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OSCILLATION OF A CLASS OF NEUTRAL DELAY DYNAMIC
EQUATIONS OF FOURTH ORDER

A. K. TRIPATHY

ABSTRACT. In this paper, the oscillation of a class of fourth order nonlinear
neutral delay dynamic equations of the form

(v (@ + pOw@N*)) " +a®) s wBEW) =0

is studied on an arbitrary time scale T, under the assumption

oo

ot
/—At<oo,t0 > 0,
r(t)

to
for various ranges of p(t).

1. Introduction

Stefan Hilger [8] has developed the time scales in his Ph.D work. The study
of dynamic equations on time scales allows us to avoid proving results twice, once
for differential equations and once again for difference equations. The general idea
is to prove a result for a dynamic equation where the domain of the unknown
function is a time scale T, which is a non-empty closed subset of the real numbers
R. In this way the results in this paper not only apply to the set of real numbers
or set of integers, but also to more general time scales such as T = AN, T = ¢™o =
{t :t =q" k € Ny} with ¢ > 1 (which has important applications in quantum
theory [9]), T=NZ = {t? : t € No}, T = {/n : n € Ng} ete. For basic notations
on time scale calculus, we refer the reader to the monographs [3, 4], the survey
paper [1], and the references cited therein.

In this work, the author has studied the oscillatory behaviour of solutions of
nonlinear delay dynamic equations of the form

2 A?
(r®OE® +pOy@®)>) " +a®fu51) =0, (L.1)

where ¢, r € Crq(T,Ry), o, 8 € Crq(T,T) such that a(t) < t, B(t) < t, and
tlim alt) =00 = tlim B(t), f € C(R,R) is a continuous function with the property
uf(u) >0 for u # 0, and p € C,4(T,R), under the assumption
(Hy) f %At < 00, tg>0.

to
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16 A. K. TRIPATHY

If T=R and T = Z, then (1.1) reduces to
(r(&)((y(8) + p(t)y(a())")" +a(t)f(y(B(1)) = 0 (1.2)

and

A? (r(n)(A%(y(n) + p(n)y(a(n)))) + a(n) f(y(B(n))) = 0 (1.3)

respectively.

In the sequel, we assume the following hypotheses on f, @ and 3:
(Hy) f(uv) = f(u)f(v), foru, v€Randu, v >0,
(H2) f(—u) = —f(u), foru€eR,
(Hj) there exist X > 0, such thatf(u)+ f(v) > Af(u+v), for u,v € R and u,v >
Oa
(Hy) a and 3 are bijective functions satisfying the properties :

a(B()) = Ba(t), 81 (a"1(1) = a1 (5-1(1). Bla~ (1) = a1 (B(1)),

“Lt) > t,871(t) > t, for every right — scattered point t € [tg, oo)T,to > 0.

Neutral delay differential equations find numerous applications in electric net-
works. For example, they are frequently used for the study of distributed networks
containing lossless transmission lines which arise in high speed computers where
the lossless transmission lines are used to interconnect switching circuits (see for
e.g.[7]). The problem of obtaining sufficient conditions to ensure the nonlinear
neutral delay differential equations are oscillatory has received a great attention.
In this work, an attempt is made to investigate the oscillatory character of all
solutions of the nonlinear neutral delay dynamic equations of the form (1.1).

In [14, 16], Parhi and Tripathy have considered the equations (1.2) and (1.3)
when «a(t) =t — a and 3(t) = t — 3, and established the sufficient conditions for
oscillation and asymptotic behaviour of solutions, under the assumptions

(H5) f r(t)dt < 00,
and its dlscrete analogue
(Hg) Z r(n) < 0

respectively. It is interesting to see the unification of continuous and discrete
aspects (1.2) and (1.3) through the dynamic equations on time scales in [13]. But,
the problem lies there in the works [13], [14] and [16] concerning an all solution
oscillatory.

The objective of this work is to establish the sufficient conditions for oscillation
of all solutions of (1.1) under the assumption (Hp) on an arbitrary time scale T.

In [13], Panigrahi and Reddy have established the conditions for oscillation and
asymptotic behaviour of solutions of (1.1) under the assumption

(H~) f‘:g)At<oo, to >0

which is comparable with (Hs) and (Hg) when T = R and T = Z respectively.
However, the continuity of the problem is slightly deviated when we compare both
works [12] and [13]. The fact is that (1.1) is studied in [12] under the condition

(Hs) fr(t)At—oo ty >0

with the following result:
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Lemma 1.1. [12] Let (Hg) hold. Let u be a real valued delta differentiable function
on [tg,00)r such that Lyu(t) < 0 for large t. If u(t) > 0 ultimately, then one of
cases (a) and (b) holds for large t, and if u(t) < O ultimately, then one of cases
(b),(c),(d) and (e) holds for large t, where

(a) Liu(t) > 0, Lau(t) > 0 and L3u( ) >
(b) Liu(t) >0 Lgu( ) < 0and Lau(t) >
(c) Liu(t) <0, Lou(t) < 0 and Lyu(t) >
(d) Lyu(t) <0 u(t) < 0 and Lzu(t) <
(e) Lyu(t) L2u(t) > 0 and Lzu(t) >
o Ta(t) = ), Lont) = LRult), Lau(t) = r(O)LBu(0), Loult) = LSu(t),

Lyu(t) = L u(t).

and in [13] under the condition (H7). When Lemma 1.1 is with respect to (Hg),
the next question is concerning the problem for (Hy), but not for (H7). Regarding
an all solution oscillatory, (1.1) is studied in [19] using (Hs) and in this work we
continue the study when (Hp) holds. Based on the proof of Lemma 1.1, we have
the following result for our next discussion:

Lemma 1.2. Let (Hy) hold. Let u be a real valued delta differentiable function
on [tog,00)T such that Lyu(t) < 0 for large t. If u(t) > 0 ultimately, then one of
cases (a)-(d) holds for large t, and if u(t) < 0 ultimately, then one of cases (b)-(g)
holds for large t, where

(a) Lyu(t) > 0, Lou(t) > 0 and Lau(t) > 0
(b) Liu(t) > 0, Lou(t) < 0 and Lyu(t) >0
(¢) Lyu(t) > 0 L2u(t) < 0and Lzu(t) <0
(d) Lyu(t) <0, Lau(t) > 0 and Lau(t) >0
(e) Liu(t) <0, Lau(t) < 0 and Lzu(t) >0
(9) L1u(t) <0 Lgu(t) < 0and Lau(t) <0

Since we are interested in the oscillatory behaviour of solutions near infinity, we
assume that sup T = oo, and define the time scale interval [tg, c0)r = [tg, oo) NT.
Let t_1 = infiepy, 00 ta(t), B(t)}. By a solution of (1.1) we mean a nontrivial
real valued function y on [T}, oo)r such that (y(t) + p(t)y(a(t)) € C?(T,R),
(r(t)(y(t) +p(t)y(a(t))A ) € C2,(T,R) and satisfies (1.1), for T, > t_1 > to > 0.
In this paper, we do not consider the solutions that eventually vanish identically.
A solution y of (1.1) is said to be oscillatory, if it is neither eventually positive
nor eventually negative and it is nonoscillatory otherwise.

We may note that, (1.1) includes a class of differential or difference equations
with delay argument of neutral type. In recent years, there has been an increas-
ing interest in obtaining sufficient conditions for oscillation and nonoscillation of

solutions of different classes of neutral dynamic equations. We refer the reader to
some of the works [2, 5, 6, 10, 11, 17, 18, 20], and the references cited therein.

2. Preliminary Results

In this section we have the following results for our use in the sequel.
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Lemma 2.1. Let (Hy) hold. Let u be a real valued delta differentiable function on
[to, 00)T such that Lyu(t) <0, for large t. If u(t) > 0, then there exists a constant

k>0 such that u(t) > kRy(t), where Ri(t) = [~ R(s)As = [~ [ A% As

s r(v) :

Proof. Suppose that u(t) > 0, for any large ¢t. Consider Case(d) of Lemma 1.3.

For s > o(t) >t >0, r(s)uA2 (s) > r(t)uA2 () implies that

/S W (0)Av > (1)t (1) / Av

t ¢ 7(v)
and hence
s 2 2 S Av
—uA uP(s) —ul(t) = u? (v)Av > r(t)u? —.
(02 () =0 = [ 0)d0> ) [
Consequently,
—uB (@) > ()l (1) /t TA(;).
Hence,
s s 2 > Av
— [ u® r(t)u? —
/9 (t)AtZ/e (t) (t)/t r(v)At’
that is,
—u(s)—l—u(ﬁ)Zr(@)qu(G)/e(/t TA(;})At.
Therefore,

w(0) > r(O)u™’(0) /9 - R(H)At = r(0)u®’ (0)R1(6).

We note that (Hy) implies [ 2L < 0o and hence R;(t) — 0 as t — oo. Since

i r(t)

r(t)uA2 (t) is nondecreasing, then for a large t > to we can find a constant k; > 0
such that the last inequality becomes w(t) > ki R;(t). Using the fact that Ry (t)
is nonincreasing and wu(t) is nondecreasing in Cases(a), (b) and (c¢), we can find

constants ko, k3 > 0 such that for any large ¢ > to, u(t) > ko > ks Ry (1).

Let k = min{ky, k3}. Then for all Cases(a) — (d), u(t) > kRy(t) for any large

t. This completes the proof of the lemma.

Lemma 2.2. [15] Assume that p(t) > 0, fort € [to,00)r. If
o(t)
limsup/ p(s)As > 1,
t=oo Jr()
then the inequality
2 +p(t)z(r(1)) < 0(= 0)

doesn’t admit any eventually positive (negative) solution.

O

Proof. The proof of the lemma follows from the proof of Theorem 2.4 [15]. Hence

the details are omitted.

O
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3. Sufficient Conditions for Oscillation

This section deals with the new oscillation criteria for (1.1). Before stating our
main results, we assume the following hypotheses for our use in the sequel:

(t—v)
r(t)

At,s>o(t) >t >,

)

Blv,u] = /U(J(u) —u) (tr(t;L) At, v>o(t) >t > u,
Clv,u] = /uv(a(t) —u) (tTZt)u) At,v > o(t) >t > u;

Theorem 3.1. Let 0 < p(t) < a < oo and B(t) < a*(t), for t € [tg, o).
Assume that (Ho) — (Hy) hold. If

(Hy) Q(t) = min{q(t), q(a(t))}, fort > to,
10 f(" > M; >0, foru#0,

(Ho)

(Hn) hmsupfa(s QOSTA(B(0), B(s)]A0 > 542, a>o0,
(Hiz) limsup [11) Q(0) fIC(A(0), BO)IAw > 5, a >0,
(Hy) lim sup [135) Q(0)JC(B(v), HO)]Aw > S, a >0

and
(Hia) limsup 7 QO)FC(A(s), B(O)]IA0 > S5 a >0
hold, then (1 1) is oscillatory.

Proof. Let y(t) be a non-oscillatory solution of (1.1) on [tg, oo)r. Without loss
of generality, there exists a t; € [tg,00)r, sufficiently large such that y(t) >

0,y(a(t)),y(B(t)) > 0 on [t1,00)r. Setting 2(t) = y(t) + p(t)y(a(t)) in (1.1),
we get

Laz(t) = —q() f(y(B(£))) < 0. (3.1)

Hence, we can find a to € [t;,00)r such that L;z(t),i = 1,2,3 are eventually of
one sign on [ta, oo)r. In what follows, we consider Cases(a) — (d) of Lemma 1.3.
Case(c) For v > o(t) >t > u > to, it is easy to verify that

—2(v) = —z(u) — (v —u)z®(v) + / (o(t) —u)z2 (t)At (3.2)

and
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implies that Loz(v) < (v—u)L3z(u), that is, 28 (v) < (v-u) L3z(u). Consequently,
(t—u

r(v)
A0z o - 0l

= (=L3z(uw))Clv,ul, forv>s>oc(t)>t>u>ts.

) (—Lsz(u))At

Letting v and u by £(v) and ((6) respectively in the last inequality, we get
2(B(v)) > (=Lsz(B(0)))C[B(v), B(B)], for B(v) = s> o(t) >t > B(6) = t2. (3.3)
Using (1.1), it happens that
0= Laz(t) +q(t)f(y(B(1))) + f(a)Laz((t) + f(a)
> Laz(t) + f(a)Laz(a(t)) + Q@) [f(y(B(1)) + f(a
)+

=
—~
2253 2
—
~
NN
Q\_/
—~
A@
~+~ o~
z @
= =
= o
o~
~
=
Nt
Nt
Nt

2 Laz(t) + f(a)Laz(a(t)) + AQ(1) f (2(B(2)))
due to (Hy), (Hs), (Hy), and (Hg), where we have used the fact that z(t) <
y(t) + ay(a(t)). Upon using (3 3) in the last inequality, we obtain

)-
0> Laz(v) + f(a)Laz(a(v)) + AQ(v) f(=Ls2(8(0))CB(v), B(O)])
> Lyz(v) + f(a)Laz(a(v)) + AQ(v) f(—Lsz(8(9))) f(C[B(v), BB)]).
Integrating the above inequality from 32() to 3(6), we obtain
5(0)
A Q) f(=L3z(8(0))) fIC(B(v), B(0))|Av < —L3z(B(6)) — f(a)Lsz(a(B(6)))

52(0)
< —(1+ f(a))Lsz(5(0))-

As a result
o (14 f(a) (=Ls=(B(0))) _ (1+ f(a))
/ﬁ%Q(v)f[C(ﬁ(vL sl < L) LoD, (),

a contradiction to (Hy3) due to (Hip).
Case(d)Let v > o(t) >t > u > to. Then from (3.2) it follows that

2

z(u) = z(v) — (v —u)z>(v) + /v(o(t) —u)z? (t)At
> / v(a(t) —u)z® (t)At.

Since
Loz(v) — Laz(u) = /v L3z(8)As > (v — u)Lzz(v),

then Lyz(v) > (v — u)Lsz(v), that is, 227 (v) > (:(5)[’32(”) and

2(u) > /U(J(t) —w) (tr(t) ) Ly(t) At

> Lyx(v) / “(o(t) = w) (trzt)“) At
= L3z(v)Clv, ul.
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Letting u = 3(0) and v = ((s), we get

2(8(0)) = Ls=z(6(s))C[B(s), BO)], (3.4)
for G(s) > B(0) > ta. Using (1.1), it is easy to verify that
0= Laz(t) +q(8) f(y(B(1))) + fla)Laz(a(t) + fla)g(a(®)) f(y(B(a(?))))
> Laz(t) + f(a)Laz(a(t)) + Q) [f(y(B(#))) + fa) f(y(a(B(t))))]
> Laz(t) + f(a) Laz(a(t) + AQ(E) f(2(8(2)))
due to (Hy), (Hs), (Hy), and (Hs), where we have used the fact that z(t) <

y(t) + ay(a(t)). Using (3.4), the last inequality becomes

(L3z(B(5))C1B(s), BO)])

0> L42(0) + f(a)Laz(a(0)) + AQ(0) f
(0).f(Lsz(B(s))) f(CIB(s), BO)]).
to

> Laz(0) + f(a)Laz(a(0)) + AQ

Integrating the above inequality from a(s)
/\/ Q(0)f(Lsz(8(s))) fF[C(B(s), B0))]A < Lzz(as)) + f(a)Lsz(a(als)))
< (1+ f(a))Lz2(a®(s)),

where we have used the fact that a?(s)) < a(s). As a result,

s, we obtain

S

Af(L3z(B(s))) QO FIC(B(s), BONIAY < (1+ f(a))Lzz(a®(s)),

a(s)

that is,

; (14 F(@)Laz(0(s)) _ (1 + f(a)
oy COFICB), BONIAG < sy = o

a contradiction to our hypothesis (H14) due to (Hyp).

Cases(a) and (b) are similar to Cases(c) and (d), and also can be followed from
the proof of Theorem 3.1 [19].

If y(t) < 0 for sufficiently large t on [tg, co)r, then —y(t) is also a solution of

(1.1) due to Remark 1.1. Hence the details are omitted. This completes the proof
of the theorem. O

Theorem 3.2. Let —1 < p(t) < 0 and B(t) < a?(t), for t € [to,00)r. If (Ho) —
(HQ) (H4) (HIO) and
(His) hmsupf< (0)f[A(B(O), B(s))]A0 > 3,
(Hie) hmsupf (0 1) FIC(B(v), B(O))]Av > 57,
(Hyz) lim sup [305) a(0) [IC(3(0), BO)IAY > 5.
(Hig) hmsupf ()4 q(0) FIC(B(s), B(0))]A > i
(Hi) ™(t) = (" ~H(1), lim
(Hz0)

Hig im_ 7"(t) <
Hoyp hmsupf 1((;()0)) q(u) f(Bla™(B(v)), ™ (B(w))]) Au > 1\%7
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(Hor) limsup J7 O 4(6) 1l (BW)), (@ (BO)))AE > £,

(Ha) hmsupf ooy (O (Cla B, (0 BON) A > 15
hold, then every solution of (1.1) oscillates.

Proof. Suppose on the contrary that y(¢) is a nonoscillatory solution of (1.1) on
[t1, oo)r. The case y(t) < 0 can similarly be dealt with. In what follows, we
apply Lemma 1.3, for ¢ € [ta, oco)r with (3.1). Because z(t) is monotonic, then we
consider the cases when z(¢) > 0 and z(¢) < 0. Suppose there exists a t3 € [t2, 00)r
such that z(t) > 0, for ¢ > t3. Then z(t) < y(t), for ¢ € [t3, oo]r and

Laz(t) +q(t)f(2(8(t))) < 0. (3.5)

Upon applying Lemma 1.3 to (3.5) and then proceeding as in the proof of Theorem
3.1, we get contradictions to (Hi5) — —(His) due to B(t) < a?(t) < a(t).

Next, we suppose that z(t) < 0, for ¢ € [t3, oo)p. Clearly, z(t) > —y(a(t)),
for t > t3 implies that there exists a t4 € [t3, oo)r such that y(t) > —z(a"1(t)),
for t € [ty, oo)r due to (Hy). By Lemma 1.3, any one of Cases(b) — (g) holds on
[f,4, OO)T.

In each of Cases(e) and (g), limi—ooz(t) = —0co. However, z(t) < 0 for t > t4
implies that y(t) < y(7(t)) and hence

y(t) <y(r(t)) <y(r?(t) <. <y(™"(1) < .,

that is, y(¢) is bounded due to (Hyg) and so also z(t), a contradiction.
Consider Case(b). Since for u > v > iy,

Loz(u) — Loz(v) = /u L3z(s)As > (u—v)Lsz(u),

then —22" (v) > (ITL( 1)’)L3z(u) which on integration from u to v, we obtain that

)

A
2% (u) > ng(u)/u 0 At,
that is,
Clu—t)
—z(u) > —z(o(u)) + (o(u) — u)ng(u)/u (D) At
> L3z(u)Blv,u] > Lsz(v)Blv,u.
Therefore,
—2(a7H(B(w))) = Lsz(a™ ' (B(v) Bla™" (B(v)), o™ (B(w)]- (3.6)
Since, (1.1) can be viewed as
Lyz(u) + qu) f(—2(a™ (B(w)))) <0, (3.7)

then using (3.6) and (Hy), (3.7) yields
Laz(u) + q(u) f(Laz(a™ (B(0)))) f (Bla™' (B(v)), o™ (B(w))]) < 0.
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Integrating the last inequality from a~1(8(v)) to a=!(v), it follows that

FLaz(@7 (B) 20y alw) f(Bla (B(v)), 0} (5(w))) Au
< Laz(a~ (B(v)))-

Consequently,

al(v)
[ (Bl B, (G)su <
a=1(B(v)) 1

due to (Hip), a contradiction to our hypothesis (Hag).
Next, we consider Case(c). From (3.2) it follows that

2

—z(u) = —z(v) 4 (v —u)2>(v) — /U(U(t) —u)2® (t)At
>~ [t - w=> W
forv>o(t) >t >u >t Again
Loz(v) — Loz(u) = /v L3z(s)As < (v —u)Lzz(u)
implies that Lyz(v) < (v — u)Lzz(u) and hence

—2(u) > —Lyz(u) / “(o(t) - u) (trzt;” At = —Lgz(u)Clu, u].

We write the above inequality as

—z(a™H(B(9))) = —Laz(a”'(B(0)Cl(a” (B())), (e~ (B(6)))], (3.8)
for (a=tB(v)) > o(t) >t > (a=1B(#)) > t4. Using the relation (3.8) in (3.7) and
using (H;), we obtain

Laz(0) + q(0) f(— Lsz(a™ ' (B(9))) f(Clla™ (B(v))), (™ (BO)))]) < 0. (3.9)
Integrating (3.9) from v to S~ 1(a?(v)), we get
(

2 4(0) f(~Laz(a ( M (Clla™H(B))), (a1 (B(0)))) A0
a2 (),

IA
8

that is,
F(=Laz(a™ (B() [T g(0) £(Cl(a (B(v))), (™ (8(6)))]) A0

Consequently,

F(=Lsz(a~1(B)) [7 D g0y f(C1(
< —Ly2(8 " (a(v))).

Since 371 (a(v)) < a~1(B(v)) if and only if a?(v) < v due to (Hy), then the last
inequality becomes

Q\
-
—~
=@
—~
<
=
~
~
—
Q\
—_
—~
@
—~
s
N
N
=
—
>

(e 1
- Ly=(a 1 (5(v))

B (a?(v)
/ 2(0)F(Cl(a™ (B(v))), (™ (B(0)))AI <
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which is a contradiction to (Ha).
In Case(d), again we use (3.2) and it follows that

2

—z(v) > /U(a(t) —u)2? (t)At,

for v > o(t) >t > u > t4. Further,

Loz(v) — Loz(u) = /v L3z(s)As > (v —wu)Lzz(v)

implies that Loz(v) > (v — u)L3z(v) and hence

() > / “(o(t) - u) “th;‘) Ly=()At > Ly=(v)Clo, u].

The above inequality can be written as

—2(a”1(B(v))) = Lsz(a™ ' (B(v))Cl(a™ (B(v))), (™ (B(0))]; (3.10)

for (a=1B(v)) > o(t) >t > (a~13(F)) > t4. Using the relation (3.10) in (3.7) and
because of (Hy), we obtain

Lyz(v) + q(v) f (Laz(a™ (B(0))) f(Cl(a™ (B(v))), (a7 (B(0))]) < 0. (3.11)
Integrating (3.11) from a=*(3(0)) to 6, we get
12+ oy 10 (L= (B F(Cla (B0), (™ (BO))dw
< Lsz(e”1(B(0))).

that is,

F(Laz(@ 1 (BO) [ 510y, 4(0)F(CLla (B(0))), (o~ (B(6)))]) Av
< Lyz(a~1(5(9))).

Therefore,

’ - - Lsz(a~'(5(6))) 1
1 1 A 3 —
[ T BN 0 oD < 1 S <
implies a contradiction to (Hssz). This completes the proof of the theorem. O
Theorem 3.3. Let —0co < —b < p(t) < —1,b > 0 and B(t) < a?(t), fort €
[to, 00)T. Assume that (Ho) (Hs), (Hy) and (H10) hold. Furthermore, if
Has) hmsupf )ITA(BO), B(s))]A0 >

(0
Ho4) lim sup fa q(v) fIC(B(v),

( pls T
(Has) BO)NAY > =3
(Ha) limsup fiﬁf@ () FIC(B(v), BON)AV > s=rar

(Has) Tmsup [ a(6)FIC(5(s), BONAG > sy

(Hzr) limmsup [ L (Bl (B(0)), e (Bu))Au > st
(Has)
(Hao)

Hs hmsupff AW 4(0) £(Cl@ (B)), (0 (BONNAG > 5=ty

vV—00

Han) imsup [, 5, a(0)(Clla™ (3(0). (0~ BONDAY > 7k
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(Hsp) f;:’ q(t)At = +oo, tg >0,

and g

(Hs1) limsup [5 " q(0) F(Ala=1(3(0)), = (B(s)) A0 > 577

hold, then (1.1) is oscillatory.

Proof. The proof of the theorem follows from the proof of Theorem 3.2. We
consider Cases(e) and (g) of Lemma 1.3 only when z(t) < 0, for t € [t3, co)r, that
is, there exists a t4 € [t3, 0o)r such that y(t) > (—)z(a"'(t)), for t € [ts, oo0)r
due to (Hy4) and hence (1.1) reduces to

Laz(t) + q(t) f(b7 1) f(=2(a7 (B(1)))) < 0. (3.12)

In Case(e), z(t) is nonincreasing. So, we can find ¢5 > ¢4 and L > 0 such that
z(t) < —L, for t > t5. Using (H;) and therefore, (3.12) yields

Laz(t) + f(b71) f(L)a(t) <0, t >ts.

Integrating the above inequality from ¢5 to oo, we obtain a contradiction to (Hsp).
Assume that Case(g) of Lemma 1.3 holds. Proceeding as in Case(a) of Theo-
rem 3.1, we obtain

w) < “;(‘u ;’)ngw), (3.13)

for u > v > t4. For s > o(t) >t > ty4, it is easy to verify that

2(s) = z(tg) + (s — t4) 2> (t2) + /S(s — ()22 (t)AL.

tg

Therefore, for s > v > t4

due to (3.13). Consequently,
2”1 (B(9))) < Laz(a™" (B(s) Ala™ (8(9)), o~ (B(s))]- (3.14)
Using (3.14) in (3.12), it follows that
Laz(0) + Q(9)f(—%)f(L32(Ofl(5(8))))f(14[a71(5(9)), a ' (B(s)) <0

due to (H;p). Integrating the last inequality from £(s) to a=1(3(s)), we obtain
that

PO F(=Laz(@™(8(s)) [, 7 a(0) £(Ala=(8(9)), o~ (5(s)))) A0
< —Lsz(a™ ' (B()),
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that is,

a5 - - ~Lys(a™} ()
Jato) (6)f (Al (5(0)), & (B)NAD < 737 1ozt (3G

1
= Mif(3)’
a contradiction to (Hs1). This completes the proof of the theorem. O
Theorem 3 4 Let 0 < p(t) < a < oo, fort € [to, co)r. If (Hy) — (Hy), (Hg) and
(Hs2) [77 Q(t)f(R1(B(1))At = +00,T > to,

(Has) [7° ‘:f(am)) Q) (Ri(5(1)At = 00, T > ty
hold, then (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 3.1, we consider Cases(a) — (d) of
Lemma 1.3. For the said cases,

Laz(t) + f(a)Laz(a(t)) + AQ(4) f(2(6(1)) < 0 (3.15)
holds true, for t > t3 > to. To (3.15), we apply Lemma 2.1 for Cases(a), (b) and
(d) of Lemma 1.3 and therefore,

Laz(t) + fa)Laz(a(t)) + Af(R)Q@) f(R1(5(t))) <0 (3.16)

due to (Hy). Integrating (3.16) from ¢3 to oo, we get a contradiction to (Hszz).
For Case(c) of Lemma 1.3, we can write (3.16) as

AR5 < — L2 0) = Lozlt) + (@) Lyz(a(o (1)) - f(a)Lyz(at)

o(t)—t
Lsz(o(t)) + f(a)Lsz(a(o(t)))
= o(t)—t
- (14 f(a))Lzz(o(t))
- o(t)—t
o L2(2(0) ~ L=(o(0)
=—(1+ f(a)) (o(t) — 1)
Loz(0?(t))
< (1 + f(a)) (U(t) _ t)2
r(02(1)22’ (0
1+ fap "),
for t > t3 > t5. Consequently,
MO0 7 o0) 1 (501) < 2 (02(0). (317)

(14 f(a)) r(o*(t))

Integrating (3.17) from t3 to co, we get a contradiction to (Hss). Hence the
theorem is proved. O

Theorem 3.5. Let —1 < p(t) < 0 and B(a=1(t)) < o2(t), for t € [tg, o).
Assume that (HO) (H2),(Hy4), (H1o) and (Hso) hold. Furthermore, if
H34 fT ( ( (t)))At = 400, T > to,

(Hzs) f7 8?(02(;?) a(t) f(Ra(B(t)) At = 00, T > to,
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. o(t s
(Hgg)hirisotjp fﬂ((a)—l(t) %(0’(8) —5)3As > Jvih
and .
(Hao) lim inf 2055055 > 57
hold, then every solution of (1.1) oscillates.

Proof. On the contrary, we proceed as in Theorem 3.2 to obtain (3.5), for ¢ > t3.
The rest of this case follows from the proof of Theorem 3.4.

When z(t) < 0, for t > t3, we consider Cases(b), (¢) and (d) of Lemma 1.3
only. Consider Case(b). Using (Hy) in (3.7), it follows that

At (~2(Ba~ (1)) < ~I§=(1)
_ —Laz(o(t) + Lax()

o(t)—t
L3z(t) _ L 2(t)
T (e@)—t)  (ot) —1)
< 7L22(t)
= (o(t) = 1)
for t > t4 > t3. Consequently,
(o) = 1200) 10 gy <20
e o) < -2 () < s
implies that
o(t) — )3
A+ 00 b 51 1)) > 0,

r(t)

and because of (Hyg), the above inequality reduces to

t) —t)%q(t
A1) + lezw(al(tm >0 (3.18)
which in turn concludes that (3.18) can not have an eventually negative solution
(because of Lemma 2.2) due to (Hsg), a contradiction.
In Case(c), we use the same type of argument as in Case(b) and we obtain the
inequality

—r(o?(t))2(0*(t))
GIORSIL

a(t)f(==(B(a” (1)) <
Using (Hjo) to the above inequality, we get

2(o(t)) — le,z(ﬂ(a_l(t))) <0. (3.19)

Applying B(a~1(t)) < o2(t) to (3.19), it follows that
I COED O I

which is a contradiction to (Hsz). Case(d) follows from Case(e) of Theorem 3.3.
Hence, the proof of the theorem is complete. (I
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Theorem 3.6. Let —0o < —b < p(t) < —1,b > 0 and B(a™1(t)) < o2(t), for
te [to,OO)’]]‘. Assume that (Ho)—(HQ), (H4), (Hlo), (H30), (H34) and (H35) hold.
Furthermore, if

. o(t 5
(Hss) lim sup fﬁ((a),l(t) 3533 (0(s) = 8)°As > 35571y
and (o(t)—t)"a(t)

o o(t)—t t
(o) i inf =505y > srpem

hold, then every solution of (1.1) oscillates.

Proof. The proof of the theorem follows from the proof of Theorem 3.5. In case
z(t) < 0, Cases(e) and (g) of Lemma 1.3 can similarly be dealt with Case(d)
of Theorem 3.5. Hence the details are omitted. This completes the proof of the
theorem. |

4. Discussion and Examples

Often, it is more challenging to study an all solution oscillatory problem (lin-
ear/nonlinear) than a problem (linear/nonlinear) dealing with asymptotic solu-
tions. The later problem may get usual procedure to study than the former one.
Even though, (1.1) is highly nonlinear, still all our results are hold true for linear,
sublinear and as well as superlinear.

This work deserves a different approach to that of [13] as long as oscillation
results are concerned. However, existence of nonoscillation results we take into
account. It would be interesting to work out the results of this work for (1.2) and
(1.3) respectively. In the following examples, we illustrate our main result:

Example 4.1. Let T = Z. Consider

A (ne" A% (y(n) + p(n)y(n — 1)) + q(n)G(y(n - 3)) = 0, (4.1)
where n > 3, p(n) = (e72 + e "), q(n) = (e — 1)?(e + 1)(2e + ne + n)e"™ — (e +
1)?(n+1),7(n) = ne™ and G(u) = 2% = Bu. Clearly, all conditions of Theorem
3.2 are satisfied. Hence (4.1) is oscillatory. Indeed, y(n) = (—1)™ is one of the
oscillatory solutions of (4.1).

Example 4.2. For T = R, consider

(tf* (vor+ (1+7) st =m) ) - tmy = (42)

for t > m, where 1 <1+ 1 =p(t) <2, r(t) =t A =1and f(u) = u. Clearly,
all the conditions of Theorem 3.1 are satisfied. Hence (4.2) is oscillatory. In
particular, y(¢) = sin t is such an oscillatory solution of (4.2).
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