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THE CLASSICAL SOLUTION OF THE MIXED PROBLEM FOR
THE SECOND-ORDER HYPERBOLIC EQUATION WITH HIGH
ORDER DERIVATIVES IN THE BOUNDARY CONDITIONS

IVAN STALTIARCHUK

ABSTRACT. The second order one-dimensional hyperbolic equation is consid-
ered. The classical solution of the mixed problem with the high-order deriva-
tives is constructed. Necessary and sufficient conditions for unique solution
existence in specific class of functions are proven.

1. Introduction

Hyperbolic equations have a great sense for all areas of human beings. Thus,
a lot of scientists are trying to analyze this types of equations. There are several
methods described in literature like using Fourier’s method, and most of these
methods are reduced to the functional series. A lot of authors didn’t even proof
that these series are convergent and use a formal integration and differentiation.
As for numeric methods: many algorithms use initial and boundary functions to
construct a numeric approximation of analytic solution. But they are missing such
an important thing as matching conditions.

In this paper with the help of the method of characteristics [1] is shown that
under some conditions smoothness of the solution can be corrupted disregard on
smoothness of the given functions.

This method also shows good results in tricky cases like Klein-Gordon-Fock
equation [2], where solution cannot be expressed in general form and can only be
presented as integral equations.

2. Statement of the problem

2.1. Canonical form of the equation. The second-order hyperbolic equation
with partial derivatives

(aﬂvo - a(l)aflfl)(alo - a(Q)a'El)u = p(X) (21)

is considered in the area Q = {(zq,z1)|zo € [0,+00), 71 € [0,1]}, where a(!) <
a® <0, x = (xg,71). The case a) < 0 < a® was studied in [3]. Additionally
the equation (2.1) is a generalization of the wave equation which was considered
in [4].
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Initial conditions
U(O,:I?l) = @(Il)v
Ozou(0, 1) = Y’ (21), (2.2)
xr1 € [O,Z],

and boundary conditions

olely 5
W(xo,()) = p9(z9), o € [0, +00),
o T (2.3)
a‘a‘u /m )
W(xo,l) = u(zg), o € [—1/a'Y, 4+00),
where o = (g, 1), || = ap + a1 and «; € N{J0,i = 0,1 are joined to the

equation (2.1).
According to the algorithm described in [1], equation (2.1) can be converted to
the second canonical form

Do, v = h(§) (2.4)

using transformation z1 + aWzgy = o, 1 + a@gy = &.

3. The general solution of the hyperbolic equation

3.1. The general solution of a homogeneous equation. Homogeneous equa-
tion (2.1), namely equation with p(x) = 0, is considered further. The second
canonical form of the equation (2.1) is

85051” =0. (31)
The initial conditions in terms of variables &, where & = (&g, &), are presented as
v(&1,&) = (&),

a(l)aggv(fl,gl) + a(z)aﬁv(flafl) =’ (&), (3.2)
51 S [O,Z].

The first condition from (2.3) is transformed to
gledy 7 q) — (&
R — 0 [ 2 _
850()8?11 (a(Z) glvfl) 2 (CL(2)> 751 € ( 0070]7 (33)
and the second condition from (2.3) is transformed to

a|a|fu al(z) —_— 60 _ l
oo g0 (&o,l+ W(&) - l)) =pu® ( ey ) &0 € [—1, +00). (3.4)
The general solution of the equation (3.1), as was shown in [3], is

v(&) = f(&) +9(&1)- (3.5)

Using reverse algorithm to the process described in [3], general solution of the
homogeneous equation (2.1) is presented like

u(x) = p(a1 + aWM o) + g(x1 + a® o). (3.6)
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3.2. The general solution of a non-homogeneous equation. Since the equa-
tion (2.1) is linear, then the general solution can be represented as the following
sum

u(x) =U(x) +u(x), (3.7)

where U(x) is the general solution of the homogeneous equation and u(x) is some
particular solution of the non-homogeneous equation.

Theorem 3.1. Ezxpression

(@) = / w(zo — 7,7, 21)dr (3.9)

o

18 a particular solution of the non-homogeneous equation with homogeneous initial
conditions w(x1,x1) = 0,0y u(x1,21) = 0, where the function w(xo, T, x1) is

w1+a(2)xg

1
'Ll}(xo,’r,xl) = m p(’]—7 y)dy . (39)

z1+aMag
In the formula (8.9) the function p is the same as in the equation (2.1).

Proof. Proof of this theorem is provided in the [1]. O

The general solution of the homogeneous equation is U(x) = u(x) — u(x) ac-
cording to the equation (3.7). This expression can be used for modifications of
the boundary conditions. Values of the solution on bounds of the area Q are

0N (20,7) = p@(z0),i = 0, L.

A0 oY1
500

Thus, for the homogeneous equation the boundary conditions (2.3) are

oy 20 MOl (0)
W(Uﬁovo) = 1O (20) — p(xo) = p' (x0), 20 € [0, +00),
al‘)alUl - - (3.10)
W(x()’l) — M(l)(gjo) — M(l)(mo) — /J(l)(it()),l'() c [—l/a(l),—i—oo).
Xo YTy

Previous reasoning leads to the following statement of the mixed problem for
the homogeneous hyperbolic equation

Dy — a VD, (00 — 0?0, )U =0 (3.11)

with initial conditions
U(Oa 1‘1) = 90(1'1)7
02U (0, 1) = ¥/'(21), (3.12)
x1 € [0,1],

and the boundary conditions (3.10) are connected to the equation (3.11).
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FIGURE 1. The Q area

3.3. Analysis of the  area. The area Q = {(xg,z1)|7o € [0, +0), 21 € [0,1]}
is shown on the figure 1.
Transformation z1 + aMzg = &, 21 + aPzy = & will convert each of the
domain @y to the area Q. Besides the @) area is converted to 2 and Q = J U,
k=1
moreover O (Qn = 0,k # h. Functions f,,(&) and ¢,,(£1) are defined in each
domain €, and the function f,, : Qom U Qamy1 — R,m € N0, and the function
Im - ng+1 UQQerQ —R,m e NUO
Let’s consider an area of definition of the function f. The result of simple
calculation is f,,,(£o) : R > [mi(1— %), (m—1)I(1— %)] —R,m=1,2,... Two
facts should be marked about the functions f,, :
(1) the expression 1 — % <0,
2) fol€o): R [0,] 5R.

Also the notation (()m) = ml(l — %) is introduced. This implies to the fact
& € (—o0,l]. Under the function f is meant f(&) = {fm(&),& € [mi(1 —
a _ (1)

a@ ) (m = DI = Zer)lU € [0, 1}

Lemma 3.2. f(&) € CO((—o0,1]) if and only if fm(&0) € CY on corresponding
areas of definition, as well as the conditions

& fon a® djfm+1 a® o
i€l (ml(1 — ﬁ)) = s (ml(1— ﬁ)) Vi <i,Ym >0 (3.13)
are fulfilled.

e e

The function g,,(§1) : R 2> [ml(4my — 1), (m = DS — D] = Ryom =1,2,....
The next two facts should be marked about the functions g,,
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(1) the expression Z% —1<0,
(2) go(&1) :R>[0,1] — R.
a®

Introducing notation §§m) = ml(%y — 1) leads to §; € (—o0,!]. Also the function

g denotes g(&) = {gm (&), &1 € [ml(2y — 1), (m — DI(% — D]U € [0,1}.

Lemma 3.3. g(&) € CY((—o0,1]) if and only if gm(&1) € CY on corresponding
areas of definition, as well as the conditions

& g a2 @ Grin a2 o
df{ (ml(m —-1)= d§{ (ml(m 1) Vi<i,¥Ym>0 (3.14)

are fulfilled.

4. Solutions of the problems in sub-domains

4.1. The solution of the problem with Cauchy conditions. The solution
of Cauchy problem can be obtained from the general solution (3.5) of the equation
(3.1) with the help of the initial conditions (3.6).

A system

{ f0(§1)+90(€1) :50(51)’ (4 1)
al f5(&1) + aP gh(&1) = ¢/ (&) .
is obtained by calculating values of the solution (3.6) and its first derivative at the
point (51, 61)

A solution of this system is a pair of uniquely defined functions (according to
the condition a(*) < a(?)

fo(z) = mm@)@@) —Y(z)) - m, (4.2)
go(z) = M(*a(lhp(z) +(2)) + ﬁ '

&1
Here ¢(&1) = [ 4'(y)dy, C is an arbitrary constant.
0

Functions fo,go from the system (4.2) belongs to the class C(D[0,1] only if
@(z) € CD]0,1], and function '(z) € C=1I0,1].

Solution of Cauchy problem is received by substitution functions from the (4.2)
to the (3.6)

1

v(€) = @%Q(U(am@(fo) — (&) + m(—a(%(&) +1(61)).  (4.3)

a

4.2. Boundary conditions with high-order derivatives. The function fj is
defined in the area €2; from Cauchy conditions, and function gq is defined in the
area 1 Q2. To find the function f; in the area Qs condition (3.4) specified on
right boundary should be used.

The right boundary condition is considered further

olel (2) —1
70(507[ + %(50 1) = :U(l) (fg(l) ) : (4.4)

Oz 051
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The solution v(&) = f (o) + gm—1(&1) is substituted in (4.4). Obviously smooth-
ness of the function g,,_1 defined on the previous step should not be less than an
order of the derivative in the condition (4.4).

Since the solution of the problem should be in the class C(?)(Q) then consistency
conditions are to be valid as for functions themselves so for the first-order and the
second-order derivatives of these functions. In this paper we have specific interest
in the case |a| > 2. The case when |a| = 1 was discussed in [5] and the case
|| = 0 was studied in [6].

Boundary conditions with |a| > 2 are concerned further.

laly [ o® £
950 58 <51 <1>751) = (a(2)>

glely a(? &o—1
ol _ (&
o208 <§°’l+ aw & ”) - < a® )

Rewriting the left boundary condition in comfortable form

d'*lg,, 1 & o d® f (a®
a1 ~ (@) <u<0> <a(2)> — (a) e (Mé&)) (4.6)

and defining the right part of it as G(™ (&1) helps to write the solution of (4.6) as

(4.5)

] —1 &1 B o1
Z C(gk)§1 / G(m)(y)(g(lwy_)l)!dy. (4.7)

(m—1)
1

A system of matching conditions for the functions g,, and g,,_1 and theirs
derivatives up to the || — 1 order at the point & = f%m) should be constructed
to determine arbitrary constants C(m) = 0,]a| — 1. This system of equations
is lower triangular and that’s why 1t have a unique solution.

—1—i la|—1—i B .
L Can@™ = X cgE@n
k:O( b k=0

Do

+ f G(mfl( )(51 ) B 1dy’i:m7

a|—1—1)!
D (lal=1=7!
1

(m—1)

(m) oy G
C(Q la|=1) ™ C(g,\cx\fl) + ( fz) el 1)(y)dy~
g(m=

A solution of the system (4.8) can be found by sequential substitution of the values
starting from the last equation.
Consistency conditions for the |a|-order derivatives of the functions g, and

gm—1 at the point & = %m) provides a condition for C!®l smoothness of the
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solution.

dlalgm -1 dlalgm—1 -1
(€mYy - L gy =

dey®! de;”!

d‘a‘fm m— dlalfm—l m— « (49)
= e @) - ) =

d& dg
m=2 ...

The same results are obtained for the function f. To have an easy form the
right boundary condition is rewritten in the next way

dlalfm 1 EO 1 o dlalgm—l a(l)
df(l;ll - (a(l))ozo (,LL(Z) (a(”) - (a(2)) Tllal <l + ﬁ(fo - l))) .

(4.10)
The general solution of the equation (4.10) is
loe|—1 o =
m m— (50 - y)|0‘|
flt) = Y- o+ [ PSS, @
k=0 e

where F("=1) (&) denotes the right part of the equation (4.10).
A system of matching conditions for the functions f,, and f,,_1 and theirs

derivatives up to the |a| — 1 order at the point & = (()m) should be constructed

to determine arbitrary constants C((;"lz), k =0,|a] — 1. This system of equations

will be lower triangular and that’s why it will have a unique solution.

lo| —1—i la|—1—i
m m—1 m—1 m—1
> C((f,;)(f(J ))k: 2 C((f,k))((() ))k‘f‘
k=0 E=0
m—1
T o R o
t >Fm W) ez i =1, lof = 1, (4.12)
em?
0 (()mfl)
(m) _ (m=1) m
Cllal-1) = Clpla=1) T (f )F< 2 (y)dy.
5Om,—2

A solution of the system (4.12) is found by sequential substitution of values starting
from the last equation.
Consistency condition for the |a-order derivatives of the functions f,,, and f,,—1

at the point £y = E(()m) gives a condition on C!® smoothness of the solution.

dlalfm m— dlalfmfl m—
o ( ((J 1)) - o] ( ((J 1)) =
d&y d&o
o dlalgmfl( (m—2)) - d‘a‘gm72( (m—2)) o 0_(|a|) (413)
- e 1 o 1 - m,|al)’
dfll | dﬁ‘l \ (m;|e)

m=2, ...



64 IVAN STALIARCHUK

Lemma 4.1. The matching conditions (4.7) and (4.13) in the area QU™ are
fulfilled if and only if the matching conditions (4.7) and (4.13) in the area Q=1
are fulfilled.

Proof. Expressions (4.7) and (4.13) shows that matching conditions on the layer m
can be reduced to the matching conditions on the layer m —1 and vice a versa. [

This lemma leads directly to the next statement.

Lemma 4.2. Fulfillment of the conditions (4.7) and (4.13) for m = 1 is necessary
and sufficient for fulfillment of the conditions (4.7) and (4.13) for allm = 2,....

The matching condition for the |a-order derivative for the functions go and ¢;
at the point £&; = 0 in explicit form can be presented as following

1 d\a\w dlel
G (0) — 0) —a®T 2 (0) ) = sleh. 4.14
(0) 0@ — o <d£|1a|( ) d&‘la‘( ) la| (4.14)

Matching condition for the |a|-order derivative for the functions fy and f; at
the point & = 0 in explicit form can be presented as following

o o
FO(0) — (2)1 5 4 ‘;‘b(O)—ka(Q)d 20) | =l (4.15)
a —a dé‘o d§0

Theorem 4.3. Assuming that 1'% (zo) € C([0,+00)), V) (z0) € C([— =y, +0)),
o € cUeD(0,1]), v € CUxI=1([0,1]) then the solution of the problem (2.4),(3.2),
(4.5) v(&) exists and is unique, if arbitrary constants are defined according to the
rules (4.8), (4.12) and the following statements are equal

(1) the solution of the problem (2.4),(3.2), (4.5) v(€) € C*I(Q);
(2) the matching conditions (4.15),(4.14) are fulfilled when 5&0{‘) —oleh — g,

— el

Remark 4.4. The solution v(£) can be transformed to the solution in the terms of
variables @ by the formula (3.6).

Remark 4.5. If conditions of the theorem 4.3 are fulfilled, but the matching con-
ditions (4.15),(4.14) are not homogeneous, i.e. slleD # 0 or olleD # 0, then

|| le|

v(€) € C1*(Q), where Q = {€|€ € QA& # f(()m) Né # f%m)} is an area with-
out characteristics. But in the area Q the solution v(§) € C!*I=1. In this case
for numerical solution conjugation conditions on characteristics should be used to
obtain correct numerical approximation of the classical solution.
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