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Abstract

In this paper we consider the problem of bifurcation of extremals
of SO(2)-invariant (i.e., with circular symmetry) Fredholm functional
near a steady-state point with a double-resonance (i.e., with two inde-
pendent resonance relations). The main method of investigation is a
variational modification of the Lyapunov-Schmidt reduction. It allows
us to find a normal form of key functions of functionals. J. Mather’s
condition on a finite determinacy of a smooth map germ gives a sim-
pler representation of the key function. Further bifurcational analysis
of branching extremals reduces the problem to analysis of boundary and
corner singularities via the secondary reduction.

Key words: Cycle, resonance, Lyapunov-Schmidt method, bifurca-
tion, circular symmetry.
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Introduction
The problem we are dealing with, is close to multimode cyclogenesis problem
in mechanical dynamic systems. The similar problem occurs also in the theory
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of phase transitions in crystals, in the nonlinear wave theory as well as in
radiophysics, in economics, in population dynamics etc.

The theoretical environment of the approach suggested in this paper, is the
theory of smooth SO(2)-equivariant (i.e., with circular symmetry) potential
Fredholm equations in Banach spaces. The central point here is the modified
Lyapunov-Schmidt method that allows one to realize approximate computa-
tion and analysis of critical orbits of the functional V (x) via construction and
analysis of the key function W (ξ) on the space of key variables Rn [1] – [2]. A
brief exposition of this theory is given in the first section of this article.

The transition to key function is presented in the form of Ritz approxima-
tion :

W (ξ) = V

(
n∑

j=1

ξjej + Φ(ξ)

)
= inf

x:〈x,ej〉=ξj ∀j
V (x)

(the inner product 〈·, ·〉 is taken from a certain Hilbert space H). In the first
section it is also shown that conditions of local finite determinacy of smooth
function at singular points play important role in local investigation of key
functions. We use one of the most often applied criterion of finite determinacy
found by J. Mather (see [3] – [6]): Mr+1 ⊂ M2 · A(W ), where Mk is the the
k-th power of maximal ideal M in the ring of formal power series R[[ξ]] and
A(W ) is the Jacobian ideal of the function W (at zero): A(W ) is generated
by the components of grad W (ξ).

The authors are sure that Mather’s conditions and their modifications give
a good constructive basis for elaborating computational algorithms in concrete
problems of bifurcational analysis.

In the second and the third sections a smooth functional (near zero) with
circular symmetry (SO(2)-invariant functional) is considered. The action of
the circle (i.e., the group SO(2)) is given by the orthogonal representation T
of this group in the group of orthogonal operators in the Hilbert space H that
contains the domain of the functional. This action generates the action of the
circle on the kernel N of Frechét derivative of gradient of V at zero. It is as-
sumed that: 1) the action of SO(2) on N is smooth, 2) N = N1+̇N2+̇ . . . +̇Nm,
dim Nk = 2, T (Nk) = Nk, and 3) the action of the circle on Nk is irreducible
∀k.

If Nk is identified with the complex plane C, the induced action of the circle
on N comes to the standard action of the circle on Cm (with a certain collection
of indices pk) {ϕ, z} 7→ z̃ = (eip1ϕ z1, . . . , e

ipmϕ zm)>, z = (z1, . . . , zm)>. It
is assumed that HOD(p1, p2, . . . , pm) = 1. In this case one says that the
resonance of p1 : p2 : · · · : pm type takes place at the zero critical point.

The algebraic structure of the corresponding key function depends on the
resonance linear combinations that are considered to be collections of integers

(l1, l2, . . . lm), for which the (resonance relation)
m∑

k=1

lkpk = 0 holds.
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There is a direct analogy between the resonances considered here, and
the resonances in the theory of cycles bifurcations from multiple focus in the
dynamical systems [7, 8]. As well as in the dynamic systems theory, the cases of
(strong) resonances with orders no greater than 4, are the most complicated for
investigation. This means that there exists a resonance collection of coefficients
(l1, l2, . . . lm) such that

|l| :=
m∑

k=1

|lk| ≤ 4.

Note that the definitions given above, are compatible with those from the
dynamic systems theory and in fact are analogs of the latter.

In the case of a double resonance the key function takes the form

1

2

(
3∑

k=1

δkIk

)
+

1

4

(
3∑

k=1

AkI
2
k + 2

3∑

k,j=1

Bk,jIkIj

)
+ J + o(‖ξ‖4),

where Ik = ξ2
2k−1 + ξ2

2k are standard invariants and J is a linear combination
of invariants with degree ≤ 4 (for the action under consideration), completing
the standard invariants to the system of generating invariants (in the ring
of formal power series). The generating invariants are defined in the third
section.

After transition to polar coordinates zk = rke
iϕk we obtain the key function

in the form

Wδ =
3∑

j=1

r4
k +

∑

j<k

aj,kr
2
j r

2
k + b1r

2
1r2r3 + b2r1r

2
2x3 + b3r1r2r

2
3+

+c1,2r
3
1r2 + c1,3r

3
1r3 + c2,1r

3
2r1 + c2,3r

3
2r3 + c3,2r

3
3r2 + c3,1r

3
3r1+

+d1,2r
2
1r2 + d1,3r

2
1r3 + d2,1r

2
2r1 + d2,3r

2
2r3 + d3,2r

3
2r2 + d3,1r

3
2r1+

+δ1r
2
1 + δ2r

2
2 + δ3r

2
3 + O(‖r‖4),

where {aj,k, bl, cj,k, dj,k, } are structural parameters (that, roughly speaking,
depend on ϕ), and {δj} are small parameters.

The points, stationary with respect to the angular variables, are regular
with respect to them and so we can eliminate those variables by transition to
the function

U(r) := extrϕWδ(r, ϕ).

The principal information on the bifurcations at the generating critical point is
contained in the function U(r) (of three variables). A special type of singularity
of the (secondary) reduced key function corresponds to every case of double
resonance. In the fourth section we present a theorem on normal forms of the
corresponding singularities.

In the fifth section we consider some examples of bifurcational analysis of
the normalized key functions.
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1 Nonlinear Ritz approximations,
Lyapunov-Schmidt reduction and key functions.
Let V be a functional on Banach space E. A classical Ritz approximation of
V in E is a function :

W (ξ) := V

(
n∑

j=1

ξjej

)
, ξ = (ξ1, . . . , ξn)>,

where e1, . . . , en is some set of linear independent vectors in E (the approxi-

mation’s basis). A Ritz approximation of extremal of V is a point x̄ =
n∑

j=1

ξ̄jej

corresponding to the extremal ξ̄ = (ξ̄1, . . . , ξ̄n)> of the function W . In
applications the exactness of Ritz approximations is growing up by increasing
the number of basis vectors.

In the general case we consider a nonlinear approximation determined by
the function :

W (ξ) = V

(
n∑

j=1

ξjej + Φ(ξ)

)
, (1.1)

where Φ is a smooth map from N := Lin(e1, ..., en) to N⊥ (orthogonal com-
plement to N , e.g., in the space of square integrable functions). By using such
approximations, in many problems one can reach arbitrarily high exactness of
approximation for a priori fixed approximation basis and so for a priori limited
number of approximating system’s degrees of freedom.

Various methods for “finite truncation” of variational problems are well-
known at the moment. The reduction based on the representation (1.1) is one
of them. The other important ones are Lyapunov-Schmidt method, Morse-
Bott method and many others [2].

It is convenient to describe a reduction scheme starting from the abstract
operator equation:

f(x) = 0, (1.2)

where f is a potential Fredholm mapping of zero index from the Banach space
E to the Banach space F . The fact that the index of Fredholm mapping
equals zero means that the Frechet derivative ∂f(x)

∂x
, ∀x ∈ E, has a finite-

dimensional kernel Ker ∂f(x)
∂x

and a finite-dimensional cokernel Coker ∂f(x)
∂x

:=

F/Im ∂f(x)
∂x

such that dim Ker ∂f(x)
∂x

= dim Coker ∂f(x)
∂x

. The fact that f is
a potential mapping, means that equation (1.2) is equivalent to the extremal
problem:

V (x) −→ inf, x ∈ E,
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where V is a smooth functional (the potential of the mapping f) on E. In
other words,

〈f(x), h〉 ≡ ±∂V

∂x
(x)h, (1.3)

where 〈·, ·〉 is a scalar product in some Hilbert space H, in which the spaces
E and F are continuously and densely embedded. Usually it is also supposed
that E is continuously embedded into F . In this case we say that V has
the gradient realization in the triple of spaces {E, F, H} and use the notation
f = grad V = ∇V.

To (1.3) we also add the condition
〈

∂f

∂x
(x)h, h

〉
> 0 ∀(x, h) ∈ E × (Ẽ \ 0), (1.4)

where Ẽ = E∩N⊥, N = Lin(e1, . . . , en), N⊥ is the orthogonal complement to
N and e1, . . . , en is an orthonormal in H system of vectors in E. Under these
hypotheses we can define the key function of Lyapunov-Schmidt reduction as:

W (ξ) := inf
x:〈x,ej〉=ξj ∀j

V (x), ξ = (ξ1, . . . , ξn)>, (1.5)

The function W and the functional V have similar behavior in a neighbor-
hood of the origin. If f : E −→ F is a proper mapping (i.e., the pre-images of
compact subsets are compact), the key function is well-posed globally on the
entire Rn [2]. We can weaken the condition that f is proper, replacing it by
the properness condition for the fiber-wise mapping f̃ξ

f̃ξ : Ẽ −→ F̃ , (1.6)

at every ξ (where F̃ = F ∩N⊥,):

f̃ξ(v) := PF̃ (f(l(ξ) + v)) = f(l(ξ) + v)−
n∑

j=1

〈ej, f(l(ξ) + v)〉ej,

l(ξ) =
n∑

j=1

ξjej.

If condition (1.4) is satisfied, the equation

f̃ξ(v) = q (1.7)

has a unique solution for each ξ and q. It follows from the implicit function
theorem that the solution depends smoothly on ξ and q. The left-hand side
of (1.5) admits the presentation

W (ξ) ≡ V (l(ξ) + Φ(ξ))
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where Φ(ξ) is a solution of (1.6) for q=0. For the key equation

θ(ξ) = 0, ξ ∈ Rn,

where

θ(ξ) = (θ1(ξ), . . . , θn(ξ))>, θj(ξ) = 〈f(l(ξ) + Φ(ξ)), ej〉,

we have
θ(ξ) = grad W (ξ).

Now we formulate one of the most important theorem of bifurcational analysis
[2]. If mapping (1.6) is proper and condition (1.4) is satisfied, then the mar-
ginal mapping ϕ : ξ 7→ l(ξ)+Φ(ξ), (where Φ(ξ) is a solution of (1.7) for q = 0)
is a one-to-one correspondence between critical points of key function (1.5)
and extremals of V . Moreover, under these conditions the local singularity
rings1 of V at the point ϕ(ξ) are isomorphic to the local singularity rings of
(1.6) at the point ξ so that the corresponding to each other single critical
points have equal Morse indices.

The same methods are also applicable for problems with continuous group
symmetries (an equivariant version) [2].

For local investigation of key functions an important role is played by the
conditions of local finite determinacy of a smooth mapping at a critical point.
The following condition found by Mather (see [3] – [6]) is in use very much
often. Recall that a smooth function W is called strongly r−determined at the
point a if any function U such that U and W have the same Taylor polynomial
of degree r at the point a, is locally strongly smoothly equivalent to W , i.e.,
there is exist a mapping ϕ : (Rn, a) → (Rn, a) such that its Jacobi matrix at
a is the unit matrix and W (ϕ(ξ)) = U(ξ) in a certain neighborhood of a. By
Mather’s sufficient condition, a function V is strongly r−determined at the
origin if the following condition holds:

Mr+1 ⊂ M2 · A(W ).

Here Mk is a k-th power of maximal M ideal of the ring of formal power series
R[[ξ]], A(W ) is a Jacobian ideal of W (at zero). In other words, A(W ) is
generated by a gradient components of W [3, 6]. It is not hard to prove the
following natural generalization:

U ⊂ M2 · A(W ), (1.8)
1The local singularity ring of a functional V at the critical point a is defined as the

quotient-ring of the ring of germs of smooth functionals at a with respect to the ideal
generated by functionals of the form α(f(x)), where α is an arbitrary smooth functional
given on an arbitrary neighborhood of origin in the space F (f = gradHV ).
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where U is any finite-defective ideal of R[[ξ]]. If condition (1.8) holds, it is
possible to “remove” (after a diffeomorphic change of coordinates) the “tail” of
Taylor series included in U.

Among possible smooth deformations the so-called versal and miniversal
ones play important role in the general theory of deformation of singularities.
The reason for this is that the versal deformations contain information about
all metamorphoses (transformation of lever curves, sewing or splitting of sin-
gular points, various bifurcational effects, etc.) that can occur under arbitrary
deformation of a function.

A smooth deformation U(·, λ) of the singularity of W at zero is called
versal if the quotient-classes of the functions ∂U

∂λk
(x, 0) form a system of linear

generators in the local ring (treated as a linear space) of the singularity of W

at the origin (see [3] – [6]). System of functions
{

∂U
∂λk

(x, 0), k = 1, 2, . . . , µ
}

is called the initial velocities of deformation.
A smooth deformation U(x, λ) is called miniversal if the quotient-classes

of the initial velocities of deformation generate a basis of the local ring of
singularity of W at origin. If we remove the monomial of degree zero we
obtain a restricted miniversal deformation [3]. The number of parameters
contained in the restricted miniversal deformation, equals the codimension of
singularity.

Using versal deformations we can introduce some bifurcational diagrams.
The most important of them are caustics, discriminant sets and Maxwell sets.

The caustic Σ(W ) of a function W is the set of all values λ close to zero
and such that W (·, λ) has a degenerate critical point in a small neighborhood
of zero. A discriminant set Dskr is a set of all (small) values λ such that
W (·, λ) has a critical point at the zero-level surface in a neighborhood of origin.
A Maxwell set is a set of all values λ such that W (·, λ) has the same values at
a pair of different critical points near the origin. Analogously we can give the
same definitions for Fredholm functional [2].

The geometrical structure of these sets is not subjected to change after
transition to the key function W (ξ, δ) = inf

x: p(x)=ξ
V (x, λ) (here p is a reducing

submersion [2]) .
In practice one looks for the function W in the polynomial form:

W0(ξ) +
∑

k∈K

αk(λ)ξk

where K is a finite subset of Zn
+, W0(ξ) is a polynomial normal form of

singularity, {ξk, k ∈ K} is a basis of the local ring of singularity at zero. If
the deformation is versal, the mapping

π : λ 7−→ α = (αk(λ))k∈K
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is a submersion at zero [3]. Hence

Σ(V ) = π−1(Σ(W̃ )), (1.9)

where
W̃ (ξ, α) = W0(ξ) +

∑

k∈K

αkξ
k, α = {αk}k∈K ,

Σ(V ) and Σ(W̃ ) are caustics.
From (1.9) it follows that Σ(V ) is equal to Cartesian product of Σ(W ) and a

disc (infinite-dimensional if the initial parameter space is infinite-dimensional).
For finding the exact location of caustic in the space of controlling para-

meters one needs at least to determine the character of dependence of α on λ,
and it is a very difficult computational problem.

Note that the above formulas form the base for elaborating the computa-
tional algorithms in concrete bifurcational problems.

2 Functionals with circular symmetry.
Let V : E → R be a Fredholm functional with gradient f(x) in {E, F, H}.
Let also T be a representation of group SO(2) in the group O(H) of orthogonal
operators H → H such that Tg(E) ⊂ E, Tg(F ) ⊂ F , ∀g ∈ SO(2) (continuity
of SO(2) action on E is not required) and the functional V is invariant under
the action of SO(2) on E

V (Tgx) = V (x) ∀ x ∈ E, g ∈ SO(2).

Suppose that the reduction p : E → Rn is equivariant. This means that
there exists a representation T of group SO(2) on Rn such that p(Tg(x)) =
Tg(p(x)) ∀ x ∈ E, g ∈ G (i.e., the reducing map is equivariant).

Everywhere below here we assume that the action of SO(2) on Rn is
smooth and that the action of the circle on Rn has no nonzero fixed points.
This yields that n = 2 l. Therefore Rn may be decomposed into a direct sum
of two-dimensional subspaces:

N1+̇N2+̇ . . . +̇Nm,

where every subspace is invariant under the SO(2) action and restriction of
SO(2) action to every subset is irreducible.

If we identify every subset Nk with complex plane C, the action of circle
on N induced by the restriction, is reduced to standard action of circle on
complex space Cm with some set of parameters pk:

{ϕ, z} 7→ z̃ = (eip1ϕ z1, . . . , e
iplϕ zm)>, z = (z1, . . . , zm)>.
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Hence the key function is invariant under the action of group SO(2)

{exp(iϕ), z} 7−→ (exp(i p1ϕ)z1, . . . , exp(i pmϕ)zm)>.

If the GCD(p1, p2, . . . , pm) = 1, we say that a resonance of type p1 : p2 :
· · · : pm occurs at zero critical point. Algebraic structure of key function
depends on the resonance type and moreover, it depends on resonant linear
combinations. The resonant linear combinations are nontrivial sets of integers
(l1, l2, . . . lm) such that

m∑

k=1

lkpk = 0.

There is a direct analogy between the resonances we have described, and
the resonances occurring in cycle bifurcation from multiple focus in dynamical
systems described in [7, 8].

As well as in dynamical systems theory, the cases of (strong) resonances
with orders no greater than 4, are the most complicated for investigation. This
means that there exists a set of coefficients such that

|l| :=
m∑

k=1

|lk| ≤ 4.

Denote by R the set of all resonant sets. It is a subgroup of Zm. Every
basis of R is called basis system of resonant relations.

In particular, if m = 2, the basis system consist of one vector (l1, l2). In
the case m = 3 basis is a pair of vectors (l1, l2, l3), (n1, n2, n3) .

Note that these definitions are consistent with definitions from the theory
of resonances in dynamical systems.

The resonance p : q is called strong if there exists a set of nonzero integers
n1, n2 such that it satisfies the resonant relation n1p+n2q = 0 and |n1|+|n2| ≤
4. . The value |n1| + |n2| is called the order of resonant relation. Minimal
order of resonant relation is called the order of resonance. Resonant relations
of order ≤ 4 are called strong, and the others are called weak. Thus, the
resonance is called strong if there exists a strong resonant relation for this
resonance. Otherwise the resonance is called weak.

In the same way, we may define strong and weak resonances in general
case (i.e., for multiple resonances).

Remark 2.1. In concrete problems of bifurcational analysis an orthogonal
action of Lie group may not be smooth, but nevertheless this action induces
a smooth action on the space of key parameters. By this reason we use the
weaker condition of smooth action of SO(2) on the space of key parameters
instead of the condition of smooth orthogonal action of Lie group on the Hilbert
space H.
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3 Basis invariants in case of double resonances.
In the case of double resonance the key function has the form:

1

2

(
3∑

k=1

δkIk

)
+

1

4

(
3∑

k=1

AkI
2
k + 2

3∑

k,j=1

Bk,jIkIj

)
+ J + o(‖ξ‖4),

where Ik = ξ2
2k−1 + ξ2

2k is a standard invariant, J is a linear combination of
invariants of degree ≤ 4 completing the standard invariants to the system of
generating invariants.

In order to describe the invariants for some double resonances, we use the
complex form of real polynomial:

U(ξ1, ξ2, ξ3, ξ4, ξ3, ξ6) = Ũ(z1, z1, z2, z2, z3, z3),

zk := ξ2k−1 + ξ2k i , zk := ξ2k−1 − ξ2k i .

Besides the standard invariant Ik = |zk|2, k = 1, 2, 3 (invariant of degree
2), in all cases the invariants of the circle action are the following polyno-
mials of degrees 3 end 4: z̄2

1z2, z̄1z̄2z3, z̄1z̄3z
2
2 , z̄3

1z3 in the case 1 : 2 : 3;
z̄2
1z2, z̄2

2z3, z̄
2
1 z̄2z3 in the case 1 : 2 : 4; z̄2

1z2, z̄3
2z3 in the case 1 : 2 : 6;

z̄3
1z2, z̄2

2z3 in the case 1 : 3 : 6; z̄3
1z2, z̄

3
2z3 in the case 1 : 3 : 9; z̄3

1z2, z̄1z̄2z3 in
the case 1 : 3 : 4, etc.

The last set of invariants arises for the series of resonances q : p : q + p,
p + q ≥ 5. For the series q : p : 2q + p, p + q ≥ 5, we have invariant z̄2

1 z̄2z3,
and for q : p : q + 2p invariant is z̄1z̄

2
2z3. For the series q : p : 2p we have

invariant z̄2
2z3, and for q : p : 3p invariant is z̄3

2z3.
If we use the polar coordinates zk = rke

iϕk , we obtain that the non-
normalized key function has the form:

Wδ =
3∑

j=1

r4
k +

∑

j<k

aj,kr
2
j r

2
k + b1r

2
1r2r3 + b2r1r

2
2x3 + b3r1r2r

2
3+

+c1,2r
3
1r2 + c1,3r

3
1r3 + c2,1r

3
2r1 + c2,3r

3
2r3 + c3,2r

3
3r2 + c3,1r

3
3r1+

+d1,2r
2
1r2 + d1,3r

2
1r3 + d2,1r

2
2r1 + d2,3r

2
2r3 + d3,2r

3
2r2 + d3,1r

3
2r1+

+δ1r
2
1 + δ2r

2
2 + δ3r

2
3 + O(‖r‖4),

where {aj,k, bl, cj,k, dj,k, } are structural parameters (that, roughly speaking,
depend on ϕ), and {δj} are small parameters.
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4 The reduced key function.
One can easily see that the points stationary in angular variables, are regular
in these variables and so they can be “removed”, i.e., it is possible to organize
the secondary reducing transition form the function Wδ(r, ϕ) to the function
U(r) that eliminates the angular variables:

U(r) := extrϕWδ(r, ϕ).

The main information on bifurcations of functional at a critical point is con-
tained in this function. A certain type of singularity of the (secondary) reduced
key function corresponds to every case of resonance described above. Below
we obtain the normal forms of various singularities.

First let us recall the notation: A is a Jacobian ideal, generated by the
gradient’s components of V : A = 〈 ∂V

∂x1
, ∂V

∂x2
, ∂V

∂x3
〉, M is the maximal ideal of

R[[ξ]]: M = 〈x1, x3, x3〉.
Theorem 4.1. Let the key function U be obtained by reduction of angular
variables ϕk at the point of minimum with double strong resonance of order 3.
Then U can be represented in the general position after coordinate changing
and redefining the parameters in the following form

U = Ũ +
1

2

(
δ1x

2
1 + δ2x

2
2 + δ3x

2
3

)
,

where Ũ is a normal form of singularity of the key function that depends on
the resonance type. In the table below some normal form are listed (in the
right column we indicate the corresponding type of resonance):

x4
2 + x4

3 + x1x2x3 + x2
1x2, {1 : 2 : 3};

x4
3 + a x2

1x
2
3 + x2

1x2 + x2
2x3, {1 : 2 : 4}, a 6= 0;

x4
1 + x4

2 + x4
3 + x1x2x3, {p : q : p + q}, p + q ≥ 5;

x4
2 + x4

3 + a x2
2x

2
3 + x2

1x2, {p : 2p : q}, p + q ≥ 5, a 6= 0.

Proof. The proof goes in standard way. First, we compute the Taylor polyno-
mial of degree 4 that approximates the key function W̃ (on the space of key
variables R6). Then we introduce the polar coordinates in three planes invari-
ant with respect to the induced action of the circle. After that we find angular
critical points of the Taylor polynomial in polar coordinates and substitute
them into W̃ . Finally, we obtain the reduced main part of the key function in
the form of polynomial of degree 4 with respect to 3 radial variables. The nor-
malization process of the key function is based on Mather’s theorem mentioned
above.

For example, in case of W = x4
3 + c x2

1x
2
3 + x2

1x3 + x2
2x3 we have

grad W = (f1, f2, f3)
> =
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=
(
2x1x2 + 2c x1x

2
3, x2

1 + 2x2x3, x2
2 + 4x3

3 + 2c x2
1x3

)>
.

Note that the following inclusions hold:

{x1x2, x2
2} ∈ A (mod M3),

x3
1 ∈ M · A (mod M4),

{ x1x
3
3, x4

3} ∈ M · A (mod M5).

Here Q = R[[x1, x2, x3]]
/
A is the local ring of singularity of W at zero [3].

The first two inclusions easily follow from the algebraic structure of gradi-
ent. The last inclusion follows from the relations

x1f3 = 4x1x
3
3 + x1x

2
2 + 2c x3

1x3, x3f3 − x1f1 = 4x4
3 + x2

2x3 − 2x2
1x2.

In addition we have:

{x4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

3
1x3, x

2
1x2x3, x1x

2
2x3, x

3
2x3, x1x2x

2
3, x

2
2x

2
3} ⊂ M2 · A,

M5 ⊂ M2 · A.

The monomials

1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x3, x

2
1x3, x1x

2
3, x

2
1x

2
3

form a basis of local ring Q of singularity of W at zero.
Thus, the bounded miniversal deformation of the Key function in the case

of resonance 1:2:4 has the following form:

x2
1x2 + x2

2x3 + x4
3 + c x2

1x
2
3 + λ1x1 + λ2x2 + λ3x3+

+δ1x
2
1 + δ2x

2
2 + δ3x

2
3 + λ4x1x3 + λ5x1x

2
3 + λ6x

2
1x3.

The quasi-symmetric deformation takes the form:

x2
1x3 + x2

2x3 + x4
3 + c x2

1x
2
3 + δ1x

2
1 + δ2x

2
2 + δ3x

2
3.

Here we mean the symmetry with respect to the transformation group gener-
ated by the following actions:




x1

x2

x3


 →



−x1

x2

x3


 ;




x1

x2

x3

c1


 →




x1

−x2

x3

−c1


 ;




x1

x2

x3

c2


 →




x1

x2

−x3

−c2


 .

where c1 is a coefficient of the monomial x2
1x2 : c1 = 1, c2 is a coefficient of

the monomial x2
2x3 : c2 = 1.

In the other cases the arguments are analogous. 2
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5 Examples of bifurcational analysis of the nor-
malized key functions.

5.1 The case of min-singularity with resonance 1:2:4

.
After the change of coordinates x2

1 = y1, x2 = y2, x3 = y3 in the reduced
and normalized key function we obtain the function

U δ(y1, y2, y3) = y1y2 + y2
2y3 + y4

3 + c y1y
2
3 + δ1y1 + δ2y

2
2 + δ3y

2
3, (5.1)

given on the half-space y1 ≥ 0 (the function with boundary singularity [3]).
The caustic can be represented in the form Σ = Σint

0,1,1∪Σext
0,1,1∪Σ1,1,1, where

the component Σint
0,1,1 corresponds to the degeneration along the boundary

y=0, Σext
0,1,1 corresponds to the degeneration along the normal to the boundary,

Σ1,1,1 corresponds to the degeneration at internal critical points. Now consider
every component in detail.

The description of component Σint
0,1,1 (looking after internal degeneration –

degeneration along the boundary) is reduced to investigation of its restriction
to the boundary

U δ(0, y2, y3) = y2
2y3 + y4

3 + δ2y
2
2 + δ3y

2
3.

At boundary critical points (where the partial derivatives in y2 and y3 are
equal to zero) we have:

{
∂U
∂y2

= 2y2y3 + 2δ2y2 = 0;
∂U
∂y3

= y2
2 + 4y3

3 + 2δ3y3 = 0.

Thus we obtain 3 classes of extremals:

1. y2 = 0, y3 = 0;

2. y2 = 0, y2
3 = − δ3

2
;

3. y3 = −δ2, y
2
2 = 2δ2δ3 + 4δ3

2.

Since for the Hessian matrix we have

H0,1,1 =

(
2y3 + 2δ2 2y2

2y2 12y2
3 + 2δ3

)
= 2

(
y3 + δ2 y2

y2 6y2
3 + δ3

)
,

for the Hessian determinant we obtain

hint
0,1,1 = 4 det

(
y3 + δ2 y2

y2 6y2
3 + δ3

)
,
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Hence, for the first class of extremals (y2 = 0, y3 = 0) we have

hint
0,1,1 = 4δ2δ3 = 0 =⇒ (δ2 = 0) ∨ (δ3 = 0).

For the second class (y2 = 0, y2
3 = − δ3

2
)

hint
0,1,1 = 4

∣∣∣∣∣
δ2 ±

√
− δ3

2
0

0 δ3

∣∣∣∣∣ = 0 =⇒ (δ3 = 0) ∨ (δ3 = −2δ2
2),

and for the third class (y3 = −δ2, y2
2 = 2δ2δ3 + 4δ3

2)

hint
0,1,1 = 4

∣∣∣∣
0 y2

y2 0

∣∣∣∣ = 4y2
2 = 8(δ2δ3 + 2δ3

2) = 0 ⇐⇒ (δ2 = 0) ∨ (δ3 = −2δ2
2).

The component Σext
0,1,1 looking for external degeneration (degeneration along

the normal) is determined by consideration of boundary critical points of the
function U δ, at which the derivative in y1 turns to zero (external degeneration)
:

hext
0,1,1 =

∂U δ

∂y1

(0, y2, y3) = y2 + c y2
3 + δ1 = 0.

Hence for the first and the second classes we have δ1 = 0 and for the third
class 2δ2δ3 + 4δ3

2 − δ4
1 − c2δ4

2 − 2cδ1δ
2
2 = 0.

One can easily describe the component Σext
1,1,1 looking after the degeneration

outside the boundary,by the reduction to the one-dimensional singularity. In-
deed, function (5.1) has one-dimensional degeneration at the origin (this func-
tion is regular with respect to y1, y2 ). Thus, we can reduce it to the function
of one variable

R(y3) := extr y1, y2 U δ(y).

Since
∂U δ

∂y1

= δ1 + y2 + c y2
3,

∂U δ

∂y2

= y1 + 2δ2y2 + 2y2y3,

for the reduced function we obtain the following presentation

R(y3) = c2y5
3 +

(
1 + δ2 c2

)
y4

3 + 2c δ1y
3
3 + (2c δ1δ2 + δ3) y2

3 + δ2
1y3 + const,

This presentation allows us to obtain computer images of Σext
1,1,1 and to list the

sets of critical points.

5.2 The case of min-singularity with resonance p : 2p :
q, p + q ≥ 5, a 6= 0 [10].

After the change of coordinates x2
1 = y1, x2 = y2, x2

3 = y3 (for the reduced
and normalized key function) we obtain the function with corner singularity
[11] (see also [2])

Ũδ = y4
2 + y2

3 + ay2
2y3 + y1y2 + δ1y1 + δ2y

2
2 + δ3y

2
3.
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At critical points the partial derivatives are equal to zero. Hence, the
caustic is described by the following system of equations:





∂ eUδ

∂y1
= δ1 + y1 = 0,

∂ eUδ

∂y2
= 4y3

2 + 2ay2y3 + 2δ2y2 = 0,
∂ eUδ

∂y1
= 2y3 + ay2

2 + δ3 = 0.

Thus, the caustic takes the form:

δ2 =
1

2
(δ2

1(4 + a2) + aδ3)

5.3 The case of min-singularity with weak resonance p : q :
r, |p|+ |q|+ |r| ≥ 5.

After the change of coordinates x2
1 = y1, x2

2 = y2, x2
3 = y3 (for the reduced

and normalized key function) we obtain the function with principal part (after
eliminating monomials over the diagonal, see [3])

Ûδ(y1, y2, y3) = y4
1 + y4

2 + y4
3 + ay1y2 + by1y3 + cy2y3 + δ1y1 + δ2y2 + δ3y3

given on the positive octant {y1 ≥ 0, y2 ≥ 0, y3 ≥ 0} (the function with corner
singularity [11], see also [2]). The analysis of this function is described in [12].
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