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ON APPLICATION OF MIXED MINKOWSKI VOLUMES IN
QUALITATIVE THEORY OF SET DIFFERENTIAL EQUATIONS

A. A. MARTYNYUK

ABSTRACT. For a family of equations with uncertain values of parameters the
conditions are given for preservation and decrease of the distance between the
mixed Minkowski volumes “filled with” a set of trajectories of the family of
equations.

1. Introduction

Among the dynamic properties of a set of trajectories of families of equations the
property of stability is of key importance. This is due to the fact that only stable
trajectories are observable and therefore they are realizable in real mechanical
and other nature systems. For the stability analysis of the families of equations
a direct Lyapunov method is developed in terms of auxiliary scalar, vector and
matrix-valued functions (see [1-2] and bibliography therein).

Some “similarity” of the properties of Lyapunov functions [3] to the properties
of mixed Minkowski volumes (MMYV) [4, 5] allows the qualitative analysis of a
set of trajectories to be carried out in terms of MMV under certain conditions
formulated for the families of equations.

The aim of this paper is a dynamical analysis of a set of trajectories in terms
of MMV of one class of equations with uncertain values of parameters.

The paper is arranged as follows. In Section 2 the family of equations under
consideration is described and assumptions are presented on the bodies where the
sets of trajectories are localized at fixed values of uncertainty parameter.

In Section 3 some properties of non stationary mixed Minkowski volumes are
given and their similarity to the properties of Lyapunov functions is discussed.

In Section 4 main results of the paper are set out.

In final Section 5 a discussion of the obtained results is presented and some
bibliographic notes are made.

2. A family of uncertain equations

Let K.(R™) be a space of nonempty convex compact subsets in the space R™.
Consider a set of perturbed motion equations of a mechanical or other nature
system in the form

DX =F(t,X, ), (2.1)
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X(to) =Xy € Kc(Rn) (2.2)
Here X € K.(R™) is a states set of system (2.1), Dy X is the derivative of states
set, F € O(R; x K. (R") x J,K.(R")), a € J, J C R? is a compact set of
uncertainty parameters.

The mapping X € C(J, K.(R")), where J = [to,to + a], a > 0, is a solution
for the set of equations (2.1) on J, if it satisfies the set of equations (2.1) under
the initial conditions (2.2).

The fact that X (¢) is a continuously differentiable function on J in the Huku-
khara sense [1] implies that

t
X(t) = Xo +/DHX(s)ds (2.3)
to
and further ,
X(t,a) = Xo +/F(3,X(s),a)d5, ted, (2.4)
to

forall« € J.

We assume on system (2.1) and mappings (2.4) as follows.

A;. For all @« € J and t € J the mapping F(¢,0,a) = ©;

As. For the fixed values of « € J the mappings X (¢, ) are “localized” in the
convex “bodies” P (X),..., P(X);

As. The bodies P;(X) =0,i=1,2,...,niff X =0 (0 € K.(R") is a zero
element of the convex set K (R™)).

Ay. The bodies P;(X(t,«)), i = 1,2,...,n, are non-vanising and ”non-ex-
panding infinity” on finite existence interval of the set of trajectories.

Example 2.1. We consider the set of differential equations (2.1) with F'(t, X, ) =
e*X and J = [0,1]. In this case assuming that o = (0,1/2,1) € [0,1] we will
get the bodies P1(X) = X(t,a) for a = 0, Po(X) = X(¢,a) for @« = 1/2, and
P3(X) = X(t,a) for a = 1.

If for the bodies P;(X),i = 1,2,3 satisfies the conditions As. — A4. then the
set of trajectories of equation (2.1) is localized in the convex bodies P;(X (¢, «)),
i=1,2,3.

It is known (see [1, 2] and bibliography therein) that for the analysis of the set
of trajectories of the family of equations (2.1), a generalized Lyapunov function is
applied, which possesses the following properties:

P V(t,X)e C(Ry x K (R™),R);
P V(t,X)=0iff X =0 ¢ K.(R");
Py |V(t,A) = V(t,B)]| < LD(A,B), L >0,
for all A, B € K.(R"), where D is the Hausdorfl metric.

An example of the class of functions is V (¢, X) = D(X, ©) for all X € K .(R")

with total Dini derivative

DTV (t,X) =limsup { [D(X + hF(t, X, a)),0)—
-D(X,0)|h"' :h — 0T}
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along the solutions of family (2.1).

3. Non stationary mixed Minkowski volumes (cf. [4, 5])

The combination of the fundamental notion of Minkowski addition and the
notion of volume yields the notion of mixed volume.

Further we shall consider the MMV for the bodies Py, ..., P,, which are “filled”
with the mappings X € K.(R") for the fixed values of the uncertainty parameter
ae .

We designate by K" a space of convex bodies P; = P;(X) (nonempty compact
convex subsets in n-dimensional Euclidean space R™ (n > 2)).

The convex body P;(X) € K™ is defined in the only way by the support function
hp,: S"~' — R, where hp,(u) = Izréag(m,u), and (-) is a standard designation of

the scalar product in R” , and S™~! is the unit sphere in R™.
Definition 3.1. Let convex bodies Py, P»,..., P, € K" be given for positive

numbers A1, Ag, ..., A,. The expression P = A\ P +XoPo+...4+ A\, P, is called the
linear non stationary mixed Minkowski combination and is a convex body with

n
the support function hp = Y Ajhp;.
j=1

Let [n] denote a set of positive integers 1,2, ...,n. The following result holds.

Theorem 3.2. (c¢f. [4]) Let Py(X),..., P, (X) € K" and \,..., A\, > 0.
Then
Vol(MP(X)+ ...+ M\ P (X)) =
= Z MV (P (X), .o, Pin(X))Ai1 -+ i (3.1)
il,.A.,ine[’l’L]
where each coefficient MV (P (X), ..., Pin(X)) depends only on the bodies Pyy(X),
ey P (X))

Definition 3.3. For given P (X),..., P,(X) € K", the coefficient MV (P;(X),
.., Py(X)) is called the non stationary mixed Minkowski volume of convex bodies
Pi(X),...,P,(X) for any values of the uncertainty parameter o € 7.

Further we apply the Hausdorff metric in the space K™. Let B be a unit sphere
in R", and A > 0. The Hausdorff distance between the bodies P; and P; is specified
by the formula

D(P(X),P;j(X)) =inf{\: P(X)C Pj(X)+ AB and -
Pj(X)C P(X)+AB forany i#j,4,5,=1,2,...,n}. (3:2)
Together with the metric (3.2) for a pair of bodies in K™ we shall consider a metric

for the body P(X) = |J Pp(X):
k=1

D*(P(X),0) =inf{\: P(X)CO+AB and © C P(X)+ B
forany X € K.(R")}. (33)

Note that the Hausdorff distance (3.3) is a metric on K" and the pair (K",
D*(P(X),0)) is a metric space.
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We recall some properties of the non stationary mixed Minkowski volumes:

(1) mixed volume is a non-negative symmetric function on the set K", i.e.
MV (Py(X),...,P.(X)) 2 0 for all X € K.(R");

(2) mixed volumes are monotone with respect to inclusion, i.e. MV (P;(X),

L Pu(X)) > MV(PE(X),...,P¥X)) if P(X) D Pf(X) for all i =
1,2,...,n and for all X € K (R");

(3) MV (Pi(X),...,P(X)) > 0 iff there exist segments S;(X) C P;(X), i =
1,2,...,n, whose directions are linearly independent;

(4) mixed volumes are invariant with respect to the permutation of indices,
ie. MV (Py(X),...,Py(X)) = MV(Py1)(X),..., Py (X)) for any per-
mutations of o;

(5) mixed volumes are additive and positive homogeneous, ie. MV(...,
aP(X) + BPF(X),...) = aMV (..., P(X),...) + BMV (..., P¥(X),...)
forany i =1,2,...,n and for all X € K.(R").

Properties (1) and (3) of MMV imply that when X € K.(R™) N S;(X) for the
MMV MV (Py(X),...,P,(X)) there exists a function a(r) of Hahn class K [6]
(a(0) = 0; a(r) is monotone increasing in r) such that

(A45) a(D(P(X), P;(X))) < MV(Pi(X),...,P(X)) for all X € K.(R")nN

Si(X),i#34,4,]=1,2,...,n;
(Ag) besides, note that MV (P (X),...,P,(X)) =0 iff P;(X) =0 for all X €
K. (R") and alli=1,2,...,n.

Comparison of the properties of generalized Lyapunov function with the prop-
erties of MMV shows that MMV is a positive semi-definite function by virtue of
its properties (1), (4) and (5).

This fact allows MMV to be employed as a class of appropriate Lyapunov
functions (functionals) in the investigation of sets of trajectories of families of
equations.

4. Applications

In addition to the geometric importance of MMV (see [5] and bibliography
therein) their application may appear to be useful in the investigation of set of
solutions of the family of equations. For example, (see [7]), the numerical con-
struction of solutions to the polynomial systems requires estimating the volume of
solution. The theory of MMV allows one to establish boundary for the volume of
successive approximations, and therefore, it is of interest for applications to the
analysis of set of solutions for either polynomial or other nature systems.

Further we shall designate D(P;(X (t0)), P;(X (to))) =D(X (to)) and D(P;(X (1)),
P;(X(t))) = D(X(t)) respectively, for all i # j, i,j =1,2,...,n.

Definition 4.1. For the solutions of the set of equations (2.1) the distance between
the bodies P;(X(¢)) does not increase if for given ty € Ry and € > 0 there exists
4 > 0 such that the condition D(X (tg)) < ¢ implies that D(X (t)) < € for all t € J.

Definition 4.2. For the set of solutions of equations (2.1) the distance between
the bodies P;(X (t)) decreases if the conditions of Definition 4.1 are satisfies and
D(X(t)) — 0 ast — oo.
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Now let us show that the following result takes place.

Theorem 4.3. Let for the set of equations (2.1) the conditions (A1)—(A4) be satis-
fied and for the generalized bodies Py(X),. .., Pp(X) there exist a MMV MV (Py(X),
.., Po(X)) such that the conditions (As) and (Ag) are satisfied and, moreover,

MV(P(X(t)),...,P(X(t)) < MV (P1(Xp), ..., Pu(Xo))
along the set of solutions X (t)) of the problem (2.1)-(2.2) for allt € J.

Then the Hausdorff distance between the bodies P;(X (t)) and P;(X (t)) does not
increase for all i # j € [1,n].

Proof. Let tg € J and € > 0 be given. Due to the continuity of MMV M V(Py(X (t)),

.., Po(X(t))) and the fact that MV (P1(©),..., P,(0)) =0ad = d(tg, ) is found
such that

MV(Pl(XO)a BERE) PTL(XO)) < CL(E),

as soon as D(P(Xy)) < d. The condition of Theorem 4.3 implies

a(D(P(t))) < MV (P (X (t)),...,Py(X(t))) < MV (P1(Xo),..., Pu(Xo)) < al(e)
and further

D(P(t)) <a ' (MV(Pi(X(1)),...,P.(X(t)) <a'ale) =¢

for all ¢ € J. This completes the proof of Theorem 4.3. (]

Theorem 4.4. For the Hausdorff distance between the bodies P;(X(t)) and P;(X(t))
vanish for i # j € [1,n], it is sufficient that conditions of Theorem 4.3 be satis-
fied and, moreover, on the set of solutions X (t) of problem (2.1)-(2.2) the MMV
MV (P (X(t)),...,P.(X(t))) = 0 as t = +o0 and for D(P(Xy)) < 0.

Proof. Let a MMV exist and possess the properties mentioned in Theorem 4.3. We
shall show that the distance between the bodies P;(X(t)) and P;(X(t)) vanishes
for i #j € [1,n] as t — +o0.

In fact, when the conditions of Theorem 4.3 are satisfied, the distance D(P(t))
does not increase. In this case, given € > 0, one can find a §(to,c) such that for
D(P(to)) < ¢ one have D(P(t)) < ¢ for all ¢ > t(. We shall show that D(P(t)) — 0
as t — +o0o. Let this be not true. Then, a set of solutions X (¢) should be
found for the problem (2.1)—(2.2) so that for D(P(ty)) < ¢ a sequence of moments
to <ty <...<ty, tg — +00, is found such that D(P(t)) > o > 0. However then
MV (P (X (tg)),..., Po(X(tr))) > a(B) > 0, 8 > 0, which is impossible, since
by condition of Theorem 4.4 MV (Py(X(t)),...,P,(X(t))) — 0 as t — oo. This
completes the proof of Theorem 4.4. O

Example 4.5. (continued) We note that for the bodies Py (X), Po(X), P3(X) we
can use the expression (see [8])

BIMV(Py(X), P(X), P3(X)) = ) Volg(Py(X))—
1<i<3
= ) Vols(Py (X) + Py (X)) + Vols(Py(X) + Pa(X) + P3(X)).
1<i1<i2<3

as a function MV (Py(X), Po(X), P3(X)).
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5. Concluding Remarks

In the classical theory of MMV the convex bodies Pi,..., P, are considered,
whose nature is not discussed. Usually it is assumed that these bodies are non-
empty compact convex subsets in the space R™. In this paper we suppose that the
convex bodies Py (X), ..., P,(X) are formed by a set of trajectories X (t) € K.(R™)
of the problem (2.1)—(2.2) for fixed values of uncertainty parameters in the set of
equations (2.1). This assumption establishes the relationship between the theory
of NMV and the qualitative theory of set of trajectories of families of equations.

If the uncertainty parameter in the right-hand part of the family of equations
(2.1) is absent, then the convex bodies P;(X),..., P,(X) are formed by the sets
of trajectories X (t;) € K.(R™), where i = 1,2,...,n. However, in this case the
problem of justifying the method of obtaining non-autonomous convex bodies via
continuous set of trajectories remains open.

Efficiency of this idea depends on the effective sufficient conditions of decreas-
ing (increasing) of some functional of MMV along the set of trajectories X(t) of
problem (2.1)—(2.2).

Acknowledgment. The author thanks Professor Sandra Pinelas for her kind
invitation to present the paper in the Special Issue of the Journal Differential
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Stavroulakis.
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