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Abstract

We find new existence of solution theorems to stochastic delay equa-
tions and inclusions with mean derivatives on a Riemannian manifold.
The delays in both the equations and the inclusions are expressed in
terms of stochastic Riemannian parallel translation.

Key words: Riemannian manifold; Riemannian parallel transla-
tion; mean derivative; quadratic mean derivative; equation with delay;
inclusion with delay.

2010 Mathematics subject classification: 58J65 60H25 53C21
34K05 34K09

Introduction
In [4] we considered the stochastic equations and inclusions with delay in
terms of mean derivatives on stochastically complete Riemannian manifolds
such that the right-hand side of the part with quadratic derivative was single
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valued and equal to I, the unit matrix. This paper is a continuation of [4].
Here we deal with the general case of the right-hand side of the part with
quadratic derivative that may be set-valued and, generally speaking, is not
constant. As well as in [4], the delay summands in right-hand sides are given in
terms of Riemannian parallel translation. To avoid some technical difficulties
we consider compact Riemannian manifolds where we specify the Levi-Civita
connection.

We refer the reader to [4] for the definition of mean derivatives on mani-
folds and the other notions. Recall that here we use the defenitions of mean
derivatives with respect to the past σ-algebras that is compatible with delay
parallel translation.

1 Preliminaries on Itô equations on manifolds
Everywhere below we deal with a compact Riemannian manifold M .

Definition 1.1. ([2]) The couple (a(t,m), A(t,m)) where a(t,m) is a vector
field on M and A(t,m) is a field of linear operators A(t,m) : Rk → TmM
sending a certain Euclidean space Rk to the tangent spaces to M , is called an
Itô vector field.

Definition 1.2. ([2]) The forward stochastic differential

(a(t, m)dt + A(t,m)dw(t))

at a point m ∈ M given by an Itô vector field (a,A), is the class of stochastic
processes in the tangent space TmM that consists of solutions of all stochastic
differential equations of the form

X(t + s) =

∫ t+s

t

ã(τ, X(τ))dτ +

∫ t+s

t

Ã(τ, X(τ))dw(τ),

where ã(τ, X) is a vector field on TmM ; Ã(τ, X) : Rk → TmM is a linear
operator depending on parameters τ ∈ R and X ∈ TmM ; and the following
conditions are satisfied: ã(τ,X) and Ã(τ, X) are Lipschitz continuous, are
equal to zero outside a certain neighbourhood of origin in TmM and such that
for τ ≥ t the equalities ã(τ, 0) = a(t, m) and Ã(τ, 0) = A(t,m) hold.

Specify a connection H on M and denote by expH the exponential map of
H.

Definition 1.3. ([2, 5]) We say that a process ξ(t) satisfies the Itô equation
in Belopolskaya-Daletskii form relative to H

dξ(t) = expH
ξ(t)(a(t, ξ(t))dt + A(t, ξ(t))dw(t)), (1.1)
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if for every point ξ(t) there exists its neighbourhood in M such that before the
exit of ξ(t + s), s ≥ 0 from this neighbourhood, ξ(t + s) a.s. coincides with a
certain process from the class expH

ξ(t)(a(t, ξ(t))dt + A(t, ξ(t))dw(t)).

Note that in a local chart equation (1.1) takes the form

dξ(t) = a(t, ξ(t))dt− 1

2
tr ΓH

ξ(t)(A(t, ξ(t)), A(t, ξ(t)))dt + A(t, ξ(t))dw(t) (1.2)

where ΓH is the local connector of H in the chart. Equation (1.2) is called
an Ito equation in Baxendale form. It is shown that under coordinate changes
(1.2) is transformed according to Ito formula.

Lemma 1.1. (see, e.g., [5]) Let ξ(t) be a solution to equation (1.1). Then:
(i) Dξ(t) = a(t, ξ(t)) where the forward mean derivative Dξ(t) is calculated
with respect to H, the same connection that is in use in (1.1); (ii) D2ξ(t) =
(AA∗)(t, ξ(t)) and it does not depend on the connection.

On M we shall use the Levi-Civita connection both in equations of (1.1)
type and in the calculation of mean derivatives. On some other manifolds (say,
on the bundle of orthonormal frames OM) the connections will be introduced
specially.

Let π : OM → M be the bundle of orthonormal frames on M . Note that
the standard fiber of OM is the orthogonal group O(n) where n = dim M ,
that is compact. Since M is also compact, the total space of OM is compact
as well.

Let H be the Levi-Cvitá connection on OM and V be the vertical distrib-
ution on OM . Recall (see, e.g., [5]) that the bundles V and H over OM are
trivial: V is trivialazed by fundamental vector fields and H by basic vector
fields E(x) where the vector Eb(x) ∈ Hb for b ∈ OM and x ∈ Rn is defined by
equality Eb(x) = Tπ−1(bx)|Hb

(the frame b is considered here as a linear oper-
ator b : Rn → TπbM , see, e.g., [5]). Thus the tangent bundle TOM = H⊕V is
also trivial.

Definition 1.4 ([5]). The Riemannian metric on OM , generated by the above-
mentioned trivialization of tangent bundle TOM is called induced.

Denote by e the exponential mapping of Levi-Civitá connection of some
induced metric on OM .

Lemma 1.2 ([5]). (i) For all induced metrics the restrictions e|H coincide.
(ii) For every Y ∈ H the equality πe(Y ) = exp(TπY ) holds where exp is

the exponential mapping of Levi-Civitá connection on M .
(iii) For all induced metrics in every (specified) chart on OM the restric-

tions of local connectors Γe(X, X) to H coincide as operators of X ∈ H.
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2 Setting up the general problem
Let on M two vector fields X(t, m) and Y (t,m) and two (2, 0)-tensor fields
α(t, m) and β(t, m) be given, t ≥ 0. As well as in [4], we denote by Γt,s the
parallel translation along a smooth curve or a stochastic process of vectors or
tensors from the time instant s to the time instant t. We shall also deal with
set-valued vector fields X(t,m) and Y (t,m) and set-valued (2, 0)-tensor fields
α(t,m) and β(t, m).

Specify h > 0. Consider the system

Dξ(t) = X(t, ξ(t)) + Γt,t−hY (t− h, ξ(t− h))

D2ξ(t) = α(t, ξ(t)) + Γt,t−hβ(t− h, ξ(t− h)) (2.1)

that is called a stochastic differential equation with mean derivatives with
delay. For set-valued vector and tensor fields the system

Dξ(t) ∈ X(t, ξ(t)) + Γt,t−hY (t− h, ξ(t− h))

D2ξ(t) ∈ α(t, ξ(t)) + Γt,t−hβ(t− h, ξ(t− h)) (2.2)

is called a stochastic differential incclusion with mean derivatives with delay.
Specify a C1-curve ϕ : [−h, 0] → M .

Definition 2.5. We say that equation (2.1) (inclusion (2.2), respectively)
has a solution on the interval [−h, ε) with initial condition ϕ, if there exists a
probability space (Ω,F , P) and a stochastic process ξ(·) : [−h, ε) → M , ε > 0
given on (Ω,F , P) and taking values in M such that it coincides with ϕ on
[−h, 0], and satisfies (2.1) ( (2.2), respectively) on [ 0, ε).

It is useful to first analyze simplified cases of (2.1) and (2.2), where the
delayed summands depend on time only. These systems are given by the
formulae

Dξ(t) = X(t, ξ(t)) + Γt,0Y (t)

D2ξ(t) = α(t, ξ(t)) + Γt,0β(t) (2.3)

and

Dξ(t) ∈ X(t, ξ(t)) + Γt,0Y (t)

D2ξ(t) ∈ α(t, ξ(t)) + Γt,0β(t). (2.4)

In this cases Y (t), Y (t), β(t) and β(t) take values in the tangent space to
M at the initial point m0. By Radon’s mechanical interpretation of parallel
translation (see, e.g., its presentation in [4, 5]) the physical meaning of (2.3)
and (2.4) is that the second summands in right-hand sides are given a priori
in the reference system that is a natural replacement of the constant system
of coordinates in linear phase space.
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Definition 2.6. We say that equation (2.3) (inclusion (2.4), respectively) has
a solution on the interval [0, ε) with initial condition m0 ∈ M , if there exists
a probability space (Ω,F , P) and a stochastic process ξ(·) : [0, ε) → M , ε > 0
given on (Ω,F , P) and taking values in M such that ξ(0) = m0 and it satisfies
(2.3) ( (2.4), respectively) on [0, ε).

Sometimes we shall consider Y (t) and β(t) as stochastic processes.
It is essential that (2.1) can be reduced to (2.3) and (2.2) to (2.4). This

will be explained in the proof of Theorem 3.4.

3 Basic existence theorems for equations
Theorem 3.3. Consider compact Riemannian manifold M as above and spec-
ify a certain point m0 ∈ M . Let for m ∈ M , t ≥ 0 the vectors X(t,m) and
Y (t) ⊂ Tm0M and the the tensors α(t, m) and β(t) at m0 be smooth and uni-
formly bounded. Then equation (2.3) has a solution for initial value ξ(0) = m0

and that solution exists for all t > 0.

Proof. Let OM be the orthonormal frame bundle over M and H the Levi-Civitá
connection on OM . The tangent map of the natural projection π : OM → M
induces the isomorphism Tπ : Hb → TπbM at every point b ∈ OM . Hence, at
every b ∈ OM , we obtain the vector

XT (t, b) = Tπ−1X(t, πb) ∈ Hb ⊂ TbOM.

The vectors XT (t, b) form a horizontal (i.e., belonging to H) vector field on
OM .

Let us specify an orthonormal frame O in Tm0M . The frame O gives rise to
the isomorphism O : Rn → Tm0M where n = dimM and Rn is the arithmetic
n-dimensional space of columns with n components. Thus we can construct
the horizontal time-dependent basic vector field Y T (t, b) = E

(O−1Y (t)
)
on

OM where O−1Y (t) denotes the column vector in arithmetic Rn consisting of
the coordinates of Y with respect to the basis O.

For an orthonormal basis b in a tangent space TmM denote by b∗ the dual
basis in the cotangent space T ∗

mM . We consider every basis b or b∗ as a linear
operator from the arithmetic space Rn to TmM (T ∗

mM , respectively) that sends
a column of n real numbers to the vector having those coordinates with respect
to b (1-form with those coordinates with respect b∗, respectively). Their inverse
operators b−1 and b∗−1 send the corresponding tangent and cotangent spaces
to the arithmetic Rn.

Now introduce on OM the (2, 0)-tensor field αT (t, b) as follows. The pull
back T ∗π : T ∗

πbM → T ∗
b OM sends every 1-form ζ ∈ T ∗

πbM to the set Zb ∈
T ∗

b OM such that every θ ∈ Zb on the vector V ∈ TbOM takes the value
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θ(V ) = ζ(TπV ). Obviously each 1-form θ in T ∗
b OM belongs to the pull back

of some 1-form ζ in T ∗
πbM and the inverse (Tπ∗)−1 sends θ to ζ. On every pair

of 1-forms θ1 and θ2 in T ∗
b OM the tensor αT (t, b) takes the value

αT (t, b)(θ1, θ2) = Tπ−1α(t, πb)((Tπ∗)−1θ1, (Tπ∗)−1θ2) ∈ Hb.

Introduce also the (2, 0)-tensor field βT (t, b) on OM as follows:

βT (t, b)(θ1, θ2) = Tπ−1b(O−1β(O∗b∗
−1

Tπ∗−1θ1,O∗b∗
−1

Tπ∗−1θ2)) ∈ Hb.

Note that all the fields XT , Y T , αT and βT are smooth by construction.
From [3, Corollary 9.2.4] it follows that there exists a Euclidean space RK

with K large enough and at least locally Lipschitz continuous field of linear
operators AT (t, b) : RK → Hb such that AT (t, b)AT ∗(t, b) = αT (t, b) + βT (t, b).

Remark 3.1. In fact RK is the Euclidean space, in which OM with an induced
metric can be isometrically embedded by Nash’s theorem. Note that K depends
only on the dimension of OM . If the field αT (t, b)+βT (t, b) is non-degenerate
(i.e., positive definite), the field A is unique, smooth and for its construction
the method described in [5] can be applied. Here we cannot guarantee that
αT (t, b) + βT (t, b) is non-degenerate. Thus A is not unique and only its local
Lipschitz continuity can be proved. See details in [3].

Go on the proof of Theorem 3.3. Let w(t) be a Wiener process in RK .
Consider the following Itô equation in Belopolskaya-Daletskii form on OM :

dζ(t) = eζ(t)

(
(XT (t, ζ(t)) + Y T (t, ζ(t)))dt + AT (t, ζ(t))dw(t)

)
. (3.1)

Since the coefficients of (3.1) are at least locally Lipschitz continuous and
the manifold OM is compact, it has a unique strong solution for initial value
ζ(0) = O and this solution ζ(t) exists for all t ≥ 0. Note that ζ(t) is a
horizontal lift of the process ξ(t) = πζ(t). Thus by construction and by Lemma
1.2 ξ(t) satisfies (2.3) with initial condition ξ(0) = m0 and it exists for all t ≥ 0
since the manifold OM is compact. 2

Theorem 3.4. For a compact Riemannian manifold M as above, let for m ∈
M , t ≥ 0 the vectors X(t,m) and Y (t, m) and the the tensors α(t,m) and
β(t,m) be smooth and uniformly bounded. Then equation (2.1) has a solution
for every initial value ϕ(t) as in Definition 2.5 and that solution exists for
t ∈ [−h, h].

Proof. Here we use the notation from the proof of Theorem 3.3. Consider the
following Tϕ(0)M -valued functions of t ∈ [0, h]: X(t) = Γ0,t−hX

(
t−h, ϕ(t−h)

)
and β(t) = Γ0,t−hβ

(
t − h, ϕ(t − h)

)
. It is clear that the solution ξ(t) of (2.3)

with the introduced X(t) and β(t) that exists by Theorem 3.3, is a solution of
(2.1) on [−h, h]. 2
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Remark 3.2. The main difficulty for prolongation of solution ξ(t) from The-
orem 3.4 to t ≥ h is that for such t the delayed parts in the right-hand sides
become random as follows.

Consider the Banach manifold Ω̃ = C0([0, h],M) of continuous curves
m(·) : [0, h] → M , the σ-algebra F̃ in Ω̃ generated by cylinder sets and the
measure µξ on (Ω̃, F̃) generated by ξ(·). Recall that on (Ω̃, F̃ , µξ) the process
ξ(t) is represented as the so called coordinate process ξ(t)m(·) = m(t).

Specify a Borel measurable field Om of orthonormal frames on M . For
t ∈ [h, 2h] introduce the random vector field on OM by the formula

Y T
m(·)(t, b) = Eb

(O−1
m(h)Γh,t−hY (t− h,m(t− h))

)
(3.2)

where m(·) is considered as an elementary event from Ω̃ and Γh,t denotes the
parallel translation along ξ(t).

Introduce on OM also the random (2, 0)-tensor field βT
m(·)(t, b) for t ∈

[h, 2h] by the relation
βT

m(·)(t, b)(θ1, θ2) =

Tπ−1b(O−1
m(h)(Γh,t−hβ)(O∗

m(h)b
∗−1

Tπ∗−1θ1,O∗
m(h)b

∗−1

Tπ∗−1θ2)) ∈ Hb.

Unfortunately we do not know results on the existence of square roots for
αT (t, b) + βT

m(·)(t, b) where αT (t, b) is from the proof of Theorem 3.4, and so
we cannot construct the corresponding Itô equation in Belopolskaya-Daletskii
form on OM .

Theorem 3.5. Let X(t,m), Y (t,m) and α(t,m) be like in Theorem 3.4. Then
for every initial data ϕ(t) as in Definition 2.5 there exists a solution ξ(t) of
equation

Dξ(t) = X(t, ξ(t)) + Γt,t−hY (t− h, ξ(t− h))

D2ξ(t) = α(t, ξ(t)) (3.3)

that is well-defined for all t ∈ [−h,∞).

Proof. Here we use the probability space, the field Om and the constructions
from Remark 3.2. For t ∈ [−h, h] the assertion of Theorem follows from
Theorem 3.4. The prolongation to t ≥ h can be constructed step-by-step as
follows. From [3, Corollary 9.2.4] it follows that there exist a Euclidean space
RK with K large enough and a locally Lipschitz continuous field of linear
operators A(t,m) : RK → TmM such that A(t,m)A∗(t,m) = α(t,m). Let w(t)
be a Wiener process in RK . Construct the field of linear operators AT (t, b) :
RK → Hb as Tπ−1A(t, πb)|Hb

. On OM introduce the vector field XT (t, b) as
in the proof of Theorem 3.3 and the random vector field Y T

m(·)(t, b) by formula
(3.2) and consider the following Itô equation in Belopolskaya-Daletskii form:

dζ(t) = eζ(t)

(
(XT (t, ζ(t)) + Y T

m(·)(t, ζ(t)))dt + AT (t, ζ(t))dw(t)
)
. (3.4)
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Note that by construction XT (t, b) is smooth, AT (t, b) is locally Lipschitz con-
tinuous and Y T

m(·)(t, b) is a.s. smooth jointly in t, b. Then there exist a solution
ζ(t) of (3.4) with initial condition ζ(h) = Om(h). Since OM is compact, ζ(t)
is well-defined for t ∈ [h, 2h]. Obviously ξ(t) = πζ(t) is a prolongation of the
solution to [h, 2h]. The next steps are quite analogous. 2

Theorem 3.6. Let X(t,m), Y (t,m) and β(t, m) be like in Theorem 3.4. Then
for every initial data ϕ(t) as in Definition 2.5 there exists a solution ξ(t) of
equation

Dξ(t) = X(t, ξ(t)) + Γt,t−hY (t− h, ξ(t− h))

D2ξ(t) = Γt,t−hβ(t, ξ(t)) (3.5)

that is well-defined for all t ∈ [−h,∞).

Proof. The arguments here are analogous to those in the proof of Theorem
3.5 with the following modification. From [3, Corollary 9.2.4] it follows that
there exist a Euclidean space RK with K large enough and a locally Lip-
schitz continuous field of linear operators B(t,m) : RK → TmM such that
B(t,m)B∗(t,m) =
beta(t,m). Instead of (3.4) we deal with

dζ(t) = eζ(t)

(
(XT (t, ζ(t)) + Y T

m(·)(t, ζ(t)))dt + BT
m(·)(t, ζ(t))dw(t)

)
. (3.6)

where BT
m(·) = Tπ−1b

(O−1
m(h)Γh,t−hB(t− h,m(t− h))

)
. 2

4 Generalizations for inclusions and for equations
with continuous coefficients
Let E and G be metric spaces and F : E ( G be a set-valued mapping. For
completeness of presentation we recall the following classical definitions (see,
e.g., [5]):

Definition 4.7. For a given ε > 0 a continuous single-valued mapping fε :
E → G is called an ε-approximation of a set-valued mapping F : E ( G if
the graph of f , as a set in E ×G, belongs to the ε-neighborhood of the graph
of F .

Definition 4.8. A single-valued mapping f : E → G is called a selector
of a set-valued mapping F : E → G if at every point x ∈ E the inclusion
f(x) ∈ F (x) holds.
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In an n-dimesional linear space we denote S(n) the linear space of symmet-
ric (2, 0)-tensors (i.e., having n×n matrices) that is a subspace in the space of
all (2, 0)-tensors. The symbol S+(n) denotes the set of positive definite sym-
metric (2, 0)-tensors (n × n matrices) that is an open convex set in S(n). Its
closure, i.e., the set of positive semi-definite symmetric (2, 0)-tensors (n × n
matrices) is denoted by S̄+(n).

Everywhere below for a set B in an arbitrary normed linear space we use
the norm introduced by the formula ‖B‖ = sup

y∈B
‖y‖.

Condition 4.1. Let X(t,m) and Y(t,m) be set-valued vector fields on M and
α(t,m) and β(t,m) be set-valued (2, 0)-tensor fields taking values in S+(n) in
linear space of (2, 0) tensors at every point m ∈ M . We suppose that the
images of all t ∈ R and m ∈ M for all those fields are closed convex sets
in the corresponding spaces and that all those fields are jointly upper semi-
continuous (see the definitions, e.g., in [5]).

We shall also deal with set-valued mappings Y(t) from [0,∞) to the tangent
space at a certain point m0 ∈ M and β(t) from [0,∞) to S+(n) in the space
of symmetric (2, 0)-tensors at m0. Here we also suppose that the images of
all points in [0,∞) are closed and convex and that those mappings are upper
semi-continuous.

Theorem 4.7. Let M be a compact Riemannian manifold as above. Specify
a certain point m0 ∈ M . Let for m ∈ M , t ≥ 0 the set-valued vectors X(t,m)
and Y(t) ⊂ Tm0M and the set-valued (2, 0)-tensors α(t, m) and β(t) at m0

satisfy Condition 4.1 and be uniformly bounded. Then inclusion (2.4) has a
solution for initial value ξ(0) = m0 and that solution exists for all t > 0.

Proof. Specify a sequence of positive real numbers εq → 0 as q → ∞. By
[5, Theorem 4.11] for upper semi-continuous set-valued mappings X(t,m) and
Y(t) with closed convex images of points there exist a sequence of continuous
εq approximations Xq(t,m) and Yq(t), respectively such that Xq(t,m) (Yq(t),
respectively) point-wise tends to a Borel-measurable selector of X(t,m) (of
Y(t), respectively). Analogous ε-approximations α̂q(t,m) and β̂q(t) exist for
set-valued (2, 0)-tensor fields α(t,m) and β(t), respectively, with an additional
property: Since S+(n) is convex in S(n), those approximations take values in
S+(n) of the corresponding spaces of tensors.

Since continuous functions can be approximated by smooth ones up to
an arbitrary ε > 0, without loss of generality one may suppose Xq(t,m) and
Yq(t) to be smooth. Introduce αq(t,m) = α̂q(t, m) + εq

4
g̃(m) and βq(t) =

β̂q(t) + εq

4
g̃(m) where g(m) is the (2, 0)-metric tensor on M corresponding to

the Riemannian metric (that is (0, 2)-metric tensor) on M . Evidently αq(t,m)
(βq(t)) tends point-wise to a Borel measurable selector of α(t,m) (β(t), re-
spectively) and those approximations belong to S̄+(n) in the corresponding
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spaces. Thus one can εq

4
approximate them by smooth ones and so without

loss of generality we may consider αq(t,m) and βq(t) to be smooth.
Consider the equations

Dξq(t) = Xq(t, ξ(t)) + Γt,0Yq(t)

D2ξ(t) = αq(t, ξ(t)) + Γt,0βq(t) (4.1)

that satisfy the hypothesis of Theorem 3.3. Denote by µq the measures on the
spaces of sample paths corresponding to the solutions of (4.1) that exist by
Theorem 3.3 on an arbitrary time interval [0, T ].

The rest of the proof is made as a simple modification of that for [1, Theo-
rem 4] (it involves isometric embedding of the manifold into a Euclidean space
of large enough dimension). It is shown that the set {µq} of measures is weakly
compact so that one can select a weakly convergent subsequence. Then it is
shown that the process corresponding to the limit measure satisfies (2.4). 2

Corollary 4.8. The assertion of Theorem 3.3 is true if X(t,m), Y (t), α(t,m)
and β(t) are continuous.

Indeed, a single-valued continuous object is a particular case of the set-
valued upper semi-continuous one.

Obvious modifications of the constructions and arguments, used above,
allow one to prove the next statements.

Theorem 4.9. For a compact Riemannian manifold M as above, let for m ∈
M , t ≥ 0 the set-valued vectors X(t, m) and Y(t,m) and the set-valued tensors
α(t,m) and β(t,m) satisfy Condition 4.1 and be uniformly bounded. Then
inclusion (2.2) has a solution for every initial value ϕ(t) as in Definition 2.5
and that solution exists for t ∈ [−h, h].

Corollary 4.10. The assertion of Theorem 3.4 is true if X(t,m), Y (t,m),
α(t, m) and β(t,m) are continuous.

Theorem 4.11. Let X(t,m), Y(t, m) and α(t,m) be like in Theorem 4.9.
Then for every initial data ϕ(t) as in Definition 2.5 there exists a solution
ξ(t) of inclusion

Dξ(t) ∈ X(t, ξ(t)) + Γt,t−hY(t− h, ξ(t− h))

D2ξ(t) ∈ α(t, ξ(t)) (4.2)

that is well-defined for all t ∈ [−h,∞).

Corollary 4.12. The assertion of Theorem 3.5 is true if X(t,m), Y (t,m)
and α(t,m) are continuous.
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Theorem 4.13. Let X(t,m), Y(t,m) and β(t,m) be like in Theorem 4.9.
Then for every initial data ϕ(t) as in Definition 2.5 there exists a solution
ξ(t) of inclusion

Dξ(t) = X(t, ξ(t)) + Γt,t−hY(t− h, ξ(t− h))

D2ξ(t) = Γt,t−hβ(t, ξ(t)) (4.3)

that is well-defined for all t ∈ [−h,∞).

Corollary 4.14. The assertion of Theorem 3.6 is true if X(t,m), Y (t,m)
and β(t,m) are continuous.
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