory and Practice

5. CONCLUSION

As shown, this algorithm can easily determine the
neighbor nodes, even when the view distance of the video
camera is changed and modification to the number of
installed video camera occurs. According to experimental
tests, the algorithm can operate with an execution time
of less than 10 milliseconds for a 5×16 adjacency matrix
X and a 16×16 adjacency matrix Y.

Results of computing the time efficiency of the
algorithm with other sized matrixes is shown in Fig. 25.
The graph shows the mean value of the computing time
as executed 5 times respectively and is almost linearly
proportional to the increase in the size of the matrix. This
result does not change when calculating off-line, but when
used for real time on-line, we will verify the computing
speed and improve the algorithm if necessary.

This algorithm can also determine the neighbor nodes
accurately in the case of the complicated diagram as
shown in Fig. 26. In addition, the mobile agents can
efficiently and accurately decide to which server they
should transfer by utilizing the neighbor node information
determined by this algorithm. This research contributes
to previous work by describing a way to implement a
method which can efficiently track a target entity using
mobile agent.

The simulator can also be used effective to simulate
a target entity. In other examinations, mobile agents were
able to simultaneously track numerous entities in the
automatic human tracking system with the simulator
mentioned previously. However, at the present, the
simulator needs more improvement especially when using
more than 20 cameras. We are striving hard to improve
the this.

An agent’s transfer rate is from 600 milliseconds to
700 milliseconds using HTTP protocol. This result is
slightly poor when considering the speed of the target. If
TCP protocol is applied to the agent transfer, the rate
was less than 100 milliseconds and it is enough to satisfy
the concern. However, HTTP is better than TCP in that
HTTP is convenient, flexible, and native on the Internet.
Therefore, the agent transfer rate on the HTTP will be
improved.

When it is assumed that agents transfer efficiently,,
highly precise tracking is realizable by utilizing the
information that indicates the movement direction of a
tracked person on video camera. In future research we
will aim at the establishment of the precise tracking

Table 11
Calculated Adjacency Matrix E for Fig. 22

Figure 24:Adjacency of Fig. 22

Figure 25:Calculation Speed of the Algorithm

Figure 26:Complicated Diagram

Neighbor Node Determination Algorithm for Efficient Human Tracking 29

technique using the algorithm adding the information of
movement direction.

ACKNOWLEDGEMENTS

This work was supported in Melco Power Systems Co., Ltd.
and in Tottori University. The authors would also like to
acknowledge Mr. Yasuo Matsumiya, Mr. Kiyoshi Tsutsui, Mr.
Masayuki Shibamoto, Mr. Mitsuo Hoshino, Mr. Kozo
Tanigawa, Mr. Tappei Yotsumoto, Mr. Michio Kojima, Mr.
Hiroyuki Adachi, Mr. Kensuke Fukumoto, Ms. Mayu Tanaka,
Mr. Hubert Ambales, Mr. Yusuke Hamada, and Mr. Shinya
Iwasaki.

REFERENCES

[1] Cabri, G., Leonardi, L., & Zambonelli, F. (2000), Mobile-
Agent Coordination Models for Internet Applications,
Computer, 33: 2, 82–89.

[2] Cui, Y., Hasler, N., Thormaehlen, T., & Seidel, H. P.
(2009), Scale Invariant Feature Transform with Irregular
Orientation Histogram Binning, Proceedings of the
International Conference on Image Analysis and
Recognition, ICIAR 2009, Halifax, Canada: Springer.

[3] Erdem, U. M., & Sclaroff, S. (2006), Automated Camera
Layout to Satisfy Task-specific and Floor Plan-specific
Coverage Requirements, CVIO2006, 103(3), 156–169.

[4] Gray, R. S., Cybenko, G., Kotz, D., Peterson, R. A., &
Rus, D. (2002), D’Agents: Applications and Performance
of a Mobile-agent System, Software: Practice and
Experience, 32: 6, 543–573.

[5] Hamada, Y., Iwasaki, S., Kakiuchi, H., Kawamura, T.,
& Sugahara, K. (2008), Pursuit Methods for Automatic
Human Tracking System based on Mobile Agent
Technologies, Proceedings of the 59th Chugoku branch
union convention of the Institute of Electrical Engineers
of Japan and Information Processing Society of Japan,
Tottori, Japan, 486.

[6] Ishida, N., Hamada, Y., Kakiuchi, H., Shimizu, T.,
Kawamura, T., & Sugahara, K. (2008), Feature Extraction
Method for Automatic Human Tracking System based
on Mobile Agent Technologies, Proceedings of the 59th
Chugoku branch union convention of the Institute of
Electrical Engineers of Japan and Information
Processing Society of Japan, Tottori, Japan, 418.

[7] Jennings, N. R. (2001), An Agent-based Approach for
Building Complex Software Systems, Communications
of the ACM , 44: 4, 35–41.

[8] Kakiuchi, H., Hamada, Y., Kawamura, T., Shimizu, T. &
Sugahara, K. (2008), To Realize Automatic Human
Tracking System based on Mobile Agent Technologies,
Proceedings of the 59th Chugoku branch union
convention of the Institute of Electrical Engineers of
Japan and Information Processing Society of Japan,
Tottori, Japan, 485.

[9] Kawaguchi, Y., Shimada, A., Arita, D., & Taniguchi, R.
(2008), Object Trajectory Acquisition with an Active
Camera for Wide Area Scene Surveillance, IPSJ SIG
Technical Report, 2008–CVIM–163, 1306–1311.

[10] Kawamura, T., Motomura, S., & Sugahara, K. (2005),
Implementation of a Logicbased Multi Agent Framework
on Java Environment, Proceedings of IEEE International
Conference on Integration of Knowledge Intensive Multi-
Agent Systems (Henry Hexmoor (eds.)), Waltham,
Massachusetts, USA, 486–491.

[11] Lange, D. B., & Oshima, M. (1999), Seven Good
Reasons for Mobile Agents, Communications of the
ACM, 42: 3, 88–89.

[12] Lowe, D. G. (2004), Distinctive Image Features from
Scale-Invariant Keypoints, International Journal of
Computer Vision 60(2), 91–110.

[13] Monticolov, D., Hilaire, V., Gomes, S., & Koukam, A.
(2008) A Multi-agent System for Building Project
Memories to Facilitate Design Process, Integrated
Computer-Aided Engineering, 15: 1, 3–20.

[14] Motomura, S., Kawamura, T., & Sugahara, K. (2005),
Maglog: A Mobile Agent Framework for Distributed
Models, Proceedings of the IASTED International
Conference on Parallel and Distributed Computing and
Systems, Phoenix, Arizona, USA, 414–420.

[15] OSGi Alliance (2008), OSGi Alliance Specifications
OSGi Service Platform Release 1, http://www.osgi.org/
Specifications/HomePage.

[16] Pettre, J., Simeon, T., & Laumond, J. P. (2002), Planning
Human Walk in Virtual Environments, IEEE/RSJ Int’l
Conf. on Intelligent Robots and Systems, Lausanne,
Switzerland, 3048–3053.

[17] Terashita, K., Ukita, N., & Kidode, M. (2009), Efficiency
Improvement of Probabilistic-Topological Calibration of
Widely Distributed Active Cameras, IPSJ SIG Technical
Report, 2009–CVIM–166, 241–248.

[18] Valetto, G., Kaiser, G., & Gaurav S. K. (2001), A Mobile
Agent Approach to Process-based Dynamic Adaptation
of Complex Software Systems, Lecture Notes in
Computer Science, 2077, 102–116.

[19] Yao, Y., Chen, C. H., Abidi, B., Page, D., Koschan, A.,
& Abidi, M. (2008a), Sensor Planning for Automated
and Persistent Object Tracking with Multiple Cameras,
CVPR2008.

[20] Yao, Y., Chen, C. H., Abidi, B., Page, D., Koschan,
A., & Abidi, M. (2008b), Sensor Planning for PTZ
Cameras Using the Probability of Camera Overload,
ICPR2008.

[21] Yin, H., & Hussain, I. (2008), Independent Component
Analysis and Nongaussianity for Blind Image
Deconvolution and Deblurring, Integrated Computer-
Aided Engineering, 15: 3, 219–228.

