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ONE-DIMENSIONAL FLOW OF A COMPRESSIBLE VISCOUS
AND HEAT-CONDUCTING MICROPOLAR FLUID WITH
HOMOGENEOUS BOUNDARY CONDITIONS: A BRIEF
SURVEY OF THE THEORY AND RECENT PROGRESS

IVAN DRAZIC AND LOREDANA SIMCIC*

ABSTRACT. We analyze the nonstationary 1-D flow of a compressible viscous
and heat-conducting micropolar fluid which is in thermodynamical sense per-
fect and polytropic. The corresponding problem has homogeneous boundary
conditions for velocity, microrotation and heat flux, as well as sufficiently
smooth initial data. We also assume that the initial density and temperature
are strictly positive.

In this work we give a brief survey and recent progress in mathematical
analysis of the described problem, including the existence results, uniqueness,
regularity and the large time behavior of the solution.

1. Introduction

The micropolar continuum allows modeling of physical processes in which phe-
nomenas at the micro level can not be neglected, such as in modeling of smog,
liquid crystals, or biological fluids. A model of micropolar continuum was devel-
oped in the 1960s by A. C. Eringen in a way that he added a microrotational
vector field to the hydrodynamical state variables. Besides the microphenom-
ena, Eringen’s model describes the coupling of micro and macrophenomena. It
is important to point out that Eringen’s model neglects the microdeformations,
assuming that the influence of the microphenomena can be described only with
microrotations, while including microdeformations would only make the problem
more complicated. Applicability of the Eringen’s model was practically proved at
the end of the last century, when Papautsky et al. showed that use of the concept
of micropolarity improves predictions of experimental results concerning fluid flow
through micropipes for 47% compared to the classical Navier-Stokes model (see
[19]). This result, together with the proof of usability, opened a whole new range
of applications of micropolar fluids in one of the most researched areas today -
nanotechnology. Micropolar continuum is also applied in the modeling of solid
bodies, but this area is out of the scope of this article. For general theory and
applications of micropolar continuum we refer to [6].
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Regarding mathematical analysis of the micropolar fluid model, in majority
of articles the model has been considered in incompressible case, while the com-
pressible case (important in the analysis of gaseous fluids) was largely unexplored,
particularly in cases that include temperature, i.e. thermodynamic component.

In this article we describe the compressible flow of an isotropic, viscous and heat
conducting micropolar fluid, which is in the thermodynamical sense perfect and
polytropic. The model for this kind of flow in the one-dimensional case was first
described by Mujakovié in [9]. In her later works she analyzed the one-dimensional
model in relation to existence, regularity and stabilization for different kinds of
problems with homogeneous and non-homogeneous boundary conditions. The first
generalization to the three-dimensional case was done by Drazi¢ and Mujakovi¢
in [5], where they analyzed the spherically symmetric model with homogeneous
boundary conditions. Recently, the model with cylindrical symmetry has been
considered (see [3],[17]).

In this work we analyze the one-dimensional case of the described fluid with
homogeneous boundary conditions for velocity, microrotation and heat flux, which
means that we consider the flow between solid and thermo insulated walls.

The paper is organized as follows. In the next section we describe the mathe-
matical model of the described fluid and derive its form in the Lagrangian descrip-
tion. In the third section we give an overview of the progress in the mathematical
analysis of this problem. We introduce the generalized solution to the problem
together with the existence and uniqueness theorems. We also mention results
concerning the regularity and the large time behavior of the solution. Finally, in
the fourth section, we present another approach to global existence result, derived
using the finite difference method, as well as the progress in numerical analysis of
this problem.

2. The mathematical model

The mathematical model of the described fluid is stated for example in the book
of G. Lukaszewicz [8] and reads:

p=—pV-v, (2.1)

pv =V T + pf, (2.2)

pjrw=V-C+ T, + pg, (2.3)
pE=-V.q+T:Vv+C:Vw—-T, w, (2.4)

Tij = (=P + AVik)0ij + 0 (Vij + Vi) + b (Vi — Vij) = 2UrEmijwm,  (2.5)
Cij = cowk,k&-j + cq (wi,j + iji) —+ Cq (wjﬂ' — wiyj) y (26)
q=—kVb, (2.7)

p = Rpb, (2.8)

E = c,0. (2.9)

Here p, v = (v1,v2,v3), w = (w1,ws,ws), E, and @ are, respectively, mass density,
velocity field, microrotation velocity field, internal energy density and absolute
temperature. T is the stress tensor, C is the couple stress tensor, g is the heat
flux density vector, f is the body force density and g is the body couple density.
p denotes pressure and the positive constant j; is microinertia density. A and p
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are coefficients of viscosity and ., cg, ¢q and ¢, are coeflicients of microviscosity.
By the constant k (k > 0) we denote the heat conduction coefficient. The positive
constant R is the specific gas constant and the positive constant ¢, denotes the
specific heat at a constant volume.

Equations (2.1)-(2.4) are, respectively, local forms of the conservation laws for
the mass, momentum, momentum moment and energy. Equations (2.5)-(2.6) are
constitutive equations for the micropolar continuum. Equation (2.7) is the Fourier
law and equations (2.8)-(2.9) present the assumptions that the fluid is perfect and
polytropic. The coefficients of viscosity and the coefficients of microviscosity are
related through the Clausius-Duhamel inequalities, as follows:

>0, 3N+2u >0, > 0. (2.10)

g >0, 3co+2c4>0, |cqg—ca|l <caq+ ca. (2.11)
Vector T, in the equations (2.3) and (2.4) is an axial vector with the Cartesian
components
(Tx)1 = 5ijijk7 (212)
where €5, is the Levi-Civita symbol, §;; is Kronecker delta symbol and we assume
the Einstein notation for summation. The colon operator in equation (2.4) is the
scalar product of tensors, for example

T:Vv = Tjivi,j- (213)

The differential (dot) operator in equations (2.1)-(2.4) denotes material derivative
defined by

a=a; +(Va)- v. (2.14)
For simplicity reasons, we also assume that
f=g=0. (2.15)

By substituting (2.5)-(2.11) into the system (2.1)-(2.4), together with (2.15),
we obtain:
p=—pV-v, (2.16)
pv =—RV (p) + A+ p — pr)V(V - V) + (p+ pr) AV + 20,V X w,  (2.17)
Jrpw =24, (V X v —2w) + (co + ca — ca)V(V - w) + (cq + ca) Aw, (2.18)
copl = kgAO — RpO(V - v) + A(V - v)*+

H(VV +(Vv)T) (Vv + (Vv)T) +4 (1V X v — w>2 (2.19)
9 : Lo 5 .

+¢o(V - w)? + (cq + ca)Vw : Vw + (¢4 — ¢,)Vw : (Vw)T.

Now, we consider the model (2.16)-(2.19) for one-dimensional flow. It is as-
sumed (in the Cartesian coordinate frame) that vy = v3 = wy = w3 = 0 and that
the functions p, v = v, w = wy and # depend on x = 1 and ¢ only. We obtain
the model in the Eulerian description:

P+ pv, =0, (2.20)
po = —(RpB)y + 01054, (2.21)
JIpw = Oowey — 4trw, (2.22)
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copld = —Rpbu, + 01(v2)? + o (we)? + 4ptrw? + kwey, (2.23)

where
o1 =A+2u, 09 =co+ 2y, (2.24)
01,09, k, p- > 0. (2.25)

We will consider the system (2.20)-(2.23) in the domain ]0, L[xR™, under the
homogeneous boundary conditions:

v(0,t) =v(L,t) =0, w(0,t)=w(L,t)=0, 6,(0,t)=20,(L,t)=0, (2.26)
for ¢ > 0, and non-homogeneous initial conditions:

p(x,0) = po(x), v(x,0) =vo(z), w(z,0)=wo(z), 6(z,0)=">0(z), (2.27)
for x €]0, L], where pg, vg, wo and 6y are known real functions defined on ]0, L[.

In the mathematical analysis of compressible fluids, it is convenient to use

Lagrangian description. The Eulerian coordinates (x,t) are connected to the La-
grangian coordinates (£,t) by the relation

z(§,t) = (&, 1), (2.28)
where, for £ €]0, L[, t — (&, t) is a solution of the Cauchy problem
dp(§,
PoD e nn, w60 =¢ (229)
We introduce the new coordinates
= 77717/}(5)5 t' = cilta (230)
where
¢ B
v = [ mids n=vD). C=meteyid. (2

Using the coordinates (2.30), the spatial domain becomes |0, 1], and we get the fol-
lowing initial-boundary problem (that we write omitting the primes for simplicity
reasons):

pt + pQUa: =0, (
v = (pvz)e — K(p0)q, (
pwi = A (p(pws)s — w) (
pet = _szevw + ,02(%)2 + pQ(Wa:)Q + Wz + Dp(pem)m (2-35
v(0,t) =v(1,t) =0, w(0,t) =w(l,t)=0, 6,(0,t)=0,(1,t)=0, (
p(m,O) :,00(33), ’U(l‘,O) :Uo(ﬂﬁ), w(x70) :wo(a:), 9(33,0) :Go(l‘), (
considered in the domain ]0, 1[xR*, where
K =Rc,', A=j;'o os, D=kelorth (2.38)

These positive constants were introduced in order to reduce the number of con-
stants in the system.
We assume that the functions pg and 6, are strictly positive and bounded,

m < p0($),90($) <M, =z 6]07 1[7 (239)
where m, M € R*.

Hereafter we will consider the problem (2.32)-(2.37), which is equivalent to the
problem (2.20)-(2.23), (2.26), (2.27).



1-D FLOW OF A COMPRESSIBLE MICROPOLAR FLUID 49

3. Properties of the solution

In this section we consider the properties of the so-called generalized solution
to the problem (2.32)-(2.37).

Definition 3.1. Given any 7' € R™, a generalized solution to the problem (2.32)-
(2.37) in the domain Q7 =]0,1[x]0, T is a function

(,t) = (p,v,w,0)(x,t), (x,t) € Qr, (3.1)

where
p € L=(0,T;H' (]0,1])) N HY(Q7) , ngfp >0, (3.2)
v,w, 0 € L0, T; H(J0, 1[)) n HY(Q7) N L2(0, T; H%(J0, 1[)), (3.3)

that satisfies the equations (2.32)-(2.35) a.e. in Qr and conditions (2.36)-(2.37)
in the sense of traces.

Let us mention that by using the embedding and interpolation theorems one
can conclude that our generalized solution could be treated as a strong solution.
In fact, we have

pe L~ (07 T C([Ov 1])) N C([Ov T}v Lz(]ov 1[)) ) (3'4)
v,w,0 € L*(0,T;C([0,1])) n C([0, T], H*(J0, 1[)), (3.5)
v,w,0 € C(Qr). (3.6)

In her work on one-dimensional flow of a compressible viscous micropolar fluid,
Mujakovié first analyzed the existence of the generalized solution to the problem
(2.32)-(2.37). Using the Faedo-Gelerikin method, she proved in [9] the existence
locally in time and the uniqueness of the solution. Then, based on extension
principle and series of a priori estimates, she proved in [10] the global existence
theorem for the problem (2.32)-(2.37). These results are summarized in the fol-
lowing theorem.

Theorem 3.2. Let the functions po, 8o € H'(]0,1])) satisfy the conditions (2.39)
and let vo,wo € H(]0,1[)). Then for any T € R there exists unique generalized
solution to the problem (2.32)-(2.37) in the domain Qr having the property

0>0 inQr. (3.7)

In the second stage of her research, Mujakovié¢ proved a regularity theorem for
the problem (2.32)-(2.37). More specifically, assuming that the initial data are
Holder continuous on ]0,1[, she proved that, for any 7' > 0, the mass density,
velocity, microrotation velocity and temperature are Holder continuous on Q7. In
the proof she followed the method of A. V. Kazhykhov, applied to the case of a
classical fluid (see [1]), basing the proof on some inequalities for Holder norms of
the solution. The regularity result is given in the following theorem:

Theorem 3.3. Let the functions
po € C([0,1]),  wo,wo, 00 € C*T([0,1]), O0<a<l1 (3.8)
satisfy the compatibility conditions
00(0) = vo(1) = wo(0) = wo(1) = 6(0) = 65(1) = 0, (3.9)



50 IVAN DRAZIC AND LOREDANA SIMCIC*

(po(v0)) = K(pobo) =0, forz=0,1, (3.10)
(po(wo)) — % =0, forz=0,1. (3.11)

Then the generalized solution to the problem (2.32)-(2.37) has the properties:
p€CTQr), vwbeCT(Qr), 0<a<l (3.12)

In the next stage of her research, Mujakovié¢ considered stabilization problem for
(2.32)-(2.37). Theorem 3.2 ensures the existence of the solution on the arbitrary
but finite time interval ]0, T, so the main difficulty was to prove a priori estimates
for the solution independent of T'. She obtained these estimates in [12], using the
results from [10]. In her proof she followed some ideas of S. N. Antontsev, A. V.
Kazhykhov and V. N. Monakhov, applied to 1-D initial-boundary value problem
for a classical fluid (see [1]). The result, which gives the existence of the solution
on the time interval ]0, oo[, is summerized in the next theorem.

Theorem 3.4. Let the initial functions pg, vy, wo and 0y satisfy the same condi-
tions as in Theorem 3.2. Then the problem (2.32)-(2.37) has a solution

(z,t) = (p,v,w, 0)(z,t) (3.13)
in the domain Q =]0,1[x]0, oo with the properties:
p € L2(0, 00; H'(]0,1])), (3.14)
pe € L2(0,00;L2(J0, 1)) N L*(Q), (3.15)
pz € L2(0,00;L2(]0,1[)), (3.16)
v,w € L¥(0, 00 H'(J0, 1)) N H'(Q) N L(0, 00; H*(]0, 1[)), (3.17)
6 € 1L>°(0,00; H'(]0, 1])), (3.18)
0, € L2(0,00; H'(]0,1])), (3.19)
0, € L*(Q). (3.20)

In the following theorem, which is proved in [13], Mujakovié showed the stabi-
lization of the solution when ¢ — oo.

Theorem 3.5. Let (p,v,w,0) be a generalized solution to the problem (2.32)-
(2.87) in the domain Q. Then we have the convergence

(pyv,w,0) — ((p*)~1,0,0,0%) (3.21)

in the space (H*(]0, 1[))4 when t — oo, where

SRV I

% 1 1 2 1 2
0 = 2 (Fhunlleg) + o Mol + e Ml ) 529)

v
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The proof of Theorem 3.5 is based on the results of Theorem 3.4 and application
of Friedrichs and Poincare inequalities.

Huang and Nie continued the work of Mujakovi¢ in [7] and studied the exponen-
tial stability of the solutions in H? (i = 1,2). They use modified idea from [18] to
prove the exponential stability of solutions in (H'(]0,1[))? for the 1-D micropolar
fluid system (2.32)-(2.37) and then obtain the global existence and decay rate of
solutions in (H?(]0,1[))*. The results are stated in the following theorems.

Theorem 3.6. Let the initial functions pg, vy, wo and 0y satisfy the same condi-
tions as in Theorem 3.2 and the compatibility conditions (3.9). Then there exist
constants Cy > 0 and v1 = v1(C1) > 0 such that for any fized v €]0,v1], problem
(2.82)-(2.87) admits a unique global solution

(p(t), v(t),w(t), 6(t)) € H'(]0,1[) x Hy(]0,1]) x Hg(J0,1[) x H'(J0, 1)
verifying the following estimate for any t > 0:

0<Cit<plat)<C, 0<Cy<O(x,t) <Oy on Q, (3.24)

¢

(o= P + ol + iz + 16— 671171) +/0 e (lp = p"II7n +

[VllZrs + 10 = 0712 + lwlizre + llvellZe + llwellZs + 16:]72) (s)ds < C,
where p* and 0* are defined by (3.22) and (3.23).

(3.25)

Theorem 3.7. Let the initial functions satisfy (2.39), (3.9) and the condition
pOaHO €H2GO?1D3 06 EHé(]O,l[), Vo, Wo GHQ(]OaleHé(]Ole (326)

Then there exist constants Cy > 0 and v2 = y2(C2) > 0 such that for any fized v €
10, 2], problem (2.32)-(2.37) admits a unique global solution (p(t),v(t),w(t),0(t))
from

H2(]0,1[) x (H*(10,1]) N H(J0, 1) x (H*(10,1]) N H(]0,1[)) x H(J0,1])
verifying the following estimate for any t > 0:
t
" (llp = P H2 + vl Fe + llwliFe + 116 — 6%[1%:) +/0 & (llp = p* I3+

[vllZs +10 = 0" [[7s + lwllZrs + llvel i + lwell e + 10:l[70) (s)ds < Ca,

(3.27)

where p* and 0* are the same as in Theorem 3.6.

4. Finite difference approximation and numerical solution of
considered problem

The global existence result for the solution to the described problem is also
derived in [15] using the finite difference method. This proof is technically more
demanding, but it has some advantages:

(1) The local existence theorem for the proof of the global existence is not
needed.
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(2) The Faedo-Galerkin method is limited to the problems with the smooth
enough initial functions and to the problems with homogeneous boundary
data, while the finite difference method could be extended to other classes
of initial functions and to the problems with non-homogeneous boundary
conditions.

(3) The convergent and easy applicable numerical scheme is obtained too.

Let us briefly describe the applied approach. In order to obtain an approximate
system for the problem (2.32)-(2.37), a space discrete difference scheme is intro-
duced. More precisely, semi-discrete finite difference approximate solutions on a
uniform staggered grid are constructed.

The scheme is obtained in the following way. Let A be an increment in x such
that Nh = 1 for N € Z*. The staggered grid points are denoted with z; = kh,
k€ {0,1,....,N} and z; = jh, j € {3,....,N—1}. For each integer N, the
following time dependent functions are constructed:

pi(t),0;(t), j=35.,....N—3, (4.1)
vg(t),wr(t), k=0,1,...,N,
that form a discrete approximation to the solution at defined grid points
p(zj,t),0(x;,t), j= %,...,N — %,
v(ag, t),w(rg,t), k=0,1,...,N.
First, the functions p;(¢), vk (), wk(t),8;(t), j = %, o, N— %, k=1,...,N—1, are
determined by using appropriate spatial discretization of equation system (2.32)-
(2.35):
pj = —p30vj,
@k = §(p5v)k — K(S(p&)k,
prwr = Alprd(pdw)r — wi]
pib; = —Kp20;6v; + p3(80;)* + p} (0w;)? + wi + Dp;6(psh);,
where j = %’.“7]\/, % and k =1,..., N — 1. The operator ¢ is defined by
G+t T G-
D —
forl=jorl=k Forke{l,...,N}and j € {%,...,N — 1}, the functions py,
0 and v;, w; are defined by

g, (4.7)

Pe=pp-1, k=01 and wvj=wv1, wj=w; 1. (4.8)

In accordance with the boundary conditions (2.36), we have
vo(t) =vn(t) =0, wo(t) =wn(t) =0, 60p(t) = dbn(t) = 0. (4.9)

The initial conditions are defined in accordance with the given initial conditions
(2.37) as:

1 (Ut 1 G+
80 = (5 [ oot bo(r)dr |, (410)
(G=3)h (G=3)h
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jie{s . ... N—-1},

1 kh 1 kh
(vk, wg)(0) = (h /(kl)h vo(x)dx, 7 /(kl)h wo(x)dx> , (4.11)
ke{l,...,N—1} and
’U()(O) - UN(O) =0 WO(O) = wN(O) = 0, 660(0) = (59]\[(0) =0. (412)

From the basic theory of differential equations, it is known that there exists a
smooth solution of the Cauchy problem (4.3)-(4.6), (4.9) with the initial conditions
(4.10)-(4.12) locally on some time interval [0,T[, T > 0. Moreover, it has been
shown that its solution is globally defined on [0, 00[, i.e., that T),4, = 0o. This
was achieved by showing, for fixed h > 0, the boundedness of the mass density,
the velocity, the microrotation velocity and the temperature, as well as the lower
boundedness of the density and the temperature away from zero.

Using the solution of the Cauchy problem (4.3)-(4.6), (4.9)-(4.12), for ¢ > 0 the
following approximate functions are constructed.

For each fixed N, z €] [2N], & ([xN] + 1)], we have

v (2,1) = vn) () + (@N = [eN]) (vpn 1 (1) = v (1), (4.13)
W (2,8) = W) () + (@N = [N]) (@)1 () = @ () (4.14)
and for z €)% ([zN + 3] — 1), L ([zN + ] + 1)], we have
N—1
prit) = o (4.15)
Pen+11-1 () + (@N = ([N + 3] = 3)(Plans 1141 (V) — Pen421-1 (),
QN_’(JU t) =
L (4.16)
Oanii)-21(8) + (@N = ([N + 5] = 5))On 1741 () = Oy 27-1(2)).
For x € [0, 7% we take
Pty = py 1), 67 H(w0) = 031
and for z €]1 — 5k, 1]
PN t) = oy (1), 0N () = 0y (1),
The corresponding step functions are also introduced:
(v, wn) (2, t) = (Vjen), Wan)) (F), (4.17)
z €]x[aN], § ([zN] + 1)),
(Ph—1:0n—1)(@,8) = (Pen4 21— 25 Oen g 21-2) (D), (4.18)
z €]y ([N + 3] = 3), (&N + 3]+ 3)],
(s ) 1) = (93, 02)(0), € [0, 3], (1.19)
(ph—%veh—%)(xvt) = (pN—%’eN—%)(t)v z €]l - ﬁv 1]. (4.20)

The main result is given in the next theorem.
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Theorem 4.1. Let the initial functions pg, vy, wo and 0y satisfy the same condi-
tions as in Theorem 3.2. Then there exist subsequences of approximate solutions
(still denoted) {(pV—2,v™,w™N,0N~2)} and {(pn—1,vn,wn, 0, _1)} in the domain
Qr (for each T € RY) such that, as N — oo (or h — 0),

(pN_%,vN,wN,HN_%)—) (p,v,w,0) (4.21)
strongly in (C(Qr))*, *weakly in (L°°(0,T; H'(]0,1])))* and weakly in (H'(Q1))*,
(N, 0V = (v,w, 0) (4.22)

weakly in (L*(0,T; H%(]0,1[)))?,
(0t 0o O_1) —+ (9, 0,0,0) (4.23)

strongly in (L°°(0,T; L?(]0,1[)))*.
The function (p,v,w,0) satisfies equations (2.32)-(2.35) a.e. in Qr, conditions
(2.36)-(2.37) in the sense of traces and p and 0 have the properties

infp>0, inff >0. 4.24
gre >0 B (4.24)

The proof of Theorem 4.1 is based on a careful examination of a priori estimates
and limit procedure.

Let us also mention that in [15] the numerical solution to the considered prob-
lem is also obtained, whereby the described convergent finite difference scheme is
used. The considered problem was analyzed numerically also in [16] and [4] where
Faedo-Galerkin approximations were used to obtain numerical solution. These
two approaches were compared in [2], where is concluded that the finite difference
scheme outperforms the Faedo-Galerkin method in the numerical simulations for
the compressible micropolar fluid flow problems.
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