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Abstract

Abstract: A new proof is given of the fact that the particle trajec-
tories of the ideal incompressible fluid are analytic curves, though the
solutions of the Euler equations may have a finite regularity. This is a
consequence of a general fact that the geodesic exponential map on the
group of volume preserving diffeomorphisms belonging to the Sobolev
space is real-analytic. The proof is based on the general properties of
holomorphic maps in complex Banach spaces.
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1 Introduction

The aim of this note is to give a new proof of the following striking fact. Con-
sider the motion of ideal incompressible fluid in a bounded domain M ⊂ Rn,
or on a compact analytic Riemannian manifold (in this paper we restrict our
analysis to the simplest case M = T3, for the ideas are the most transparent
in this case, and the technical issues are reduced to the minimum). The flow
is described by the Euler equations

∂u

∂t
+ (u,∇)u +∇p = 0, (1.1)

∇ · u = 0. (1.2)

Suppose

u(x, 0) = u0(x) (1.3)

is the initial velocity. This problem has been studied since the seminal works of
Gunter and Lichtenstein ([5], [6]). Here is a typical result. Suppose the initial
velocity u0 ∈ Hs, s > n

2
+ 1 (which is a little better than C1). Then there

exists a unique solution u(x, t) ∈ Hs for |t| < T (u0). Moreover, solution u(x, t)
has exactly the same regularity as the initial velocity, i.e. if u(x, t) ∈ Hr, r > s
for some t > 0, then u0 ∈ Hr.

Now consider the trajectories of fluid particles defined by the equation

dx

dt
= u(x(t), t) (1.4)

with the initial condition

x(0) = x0 ∈ M. (1.5)

Theorem 1.1. For any x0 ∈ M the particle trajectory x(t) is an analytic
curve.

The first proof of this result was claimed by P.Serfati in 1993 ([2], [3]).
His proof is based of commutator estimates, and is consistently real; particle
trajectories are real-analytic because they are ”very smooth”, i.e. their deriv-
atives grow not very fast. Recently N.Nadirashvili proved that the flow lines
of a stationary (time independent) solution are analytic [4]. His proof is based
on a detailed analysis of a semilinear elliptic equation satisfied by the stream
function of the stationary solution, and on the classical idea (Levy-Petrovsky)
of treating an elliptic equation as a hyperbolic one in an appropriate complex
direction.

150



In this work the viewpoint is consistently complex: the particle trajectory
x(t) is analytic because it can be continued to complex values of t. Our proof is
based on the forgotten idea of Leon Lichtenstein which is buried in his paper [1]
(published in 1925!). Lichtenstein himself has neither formulated nor proved
this result; the adequate tools of complex analysis in the Banach spaces [7]
were created much later.

2 Proof of analyticity of particle trajectories

To show the proper meaning of the theorem, we have to use the Lagrangian
description of the fluid flow. Consider the group D = SDiff s(M) of volume
preserving diffeomorphisms of M of class Hs (better to say, we always consider
the component of unity of the group D). Let Id be the unity in the group
D, i.e. the identity map. The Lie algebra of the group D, TIdD consists of
vector fields u(x) ∈ Hs on M such that divu = 0, and

∫
M

udx = 0. We
are always working in an Hs-neighborhood of Id which in what follows goes
without saying. The group D is equipped with the right-invariant L2 metric
(kinetic energy), defined for any u, v ∈ TIdD as (u, v) =

∫
M

u · vdx; the fluid
flows are geodesics on D in this metric. They are described by the Lagrange
equations (which express just the D’Alembert principle):

∂2g

∂t2
+∇p ◦ g = 0, (2.1)

where g = gt ∈ D is the fluid trajectory, and p = p(x, t) is a new unknown
scalar function (pressure).

Consider the geodesic exponential map on D. Let us denote by gt(v) the
solution of the Lagrange equation (2.1) satisfying initial conditions

g0(v) = Id, ġt(v)|t=0 = v. (2.2)

Then the geodesic exponential map Exp : TIdD → D is defined as

Exp : v 7→ g1(v). (2.3)

This map is defined for ||v||s < ε for some ε > 0.

Theorem 2.1. The map Exp is real-analytic.

Corollary 2.1. For any v ∈ TIdD the trajectory gt(v) is an analytic curve in
D.

Proof. Observe that gt(v) = Exp(t · v); now we see that the trajectory gt(v) is
an image of the segment {t ·v : 0 ≤ t ≤ 1} under the analytical map Exp.
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Corollary 2.2. If u(x) is a stationary (time independent) solution of the Euler
equations, then the flow lines are analytic curves in M .

Proof. For a stationary flow the flow lines are projections of trajectories
(t, x(t)) from R×M to M ; hence, they are analytic beyond the critical points
where u = dx

dt
= 0.

Proof of Theorem 1.1. If the trajectory, i.e. the family of diffeomorphisms
gt(v) = g · t : |M → M depends analytically on t, then the image of every
point x ∈ M , gt(x), depends analytically on t, i.e. gt(x) is an analytical curve
in M .

In what follows, we consider the case M = T3, the 3-d torus; general case is
done similarly, but here notation is simpler. On the torus, we restrict ourselves
to the diffeomorphisms g ∈ D preserfing the center of mass:

∫
M

(g(x)−x)dx =
0. For this group we keep the same notation D.

Following Lichtenstein [5] and Gunter [6], we reduce our problem to the
vorticity equation. Let ω = curl u. Then, by the Kelvin-Helmholtz theorem,
ω(t) = gt∗ω(0), i.e., in the case M = T3,

ω(gt(x), t) = g′t · ω(x, 0), (2.4)

where g′t is the Jacobi matrix of gt. The vorticity field ω(x, t) has the properties
(a) ∇ · ω = 0, (b)

∫
M

ωdx = 0, and (c) for any ω satisfying (a) and (b) there
exists unique velocity field u such that curl u = ω, divu = 0, and

∫
M

udx = 0.
In addition, if ω ∈ Hs−1, then u ∈ Hs, and the operator curl establishes
a continuous isomorphism between the spaces Hs

0 of velocities and Hs−1
0 of

vorticities satisfying both (a) and (b). Let us denote the operator inverse to
curl by curl −1.

Then the vorticity equation is obtained from (2.4) by applying the operator
curl −1:

∂gt(x)

∂t
=

(
curl −1gt∗curl u(x, 0)

) ◦ gt(x). (2.5)

This equation is equivalent to the Lagrange equation (2.4) and the initial
conditions (2.2).

To move forward, we have to introduce the analytical coordinates (or pa-
rameters) in the neighborhood of unity in D, so that we could talk about the
analyticity of the exponential map. Here we use the local Euclidean structure
of the torus which saves us some additional work compared to the general case.

For any v ∈ Hs
0 consider the map f : x 7→ x + v(x). This map does not,

in general, preserve the volume, and we correct it by adding a gradient term:
gv(x) = x + v(x) + gradϕ(x).
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Lemma 2.1. For any v ∈ Hs
0 such that ||v||s < ε there exists unique (up to

an additive constant) function ϕ ∈ Hs+1 such that the map gv ∈ D, i.e. its
Jacobian det(g′v) = 1. The correspondence v(x) 7→ gv(x) − x is analytic as a
map from Hs

0 to Hs(T3,R3).

Proof. Let x = (x1, x2, x3) be the locally Cartesian coordinates on the torus,
0 ≤ xi < 2π. Then the condition gv ∈ D is equivalent to

det




1 + v1,1 + ϕ,11 v + 1, 2 + ϕ,12 v1,3 + ϕ,13

v2,1 + ϕ,21 1 + v2,2 + ϕ,22 v2,3 + ϕ,23

v3,1 + ϕ,31 v3,2 + ϕ,32 1 + v3,3 + ϕ,33


 = 1. (2.6)

Here v1,1 = ∂v1

∂x1
, ϕ,11 = ∂2ϕ

∂x2
1
, etc. Equation (2.6) is a second order equation

with respect to ϕ. It can be written in the form

∆ϕ = P (∇v,∇2ϕ), (2.7)

where P is a polynomial of degree 3 whose all terms have degree 2 or 3. This
is equivalent to the equation

ϕ = ∆−1P (∇v,∇2ϕ) = Q(v, ϕ). (2.8)

Operator Q is analytic from Hs
0 ×Hs+1 and satisfies the inequalities

||Q(u, ϕ)||s+1 ≤ C(||v||2s + ||ϕ||2s+1); (2.9)

||∂vQ(v, ϕ)||s+1 + ||∂ϕQ(v, ϕ)||s+1 ≤ C(||v||s + ||ϕ||s+1). (2.10)

It follows then that there exists r > 0 such that for any v such that ||v||s < r
there exists unique solution ϕ = ϕ(u) of equation (2.8) (this follows from the
contractive map argument). Further, the analytic implicit function theorem
in Banach spaces (proved below) implies that ϕ(v) is analytic, because Q is.

Now, the map v ∈ Hs
0 7→ gv ∈ D is the required map defining an analytic

chart on D in a neighborhood of Id where

gv(x) = x + v(x) +∇ϕ(v)(x). (2.11)

Now we prove that in this chart, the vorticity equation (2.5) has an analytic
right hand side. The motion equations are

∂gt

∂t
= u ◦ gt; (2.12)

(
curl (u ◦ g−1

t )
) ◦ gt = g′t · ω0, (2.13)
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where ω0 = curl u0. Let us introduce notations g′(x) · ω0(x) = Fgω0(x), and
(curl (u ◦ g−1)) ◦ g = Ggu(x). Then the velocity u(x) satisfies the equation

Ggu = Fgω0. (2.14)

Let us denote u ◦ g(x) by U(x); then u(y) = U ◦ g−1(y). Now observe that
(curl (U ◦ g−1)) ◦ g(x) is for every x a rational function of g′(x) and ∇U(x)
(linear with respect to the last argument).

For g ∈ D, consider the space Xg ⊂ Hs(M,Rn) of vector functions U(x)
such that the field u(y) = U(g−1(y)) is divergence free and has zero mean.
This is expressed by the equation Rg(∇U) = 0 where Rg is a linear first order
differential operator whose coefficients are rational functions of g′. The oper-
ator Rg depends on g ∈ D analytically; hence the subspace Xg also depends
analytically on g.

Define another operator Ggω(x) = g′(x) · ω(x) which is obviously an oper-
ator from Hs−1 to Hs−1 depending analytically on g ∈ D.

Our problem is thus equivalent to the following equations:

∂gt

∂t
= U ; (2.15)

U ∈ Xg; (2.16)

FgU = Ggω. (2.17)

Here, recall, Xg is a subspace of Hs(M,R3) depending analytically on g; Gg is
an invertible operator from Xg to Hs

0(M,R3) depending analytically on g; Fg

is an operator from Hs−1
0 (M,R3) to itself depending analytically on g. Hence,

the flow gt satisfies the equation

∂gt

∂t
= F−1

gt
Ggtω. (2.18)

We solve this equation with the initial condition

g0 = Id. (2.19)

Now we use the following general theorem.

Theorem 2.2. Let E, F be complex Banach spaces. Consider the equation

dx

dt
= f(x, y) (2.20)

with the initial condition

x(0) = x0. (2.21)
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Here x ∈ E, y ∈ F , and f : E × F → E is an analytic map defined in a
neighborhood of (x0, y0) ∈ E × F . Then there exist r > 0 and T > 0 such
that (i) if ||y − y0||F < r, then there exists unique solution x(t, y) of (2.20),
(2.21) for |t| < T ; (ii) the map (y, t) 7→ x(y, t) from Br(y0)× (−T, T ) to E is
analytic.

Proof. Following Lichtenstein [1], consider the complex values of t: instead the
segment [−T, T ] consider the disk |t| ≤ T . The problem (2.20), (2.21) is then
equivalent to the integral equation

x(y, t) = x0 +

t∫

0

f(x(y, s), y)ds. (2.22)

Here y ∈ Br(y0) is a parameter. The upper limit t is a point of the disk
DT : |t| ≤ T , and the integral is along any path in Dt connecting zero and t.
We solve this equation by the Picard successive approximations:

x0(y, t) ≡ x0; (2.23)

x1(y, t) = x0 +

t∫

0

f(x0(y, s), y)ds; (2.24)

. . .

xn+1(y, t) = x0 +

t∫

0

f(xn(y, s), y)ds; (2.25)

. . .

Note that each iteration produces (for a fixed y) an analytic function xn(y, t)
in DT . By the usual argument of contracting maps, the sequence xn(y, t)
converges to some limit x(y, t) uniformly in DT as n → ∞, and the limit
is an analytic function in DT (because of the Cauchy formula). Thus, the
solution is analytic in t for every fixed y In addition, the solution is bounded,
||x(y, t)||E < Cx for all y ∈ Br. It remains to prove the analytic dependence
on y ∈ Br.

We can ”continue” our equation including new variables, namely u = ∂x
∂y

and v = ∂u
∂y

. The system looks then as follows:

dx

dt
= f(x, y); (2.26)

du

dt
= g(x, u, y); (2.27)

dv

dt
= h(x, u, v, y), (2.28)
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where f, g, h are analytic maps in respective spaces. The initial conditions
are x(0) = x0, u(0) = 0, v(0) = 0. Using the previous result, we conclude
that there exists unique solution x(t, y), u(t, y), v(t, y) which depends ana-
lytically on t ∈ DT , and is uniformly bounded for y ∈ Br. This means that
x(t, y) is continuously differentiable with respect to y. It is also continuously
differentiable with respect to t in force of the equations. So, it is continuously
differentiable with respect to (t, y).

Note that the continuous differentiability holds in the complex sense.
Hence, the function x(t, y) is analytic in DT ×Br.

For the completeness, let us prove the Analytic Implicit Function Theorem.

Theorem 2.3. Suppose E,F,G are complex Banach spaces, and Φ : E×F →
G is an analytic map defined in a neighborhood of a point x0, y0) ∈ E×F , and
Φ(x0, y0) = z0. Suppose the linear map ∂Φ

∂x
(x0, y0) is invertible, and its image

is the whole space G. Then
(i) there exists r > 0 such that for any y ∈ F and any z ∈ G such that

||y − y0||F ≤ r and ||z − z0||G ≤ r there exists unique solution x(y, z) of the
equation Φ(x, y) = z lying in a neighborhood of x0;

(ii) The function x(y, z) is analytic with respect to (y, x).

Proof. (i) This is exactly the Implicit Function Theorem for the Banach spaces
proved by the contraction argument.

(ii) A part of the classical Implicit Function Theorem is the regularity of
solution: x(y, z) ∈ C1. For the complex spaces E, F, G the solution x(y, z) is
continuously differentiable in the complex sense; this implies its analyticity, like
in the classical complex analysis. (Necessary details can be found in [7].)

Remarks. (1) Theorem 1 is inherently global; for local solution of the
Euler equations (defined in a neighborhood of a point x0 ∈ M) the analyticity
of trajectories does not universally hold. Consider, for example, the following
solution:

u(x, t) ≡ w(t); p(x, t) = ẇ(t) · (x− x0), (2.29)

where w(t) is an arbitrary vector-function of time.
(2) We can consider also the group exponential map exp : TIdD → D,

u ∈ TIdD 7→ expu ∈ D defined by expu(x) = ξ1(x) where ξt ∈ D is a solution

of the equation: dξt(x)
dt

= u(ξt(x)), ξ0(x) = x. This map looks superficially like
the geodesic exponential map Exp. However, as it was pointed out by Milnor
[8], the map exp is neither analytic, nor even C1. In fact, exp(TIdD) contains
no neighborhood of Id (unlike the geodesic exponential map Exp).
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